Skip to main content

2018 | OriginalPaper | Buchkapitel

14. Single Molecule Imaging Using X-ray Free Electron Lasers

verfasst von : Andrew Aquila, Anton Barty

Erschienen in: X-ray Free Electron Lasers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The potential to image single molecules in action with a resolution sufficiently high to reveal atomic information at room temperature without the need for crystallization is one of the most exciting applications of X-ray free electron lasers. Significant progress has been made towards this goal over the past years. Here we discuss the current status and describe the steps still required to realize atomic resolution X-ray single particle imaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., et al. (2005). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 37(2), 297–303.CrossRef Ayvazyan, V., Baboi, N., Bähr, J., Balandin, V., Beutner, B., Brandt, A., et al. (2005). First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 37(2), 297–303.CrossRef
2.
Zurück zum Zitat Allaria, E., Badano, L., Bassanese, S., Capotondi, F., Castronovo, D., Cinquegrana, P., et al. (2015). The FERMI free-electron lasers. Journal of Synchrotron Radiation, 22, 485–491.PubMedCrossRef Allaria, E., Badano, L., Bassanese, S., Capotondi, F., Castronovo, D., Cinquegrana, P., et al. (2015). The FERMI free-electron lasers. Journal of Synchrotron Radiation, 22, 485–491.PubMedCrossRef
3.
Zurück zum Zitat Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.CrossRef Emma, P., Akre, R., Arthur, J., Bionta, R., Bostedt, C., Bozek, J., et al. (2010). First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics, 4(9), 641–647.CrossRef
4.
Zurück zum Zitat Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics, 6(8), 540–544.CrossRef Ishikawa, T., Aoyagi, H., Asaka, T., Asano, Y., Azumi, N., Bizen, T., et al. (2012). A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photonics, 6(8), 540–544.CrossRef
5.
Zurück zum Zitat Altarelli, M. (2011). The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research B, 269, 2845.CrossRef Altarelli, M. (2011). The European X-ray free-electron laser facility in Hamburg. Nuclear Instruments and Methods in Physics Research B, 269, 2845.CrossRef
6.
Zurück zum Zitat Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef Fenalti, G., Zatsepin, N. A., Betti, C., Giguere, P., Han, G. W., Ishchenko, A., et al. (2015). Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nature Structural & Molecular Biology, 22(3), 265–268.CrossRef
7.
Zurück zum Zitat Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., et al. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRef Liu, W., Wacker, D., Gati, C., Han, G. W., James, D., Wang, D., et al. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science, 342(6165), 1521–1524.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.PubMedPubMedCentralCrossRef Aquila, A., Hunter, M. S., Doak, R. B., Kirian, R. A., Fromme, P., White, T. A., et al. (2012). Time-resolved protein nanocrystallography using an X-ray free-electron laser. Optics Express, 20(3), 2706–2716.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRefPubMed Barends, T. R. M., Foucar, L., Ardevol, A., Nass, K., Aquila, A., Botha, S., et al. (2015). Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science, 350(6259), 445–450.CrossRefPubMed
11.
Zurück zum Zitat Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.PubMedPubMedCentralCrossRef Kupitz, C., Basu, S., Grotjohann, I., Fromme, R., Zatsepin, N. A., Rendek, K. N., et al. (2014). Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature, 513(7517), 261–265.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130318.CrossRefPubMedCentral Neutze, R. (2014). Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130318.CrossRefPubMedCentral
13.
Zurück zum Zitat Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.PubMedPubMedCentralCrossRef Pande, K., Hutchison, C. D. M., Groenhof, G., Aquila, A., Robinson, J. S., Tenboer, J., et al. (2016). Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352(6286), 725–729.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Spence, J. (2008). X-ray imaging - ultrafast diffract-and-destroy movies. Nature Photonics, 2(7), 390–391.CrossRef Spence, J. (2008). X-ray imaging - ultrafast diffract-and-destroy movies. Nature Photonics, 2(7), 390–391.CrossRef
15.
Zurück zum Zitat Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefPubMed Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S., et al. (2017). Structural enzymology using X-ray free electron lasers. Structural Dynamics, 4(4), 044003.CrossRefPubMed
16.
Zurück zum Zitat Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.CrossRefPubMed Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain, M., et al. (2017). Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature, 541(7636), 242–246.CrossRefPubMed
17.
Zurück zum Zitat Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.PubMedPubMedCentralCrossRef Arnlund, D., Johansson, L. C., Wickstrand, C., Barty, A., Williams, G. J., Malmerberg, E., et al. (2014). Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nature Methods, 11(9), 923–926.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Cammarata, M., Levantino, M., Schotte, F., Anfinrud, P. A., Ewald, F., Choi, J., et al. (2008). Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nature Methods, 5(10), 881–886.PubMedPubMedCentralCrossRef Cammarata, M., Levantino, M., Schotte, F., Anfinrud, P. A., Ewald, F., Choi, J., et al. (2008). Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering. Nature Methods, 5(10), 881–886.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T. C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences, 109(47), 19103–19107.CrossRef Alonso-Mori, R., Kern, J., Gildea, R. J., Sokaras, D., Weng, T. C., Lassalle-Kaiser, B., et al. (2012). Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences, 109(47), 19103–19107.CrossRef
20.
