Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

21.11.2018 | Original Article | Ausgabe 9/2020

Neural Computing and Applications 9/2020

Single-image super-resolution via joint statistic models-guided deep auto-encoder network

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2020
Autoren:
Rong Chen, Yanyun Qu, Cuihua Li, Kun Zeng, Yuan Xie, Ce Li

Abstract

Recent researches on super-resolution (SR) with deep learning networks have achieved amazing results. However, most of the existing studies neglect the internal distinctiveness of an image and the output of most methods tends to be of blurring, smoothness and implausibility. In this paper, we proposed a unified model which combines the deep model with the image restoration model for single-image SR. This model can not only reconstruct the SR image, but also keep the distinct fine structures for the low-resolution image. Two statistic priors are used to guide the updating of the output of the deep neural network: One is the non-local similarity and the other is the local smoothness. The former is modeled as the non-local total variation regularization, and the latter as the steering kernel regression total variation regularization. For this unified model, a new optimization function is formulated under a regularization framework. To optimize the total variation problem, a novel algorithm based on split Bregman iteration is developed with the theoretical proof of convergence. The experimental results demonstrate that the proposed unified model improves the peak signal-to-noise ratio of the deep SR model. Quantitative and qualitative results on four benchmark datasets show that the proposed model achieves better performance than the deep SR model without regularization terms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2020

Neural Computing and Applications 9/2020 Zur Ausgabe

Cognitive Computing for Intelligent Application and Service

A pricing method of online group-buying for continuous price function

Emerging Trends of Applied Neural Computation - E_TRAINCO

An improved weight-constrained neural network training algorithm

Premium Partner

    Bildnachweise