Zurück zum Zitat Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495. PubMedPubMedCentralCrossRef Kern, J., Alonso-Mori, R., Tran, R., Hattne, J., Gildea, R. J., Echols, N., et al. (2013). Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science, 340(6131), 491–495. PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Ayyer, K., Geloni, G., Kocharyan, V., Saldin, E., Serkez, S., Yefanov, O., et al. (2015). Perspectives for imaging single protein molecules with the present design of the European XFEL. Structural Dynamics, 2(4), 041702–041711.PubMedPubMedCentralCrossRef Ayyer, K., Geloni, G., Kocharyan, V., Saldin, E., Serkez, S., Yefanov, O., et al. (2015). Perspectives for imaging single protein molecules with the present design of the European XFEL. Structural Dynamics, 2(4), 041702–041711.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.PubMedCrossRef Neutze, R., Wouts, R., van der Spoel, D., Weckert, E., & Hajdu, J. (2000). Potential for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797), 752–757.PubMedCrossRef
23.
Zurück zum Zitat SOLEM, J. C. (1986). Imaging biological specimens with high-intensity soft X-rays. Journal of the Optical Society of America B: Optical Physics, 3(11), 1551–1565.CrossRef SOLEM, J. C. (1986). Imaging biological specimens with high-intensity soft X-rays. Journal of the Optical Society of America B: Optical Physics, 3(11), 1551–1565.CrossRef
24.
Zurück zum Zitat Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.CrossRef Chapman, H. N., Barty, A., Bogan, M. J., Boutet, S., Frank, M., Hau-Riege, S. P., et al. (2006). Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics, 2(12), 839–843.CrossRef
25.
Zurück zum Zitat Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.PubMedPubMedCentralCrossRef Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., et al. (2011). Femtosecond X-ray protein nanocrystallography. Nature, 470(7332), 73–77.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.PubMedPubMedCentralCrossRef Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., et al. (2012). High-resolution protein structure determination by serial femtosecond crystallography. Science, 337(6092), 362–364.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H., & Attwood, D. T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213.PubMedCrossRef Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H., & Attwood, D. T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213.PubMedCrossRef
29.
Zurück zum Zitat Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.CrossRef Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14), 140101.CrossRef
30.
Zurück zum Zitat Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742), 342–344.CrossRef Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742), 342–344.CrossRef
31.
Zurück zum Zitat Barty, A., Marchesini, S., Chapman, H. N., Cui, C., Howells, M. R., Shapiro, D. A., et al. (2008). Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Physical Review Letters, 101(5), 055501.PubMedCrossRef Barty, A., Marchesini, S., Chapman, H. N., Cui, C., Howells, M. R., Shapiro, D. A., et al. (2008). Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: Determination of structural deformation mechanisms. Physical Review Letters, 101(5), 055501.PubMedCrossRef
32.
Zurück zum Zitat Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, 23(5), 1179–1200.CrossRef Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional x-ray diffraction microscopy. Journal of the Optical Society of America. A, 23(5), 1179–1200.CrossRef
33.
Zurück zum Zitat Boutet, S., Bogan, M. J., Barty, A., Frank, M., Benner, W. H., Marchesini, S., et al. (2008). Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 166-167, 65–73.CrossRef Boutet, S., Bogan, M. J., Barty, A., Frank, M., Benner, W. H., Marchesini, S., et al. (2008). Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles. Journal of Electron Spectroscopy and Related Phenomena, 166-167, 65–73.CrossRef
34.
Zurück zum Zitat Seibert, M. M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F. R. N. C., Bogan, M. J., et al. (2010). Femtosecond diffractive imaging of biological cells. Journal of Physics B, 43(19), 194015.CrossRef Seibert, M. M., Boutet, S., Svenda, M., Ekeberg, T., Maia, F. R. N. C., Bogan, M. J., et al. (2010). Femtosecond diffractive imaging of biological cells. Journal of Physics B, 43(19), 194015.CrossRef
35.
Zurück zum Zitat Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jonsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.PubMedPubMedCentralCrossRef Seibert, M. M., Ekeberg, T., Maia, F. R. N. C., Svenda, M., Andreasson, J., Jonsson, O., et al. (2011). Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 470(7332), 78–81.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015). Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Physical Review Letters, 114(9), 098102.PubMedCrossRef Ekeberg, T., Svenda, M., Abergel, C., Maia, F. R. N. C., Seltzer, V., Claverie, J.-M., et al. (2015). Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Physical Review Letters, 114(9), 098102.PubMedCrossRef
37.
Zurück zum Zitat Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949.CrossRef Hantke, M. F., Hasse, D., Maia, F. R. N. C., Ekeberg, T., John, K., Svenda, M., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics, 8(12), 943–949.CrossRef
38.
Zurück zum Zitat Reddy, H. K. N., Yoon, C. H., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2017). Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac Coherent Light Source. Scientific Data, 4, 170079.PubMedPubMedCentralCrossRef Reddy, H. K. N., Yoon, C. H., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2017). Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac Coherent Light Source. Scientific Data, 4, 170079.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2013). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 1–7. Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., et al. (2013). Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nature Communications, 5, 1–7.
40.
Zurück zum Zitat van der Schot, G., Svenda, M., Maia, F. R. N. C., Hantke, M., DePonte, D. P., Seibert, M. M., et al. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 5704.PubMedCrossRef van der Schot, G., Svenda, M., Maia, F. R. N. C., Hantke, M., DePonte, D. P., Seibert, M. M., et al. (2015). Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications, 6, 5704.PubMedCrossRef
41.
Zurück zum Zitat Loh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.PubMedCrossRef Loh, N. D., Hampton, C. Y., Martin, A. V., Starodub, D., Sierra, R. G., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.PubMedCrossRef
42.
Zurück zum Zitat Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., de Ponte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701–041713.PubMedPubMedCentralCrossRef Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., de Ponte, D., et al. (2015). The Linac Coherent Light Source single particle imaging road map. Structural Dynamics, 2(4), 041701–041713.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Mühlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262.PubMedPubMedCentralCrossRef Daurer, B. J., Okamoto, K., Bielecki, J., Maia, F. R. N. C., Mühlig, K., Seibert, M. M., et al. (2017). Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ, 4(3), 251–262.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064.PubMedPubMedCentralCrossRef Munke, A., Andreasson, J., Aquila, A., Awel, S., Ayyer, K., Barty, A., et al. (2016). Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data, 3, 160064.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A, 614, 483–496.CrossRef Strüder, L., Epp, S., Rolles, D., Hartmann, R., Holl, P., Lutz, G., et al. (2010). Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A, 614, 483–496.CrossRef
46.
Zurück zum Zitat Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 514–519.PubMedPubMedCentralCrossRef Liang, M., Williams, G. J., Messerschmidt, M., Seibert, M. M., Montanez, P. A., Hayes, M., et al. (2015). The coherent X-ray imaging instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 514–519.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466(7302), 56–61.PubMedCrossRef Young, L., Kanter, E. P., Krässig, B., Li, Y., March, A. M., Pratt, S. T., et al. (2010). Femtosecond electronic response of atoms to ultra-intense X-rays. Nature, 466(7302), 56–61.PubMedCrossRef
48.
Zurück zum Zitat Nagler, B., Aquila, A., Boutet, S., Galtier, E. C., Hashim, A., Hunter, M. S., et al. (2017). Focal spot and wavefront Sensing of an X-ray free electron laser using Ronchi shearing interferometry. Scientific Reports, 7(1), 13698.PubMedPubMedCentralCrossRef Nagler, B., Aquila, A., Boutet, S., Galtier, E. C., Hashim, A., Hunter, M. S., et al. (2017). Focal spot and wavefront Sensing of an X-ray free electron laser using Ronchi shearing interferometry. Scientific Reports, 7(1), 13698.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Barty, A., Soufli, R., McCarville, T., Baker, S. L., Pivovaroff, M. J., Stefan, P., et al. (2009). Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. Optics Express, 17(18), 15508–15519.PubMedCrossRef Barty, A., Soufli, R., McCarville, T., Baker, S. L., Pivovaroff, M. J., Stefan, P., et al. (2009). Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. Optics Express, 17(18), 15508–15519.PubMedCrossRef
50.
Zurück zum Zitat Bean, R. J., Aquila, A., Samoylova, L., & Mancuso, A. P. (2016). Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL. Journal of Optics, 18(7), 074011.CrossRef Bean, R. J., Aquila, A., Samoylova, L., & Mancuso, A. P. (2016). Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL. Journal of Optics, 18(7), 074011.CrossRef
51.
Zurück zum Zitat Loh, N.-T. D., & Elser, V. (2009). Reconstruction algorithm for single-particle diffraction imaging experiments. Physical Review E, 80(2), 026705.CrossRef Loh, N.-T. D., & Elser, V. (2009). Reconstruction algorithm for single-particle diffraction imaging experiments. Physical Review E, 80(2), 026705.CrossRef
52.
Zurück zum Zitat Ayyer, K., Philipp, H. T., Tate, M. W., Wierman, J. L., Elser, V., & Gruner, S. M. (2015). Determination of crystallographic intensities from sparse data. IUCrJ, 2(1), 29–34.PubMedPubMedCentralCrossRef Ayyer, K., Philipp, H. T., Tate, M. W., Wierman, J. L., Elser, V., & Gruner, S. M. (2015). Determination of crystallographic intensities from sparse data. IUCrJ, 2(1), 29–34.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Giannakis, D., Schwander, P., & Ourmazd, A. (2012). The symmetries of image formation by scattering. I. Theoretical framework. Optics Express, 20(12), 12799–12826.PubMedCrossRef Giannakis, D., Schwander, P., & Ourmazd, A. (2012). The symmetries of image formation by scattering. I. Theoretical framework. Optics Express, 20(12), 12799–12826.PubMedCrossRef
54.
Zurück zum Zitat Tegze, M., & Bortel, G. (2012). Atomic structure of a single large biomolecule from diffraction patterns of random orientations. Journal of Structural Biology, 179, 41–45.PubMedCrossRef Tegze, M., & Bortel, G. (2012). Atomic structure of a single large biomolecule from diffraction patterns of random orientations. Journal of Structural Biology, 179, 41–45.PubMedCrossRef
55.
Zurück zum Zitat Donatelli, J. J., Zwart, P. H., & Sethian, J. A. (2015). Iterative phasing for fluctuation X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10286–10291.PubMedPubMedCentralCrossRef Donatelli, J. J., Zwart, P. H., & Sethian, J. A. (2015). Iterative phasing for fluctuation X-ray scattering. Proceedings of the National Academy of Sciences of the United States of America, 112(33), 10286–10291.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Kirian, R. A., Schmidt, K. E., Wang, X., Doak, R. B., & Spence, J. C. H. (2011). Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Physical Review E, 84(1), 011921.CrossRef Kirian, R. A., Schmidt, K. E., Wang, X., Doak, R. B., & Spence, J. C. H. (2011). Signal, noise, and resolution in correlated fluctuations from snapshot small-angle x-ray scattering. Physical Review E, 84(1), 011921.CrossRef
57.
Zurück zum Zitat Saldin, D. K., Poon, H. C., Shneerson, V. L., Howells, M., Chapman, H. N., Kirian, R. A., et al. (2010). Beyond small-angle x-ray scattering: Exploiting angular correlations. Physical Review B, 81(17), 174105.CrossRef Saldin, D. K., Poon, H. C., Shneerson, V. L., Howells, M., Chapman, H. N., Kirian, R. A., et al. (2010). Beyond small-angle x-ray scattering: Exploiting angular correlations. Physical Review B, 81(17), 174105.CrossRef
58.
Zurück zum Zitat Philipp, H. T., Ayyer, K., Tate, M. W., Elser, V., & Gruner, S. M. (2012). Solving structure with sparse, randomly-oriented X-ray data. Optics Express, 20(12), 13129–13137.PubMedPubMedCentralCrossRef Philipp, H. T., Ayyer, K., Tate, M. W., Elser, V., & Gruner, S. M. (2012). Solving structure with sparse, randomly-oriented X-ray data. Optics Express, 20(12), 13129–13137.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Loh, N. D. (2012). Effects of extraneous noise in cryptotomography. Proceedings of SPIE, 8500, 85000K.CrossRef Loh, N. D. (2012). Effects of extraneous noise in cryptotomography. Proceedings of SPIE, 8500, 85000K.CrossRef
60.
Zurück zum Zitat Andreasson, J., Martin, A. V., Liang, M., Timneanu, N., Aquila, A., Wang, F., et al. (2014). Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Optics Express, 22(3), 2497–2510.PubMedCrossRef Andreasson, J., Martin, A. V., Liang, M., Timneanu, N., Aquila, A., Wang, F., et al. (2014). Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Optics Express, 22(3), 2497–2510.PubMedCrossRef
61.
Zurück zum Zitat Denes, P. (2014). Two-dimensional imaging detectors for structural biology with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130334.CrossRefPubMedCentral Denes, P. (2014). Two-dimensional imaging detectors for structural biology with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130334.CrossRefPubMedCentral
62.
Zurück zum Zitat Hatsui, T., & Graafsma, H. (2015). X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ, M2, 371–383.CrossRef Hatsui, T., & Graafsma, H. (2015). X-ray imaging detectors for synchrotron and XFEL sources. IUCrJ, M2, 371–383.CrossRef
63.
Zurück zum Zitat Becker, J., Greiffenberg, D., Trunk, U., Shi, X., Dinapoli, R., Mozzanica, A., et al. (2012). The single photon sensitivity of the adaptive gain integrating pixel detector. Nuclear Instruments and Methods in Physics Research A, 694, 82–90.CrossRef Becker, J., Greiffenberg, D., Trunk, U., Shi, X., Dinapoli, R., Mozzanica, A., et al. (2012). The single photon sensitivity of the adaptive gain integrating pixel detector. Nuclear Instruments and Methods in Physics Research A, 694, 82–90.CrossRef
64.
Zurück zum Zitat Wunderer, C. B., Marras, A., Bayer, M., Correa, J., Lange, S., Shevyakov, I., et al. (2014). Percival: An international collaboration to develop a MAPS-based soft X-ray imager. Synchrotron Radiation News, 27(4), 30–34.CrossRef Wunderer, C. B., Marras, A., Bayer, M., Correa, J., Lange, S., Shevyakov, I., et al. (2014). Percival: An international collaboration to develop a MAPS-based soft X-ray imager. Synchrotron Radiation News, 27(4), 30–34.CrossRef
65.
Zurück zum Zitat Blaj. G., Caragiulo, P., Carini, G., Dragone, A., Haller, G. (2015). Design and performance of the ePix camera systems. Blaj. G., Caragiulo, P., Carini, G., Dragone, A., Haller, G. (2015). Design and performance of the ePix camera systems.
67.
Zurück zum Zitat Mozzanica, A., Bergamaschi, A., Cartier, S., Dinapoli, R., Greiffenberg, D., Johnson, I., et al. (2014). Prototype characterization of the JUNGFRAU pixel detector for SwissFEL. Journal of Instrumentation, 9(5), C05010.CrossRef Mozzanica, A., Bergamaschi, A., Cartier, S., Dinapoli, R., Greiffenberg, D., Johnson, I., et al. (2014). Prototype characterization of the JUNGFRAU pixel detector for SwissFEL. Journal of Instrumentation, 9(5), C05010.CrossRef
68.
Zurück zum Zitat Bogan, M. J., Boutet, S., Chapman, H. N., Marchesini, S., Barty, A., Benner, W. H., et al. (2010). Aerosol imaging with a soft X-ray free electron laser. Aerosol Science and Technology, 44(3), i–vi.CrossRef Bogan, M. J., Boutet, S., Chapman, H. N., Marchesini, S., Barty, A., Benner, W. H., et al. (2010). Aerosol imaging with a soft X-ray free electron laser. Aerosol Science and Technology, 44(3), i–vi.CrossRef
69.
Zurück zum Zitat Frank, M., Frank, M., Carlson, D. B., Carlson, D. B., Hunter, M. S., Hunter, M. S., et al. (2014). Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ, 1(Pt 2), 95–100.PubMedPubMedCentralCrossRef Frank, M., Frank, M., Carlson, D. B., Carlson, D. B., Hunter, M. S., Hunter, M. S., et al. (2014). Femtosecond X-ray diffraction from two-dimensional protein crystals. IUCrJ, 1(Pt 2), 95–100.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Pedrini, B., Tsai, C.-J., Capitani, G., Padeste, C., Hunter, M. S., Zatsepin, N. A., et al. (2014). 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130500.CrossRefPubMedCentral Pedrini, B., Tsai, C.-J., Capitani, G., Padeste, C., Hunter, M. S., Zatsepin, N. A., et al. (2014). 7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130500.CrossRefPubMedCentral
71.
Zurück zum Zitat Yuk, J. M., Park, J., Ercius, P., Kim, K., Hellebusch, D. J., Crommie, M. F., et al. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077), 61–64.PubMedCrossRef Yuk, J. M., Park, J., Ercius, P., Kim, K., Hellebusch, D. J., Crommie, M. F., et al. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science, 336(6077), 61–64.PubMedCrossRef
72.
73.
Zurück zum Zitat Hart, P., Boutet, S., Carini, G., Dubrovin, M., Duda, B., Fritz, D., et al. (2012). The CSPAD megapixel x-ray camera at LCLS. Proceedings of SPIE, 8504, 85040C.CrossRef Hart, P., Boutet, S., Carini, G., Dubrovin, M., Duda, B., Fritz, D., et al. (2012). The CSPAD megapixel x-ray camera at LCLS. Proceedings of SPIE, 8504, 85040C.CrossRef
74.
Zurück zum Zitat Ferguson, K. R., Bucher, M., Bozek, J. D., Carron, S., Castagna, J. C., Coffee, R., et al. (2015). The atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 492–497.PubMedPubMedCentralCrossRef Ferguson, K. R., Bucher, M., Bozek, J. D., Carron, S., Castagna, J. C., Coffee, R., et al. (2015). The atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of Synchrotron Radiation, 22, 492–497.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Hosseinizadeh, A., Mashayekhi, G., Copperman, J., Schwander, P., Dashti, A., Sepehr, R., et al. (2017). Conformational landscape of a virus by single-particle X-ray scattering. Nature Methods, 5(9), 4061–4881. Hosseinizadeh, A., Mashayekhi, G., Copperman, J., Schwander, P., Dashti, A., Sepehr, R., et al. (2017). Conformational landscape of a virus by single-particle X-ray scattering. Nature Methods, 5(9), 4061–4881.
76.
Zurück zum Zitat Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J., Daurer, B. J., et al. (2017). Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Physical Review Letters, 119(15), 158102.PubMedPubMedCentralCrossRef Kurta, R. P., Donatelli, J. J., Yoon, C. H., Berntsen, P., Bielecki, J., Daurer, B. J., et al. (2017). Correlations in scattered X-ray laser pulses reveal nanoscale structural features of viruses. Physical Review Letters, 119(15), 158102.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Maia, F. R. N. C. (2012). The coherent X-ray imaging data bank. Nature Methods, 9(9), 854–855.PubMedCrossRef Maia, F. R. N. C. (2012). The coherent X-ray imaging data bank. Nature Methods, 9(9), 854–855.PubMedCrossRef
78.
Zurück zum Zitat Miao, J., & Sayre, D. (2000). On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallographica. Section A, 56, 596–605. Miao, J., & Sayre, D. (2000). On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallographica. Section A, 56, 596–605.
79.
Zurück zum Zitat Loh, N. D. (2014). A minimal view of single-particle imaging with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130328–20130328.CrossRefPubMedCentral Loh, N. D. (2014). A minimal view of single-particle imaging with X-ray lasers. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130328–20130328.CrossRefPubMedCentral
80.
Zurück zum Zitat Bobkov, S. A., Teslyuk, A. B., Kurta, R. P., Gorobtsov, O. Y., Yefanov, O. M., Ilyin, V. A., et al. (2015). Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. Journal of Synchrotron Radiation, 22(6), 1345–1352.PubMedCrossRef Bobkov, S. A., Teslyuk, A. B., Kurta, R. P., Gorobtsov, O. Y., Yefanov, O. M., Ilyin, V. A., et al. (2015). Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. Journal of Synchrotron Radiation, 22(6), 1345–1352.PubMedCrossRef
81.
Zurück zum Zitat Hosseinizadeh, A., Schwander, P., Dashti, A., Fung, R., D'Souza, R. M., & Ourmazd, A. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130326–20130326.CrossRefPubMedCentral Hosseinizadeh, A., Schwander, P., Dashti, A., Fung, R., D'Souza, R. M., & Ourmazd, A. (2014). High-resolution structure of viruses from random diffraction snapshots. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130326–20130326.CrossRefPubMedCentral
82.
Zurück zum Zitat Yoon, C. H., Schwander, P., Abergel, C., Andersson, I., Andreasson, J., Aquila, A., et al. (2011). Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Optics Express, 19(17), 16542–16549.PubMedCrossRef Yoon, C. H., Schwander, P., Abergel, C., Andersson, I., Andreasson, J., Aquila, A., et al. (2011). Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Optics Express, 19(17), 16542–16549.PubMedCrossRef
83.
Zurück zum Zitat Park, H. J., Loh, N. D., Sierra, R. G., Hampton, C. Y., Starodub, D., Martin, A. V., et al. (2013). Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. Optics Express, 21(23), 28729–28742.PubMedCrossRef Park, H. J., Loh, N. D., Sierra, R. G., Hampton, C. Y., Starodub, D., Martin, A. V., et al. (2013). Toward unsupervised single-shot diffractive imaging of heterogeneous particles using X-ray free-electron lasers. Optics Express, 21(23), 28729–28742.PubMedCrossRef
84.
Zurück zum Zitat Shneerson, V. L., Ourmazd, A., & Saldin, D. K. (2008). Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering. Acta Crystallographica, Section A: Foundations of Crystallography, 64(2), 303–315.CrossRef Shneerson, V. L., Ourmazd, A., & Saldin, D. K. (2008). Crystallography without crystals. I. The common-line method for assembling a three-dimensional diffraction volume from single-particle scattering. Acta Crystallographica, Section A: Foundations of Crystallography, 64(2), 303–315.CrossRef
85.
Zurück zum Zitat Ayyer, K., Lan, T. Y., Elser, V., & Loh, N. D. (2016). Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. Journal of Applied Crystallography, 49, 1320–1335.PubMedPubMedCentralCrossRef Ayyer, K., Lan, T. Y., Elser, V., & Loh, N. D. (2016). Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. Journal of Applied Crystallography, 49, 1320–1335.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt, C., et al. (2012). Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nature Communications, 3, 1276.PubMedCrossRef Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt, C., et al. (2012). Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nature Communications, 3, 1276.PubMedCrossRef
87.
Zurück zum Zitat Barty, A., Küpper, J., & Chapman, H. N. (2013). Molecular imaging using X-ray free-electron lasers. Annual Review of Physical Chemistry, 64, 415–435.CrossRefPubMed Barty, A., Küpper, J., & Chapman, H. N. (2013). Molecular imaging using X-ray free-electron lasers. Annual Review of Physical Chemistry, 64, 415–435.CrossRefPubMed
88.
Zurück zum Zitat Chapman, H. N., & Nugent, K. A. (2010). Coherent lensless X-ray imaging. Nature Photonics, 4(12), 833–839.CrossRef Chapman, H. N., & Nugent, K. A. (2010). Coherent lensless X-ray imaging. Nature Photonics, 4(12), 833–839.CrossRef
89.
Zurück zum Zitat Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal of the Optical Society of America. A, 24(10), 3289–3296.CrossRef Marchesini, S. (2007). Phase retrieval and saddle-point optimization. Journal of the Optical Society of America. A, 24(10), 3289–3296.CrossRef
90.
Zurück zum Zitat Shechtman, Y., Eldar, Y. C., Cohen, O., & Segev, M. (2013). Efficient coherent diffractive imaging for sparsely varying objects. Optics Express, 21(5), 6327–6338.PubMedCrossRef Shechtman, Y., Eldar, Y. C., Cohen, O., & Segev, M. (2013). Efficient coherent diffractive imaging for sparsely varying objects. Optics Express, 21(5), 6327–6338.PubMedCrossRef
91.
Zurück zum Zitat Jiang, H., Song, C., Chen, C.-C., Xu, R., Raines, K. S., Fahimian, B. P., et al. (2010). Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 107(25), 11234–11239.CrossRef Jiang, H., Song, C., Chen, C.-C., Xu, R., Raines, K. S., Fahimian, B. P., et al. (2010). Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 107(25), 11234–11239.CrossRef
92.
Zurück zum Zitat Robinson, I. (2008). Coherent diffraction - giant molecules or tiny crystals? Nature Materials, 7(4), 275–276.PubMedCrossRef Robinson, I. (2008). Coherent diffraction - giant molecules or tiny crystals? Nature Materials, 7(4), 275–276.PubMedCrossRef
93.
Zurück zum Zitat Martin, A. V., Loh, N. D., Hampton, C. Y., Sierra, R. G., Wang, F., Aquila, A., et al. (2012). Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express, 20(12), 13501–13512.PubMedCrossRef Martin, A. V., Loh, N. D., Hampton, C. Y., Sierra, R. G., Wang, F., Aquila, A., et al. (2012). Femtosecond dark-field imaging with an X-ray free electron laser. Optics Express, 20(12), 13501–13512.PubMedCrossRef
94.
Zurück zum Zitat Donatelli, J. J., Sethian, J. A., & Zwart, P. H. (2017). Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase. Proceedings of the National Academy of Sciences, 114(28), 7222–7227.CrossRef Donatelli, J. J., Sethian, J. A., & Zwart, P. H. (2017). Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase. Proceedings of the National Academy of Sciences, 114(28), 7222–7227.CrossRef
95.
Zurück zum Zitat Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., et al. (2015). Strongly aligned gas-phase molecules at free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(20), 1–7.CrossRef Kierspel, T., Wiese, J., Mullins, T., Robinson, J., Aquila, A., Barty, A., et al. (2015). Strongly aligned gas-phase molecules at free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 48(20), 1–7.CrossRef
96.
Zurück zum Zitat Starodub, D., Doak, R. B., Schmidt, K., Weierstall, U., Wu, J. S., Spence, J. C. H., et al. (2005). Damped and thermal motion of laser-aligned hydrated macromolecule beams for diffraction. The Journal of Chemical Physics, 123(24), 244304. PubMedCrossRef Starodub, D., Doak, R. B., Schmidt, K., Weierstall, U., Wu, J. S., Spence, J. C. H., et al. (2005). Damped and thermal motion of laser-aligned hydrated macromolecule beams for diffraction. The Journal of Chemical Physics, 123(24), 244304. PubMedCrossRef
97.
Zurück zum Zitat Stern, S., Holmegaard, L., Filsinger, F., Rouzee, A., Rudenko, A., Johnsson, P., et al. (2014). Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. The Royal Society of Chemistry, 171, 393–418. Stern, S., Holmegaard, L., Filsinger, F., Rouzee, A., Rudenko, A., Johnsson, P., et al. (2014). Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers. The Royal Society of Chemistry, 171, 393–418.
98.
Zurück zum Zitat Pedrini, B., Menzel, A., Guizar-Sicairos, M., Guzenko, V. A., Gorelick, S., David, C., et al. (2013). Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nature Communications, 4, 1647.PubMedCrossRef Pedrini, B., Menzel, A., Guizar-Sicairos, M., Guzenko, V. A., Gorelick, S., David, C., et al. (2013). Two-dimensional structure from random multiparticle X-ray scattering images using cross-correlations. Nature Communications, 4, 1647.PubMedCrossRef
99.
Zurück zum Zitat Gipson, B., Masiel, D., Browning, N., Spence, J., Mitsuoka, K., & Stahlberg, H. (2011). Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals. Physical Review E, 84(1), 011916.CrossRef Gipson, B., Masiel, D., Browning, N., Spence, J., Mitsuoka, K., & Stahlberg, H. (2011). Automatic recovery of missing amplitudes and phases in tilt-limited electron crystallography of two-dimensional crystals. Physical Review E, 84(1), 011916.CrossRef
100.
Zurück zum Zitat Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.PubMedPubMedCentralCrossRef Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica, 5(6), 843–843.CrossRef Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta Crystallographica, 5(6), 843–843.CrossRef
102.
Zurück zum Zitat Kirian, R. A., Bean, R. J., Beyerlein, K. R., Yefanov, O. M., White, T. A., Barty, A., et al. (2014). Phasing coherently illuminated nanocrystals bounded by partial unit cells. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130331–20130331.CrossRefPubMedCentral Kirian, R. A., Bean, R. J., Beyerlein, K. R., Yefanov, O. M., White, T. A., Barty, A., et al. (2014). Phasing coherently illuminated nanocrystals bounded by partial unit cells. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130331–20130331.CrossRefPubMedCentral
103.
Zurück zum Zitat Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., et al. (2011). Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19(4), 2866–2873.PubMedCrossRef Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T., et al. (2011). Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19(4), 2866–2873.PubMedCrossRef
104.
Zurück zum Zitat Kirian, R. A., Bean, R. J., Beyerlein, K. R., Barthelmess, M., Yoon, C. H., Wang, F., et al. (2015). Direct phasing of finite crystals illuminated with a free-electron laser. Physical Review X, 5(1), 011015.CrossRef Kirian, R. A., Bean, R. J., Beyerlein, K. R., Barthelmess, M., Yoon, C. H., Wang, F., et al. (2015). Direct phasing of finite crystals illuminated with a free-electron laser. Physical Review X, 5(1), 011015.CrossRef
105.
Zurück zum Zitat Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202–206.PubMedPubMedCentralCrossRef Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530(7589), 202–206.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Eisebitt, S., Lüning, J., Schlotter, W. F., Lorgen, M., Hellwig, O., Eberhardt, W., et al. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature, 432(7019), 885–888.PubMedCrossRef Eisebitt, S., Lüning, J., Schlotter, W. F., Lorgen, M., Hellwig, O., Eberhardt, W., et al. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature, 432(7019), 885–888.PubMedCrossRef
107.
Zurück zum Zitat McNulty, I., Kirz, J., Jacobsen, C., Anderson, E. H., Howells, M. R., & KERN, D. P. (1992). High-resolution imaging by Fourier-transform X-ray holography. Science, 256(5059), 1009–1012.PubMedCrossRef McNulty, I., Kirz, J., Jacobsen, C., Anderson, E. H., Howells, M. R., & KERN, D. P. (1992). High-resolution imaging by Fourier-transform X-ray holography. Science, 256(5059), 1009–1012.PubMedCrossRef
108.
Zurück zum Zitat Solem, J. C., & Baldwin, G. C. (1982). Micro-holography of living organisms. Science, 218(4569), 229–235.PubMedCrossRef Solem, J. C., & Baldwin, G. C. (1982). Micro-holography of living organisms. Science, 218(4569), 229–235.PubMedCrossRef
109.
Zurück zum Zitat Wu, B., Wang, T., Graves, C. E., Zhu, D., Schlotter, W. F., Turner, J. J., et al. (2016). Elimination of X-ray diffraction through stimulated X-ray transmission. Physical Review Letters, 117(2), 027401.PubMedCrossRef Wu, B., Wang, T., Graves, C. E., Zhu, D., Schlotter, W. F., Turner, J. J., et al. (2016). Elimination of X-ray diffraction through stimulated X-ray transmission. Physical Review Letters, 117(2), 027401.PubMedCrossRef
110.
Zurück zum Zitat Schlotter, W. F., Rick, R., Chen, K., Scherz, A., Stöhr, J., Lüning, J., et al. (2006). Multiple reference Fourier transform holography with soft x rays. Applied Physics Letters, 89(16), 163112.CrossRef Schlotter, W. F., Rick, R., Chen, K., Scherz, A., Stöhr, J., Lüning, J., et al. (2006). Multiple reference Fourier transform holography with soft x rays. Applied Physics Letters, 89(16), 163112.CrossRef
111.
Zurück zum Zitat Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., et al. (2008). Massively parallel X-ray holography. Nature Photonics, 2(9), 560–563.CrossRef Marchesini, S., Boutet, S., Sakdinawat, A. E., Bogan, M. J., Bajt, S., Barty, A., et al. (2008). Massively parallel X-ray holography. Nature Photonics, 2(9), 560–563.CrossRef
112.
Zurück zum Zitat Martin, A. V. (2014). The correlation of single-particle diffraction patterns as a continuous function of particle orientation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130329.CrossRefPubMedCentral Martin, A. V. (2014). The correlation of single-particle diffraction patterns as a continuous function of particle orientation. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130329.CrossRefPubMedCentral
113.
Zurück zum Zitat Gorkhover, T., Ulmer, A., & Ferguson, K. (2017). Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nature Photonics, 12, 150–153.CrossRef Gorkhover, T., Ulmer, A., & Ferguson, K. (2017). Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. Nature Photonics, 12, 150–153.CrossRef
114.
Zurück zum Zitat Bai, X.-C., McMullan, G., & Scheres, S. H. W. (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1), 49–57.PubMedCrossRef Bai, X.-C., McMullan, G., & Scheres, S. H. W. (2015). How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 40(1), 49–57.PubMedCrossRef
116.
Zurück zum Zitat Henderson, R. (2015). Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics, 581, 19–24.PubMedCrossRef Henderson, R. (2015). Overview and future of single particle electron cryomicroscopy. Archives of Biochemistry and Biophysics, 581, 19–24.PubMedCrossRef
118.
Zurück zum Zitat Glaeser, R. M. (2013). Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. The Review of Scientific Instruments, 84(11), 111101–111117.PubMedPubMedCentralCrossRef Glaeser, R. M. (2013). Invited Review Article: Methods for imaging weak-phase objects in electron microscopy. The Review of Scientific Instruments, 84(11), 111101–111117.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Garman, E. F. (2010). Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallographica. Section D, Biological Crystallography, 66(4), 339–351.PubMedPubMedCentralCrossRef Garman, E. F. (2010). Radiation damage in macromolecular crystallography: What is it and why should we care? Acta Crystallographica. Section D, Biological Crystallography, 66(4), 339–351.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Caleman, C., Ortiz, C., Marklund, E., Bultmark, F., Gabrysch, M., Parak, F. G., et al. (2009). Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 85(1), 18005.CrossRef Caleman, C., Ortiz, C., Marklund, E., Bultmark, F., Gabrysch, M., Parak, F. G., et al. (2009). Radiation damage in biological material: Electronic properties and electron impact ionization in urea. Europhysics Letters, 85(1), 18005.CrossRef
121.
Zurück zum Zitat Nagler, B., Zastrau, U., Fäustlin, R. R., Vinko, S. M., Whitcher, T., Nelson, A. J., et al. (2009). Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Physics, 5(8), 1–4. Nagler, B., Zastrau, U., Fäustlin, R. R., Vinko, S. M., Whitcher, T., Nelson, A. J., et al. (2009). Turning solid aluminium transparent by intense soft X-ray photoionization. Nature Physics, 5(8), 1–4.
122.
Zurück zum Zitat Armstrong, M. R., Boyden, K., Browning, N. D., Campbell, G. H., Colvin, J. D., DeHope, W. J., et al. (2007). Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy, 107(4-5), 356–367.PubMedCrossRef Armstrong, M. R., Boyden, K., Browning, N. D., Campbell, G. H., Colvin, J. D., DeHope, W. J., et al. (2007). Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy, 107(4-5), 356–367.PubMedCrossRef
123.
Zurück zum Zitat LaGrange, T., Armstrong, M. R., Boyden, K., Brown, C. G., Campbell, G. H., Colvin, J. D., et al. (2006). Single-shot dynamic transmission electron microscopy. Applied Physics Letters, 89(4), 044105.CrossRef LaGrange, T., Armstrong, M. R., Boyden, K., Brown, C. G., Campbell, G. H., Colvin, J. D., et al. (2006). Single-shot dynamic transmission electron microscopy. Applied Physics Letters, 89(4), 044105.CrossRef
124.
Zurück zum Zitat Altarelli, M., & Mancuso, A. P. (2014). Structural biology at the European X-ray free-electron laser facility. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130311–20130311.CrossRefPubMedCentral Altarelli, M., & Mancuso, A. P. (2014). Structural biology at the European X-ray free-electron laser facility. Philosophical Transactions of the Royal Society, B: Biological Sciences, 369(1647), 20130311–20130311.CrossRefPubMedCentral
Metadaten
Titel
Single Molecule Imaging Using X-ray Free Electron Lasers
verfasst von
Andrew Aquila
Anton Barty
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_14

Neuer Inhalt