Skip to main content
Erschienen in:

30.08.2024

Single-sample face and ear recognition using virtual sample generation with 2D local patches

verfasst von: Vivek Tomar, Nitin Kumar

Erschienen in: The Journal of Supercomputing | Ausgabe 19/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single-sample face and ear recognition (SSFER) is a challenging sub-problem in biometric recognition that refers to the difficulty in feature extraction and classification when only a single-face or ear training image is available. SSFER becomes much more challenging when images contain a variety of lighting, positions, occlusions, expressions, etc. Virtual sample generation methods in SSFER have gained popularity among researchers due to their simplicity in the augmentation of training sets and improved feature extraction. In this article, we propose a novel and simple method for the generation of virtual samples for training the classifiers to be used in SSFER. The proposed method is based on 2D local patches, and six training samples are generated for a single face or ear image. Further, training is performed using one of the variations along with its generated virtual samples, while during testing, all the variations were considered except the one used during training. Features are extracted using principal component analysis, and classification is performed using the nearest-neighbour classifier. Extensive experiments were performed for the image quality of the virtual samples, classification accuracy, and testing time on ORL, Yale, and AR (illumination) face databases, and AMI and IITD ear databases which are publicly available. The results are also compared with other state-of-the-art methods, with classification accuracy and universal image quality being the major outcomes. The proposed method improves the classification accuracy by 14.50%, 1.11%, 0.09%, 21.60%, and 10.00% on AR (illumination), Yale, ORL, IITD, and AMI databases, respectively. The proposed method showed an improvement in universal image quality by 15%, 20%, 14%, 30%, and 15% on AR (illumination), Yale, ORL, IITD, and AMI databases, respectively. Experimental results prove the effectiveness of the proposed method in generating virtual samples for SSFER.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
16.
Zurück zum Zitat Lin J, Li JP, Lin H, Ming J, Wang Y (2008) Robust face recognition with partial distortion and occlusion from small number of samples per class. In: 2008 International Conference on Apperceiving Computing and Intelligence Analysis (pp 57–61). IEEE. https://doi.org/10.1109/ICACIA.2008.4769970 Lin J, Li JP, Lin H, Ming J, Wang Y (2008) Robust face recognition with partial distortion and occlusion from small number of samples per class. In: 2008 International Conference on Apperceiving Computing and Intelligence Analysis (pp 57–61). IEEE. https://​doi.​org/​10.​1109/​ICACIA.​2008.​4769970
19.
Zurück zum Zitat Martinez A, Benavente R (1998) The AR face database: CVC technical report, 24 Martinez A, Benavente R (1998) The AR face database: CVC technical report, 24
31.
Zurück zum Zitat Yin H, Fu P, Meng S (2006) Sampled two-dimensional LDA for face recognition with one training image per person. In: First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC’06) (vol 2, pp 113–116). IEEE. https://doi.org/10.1109/ICICIC.2006.343 Yin H, Fu P, Meng S (2006) Sampled two-dimensional LDA for face recognition with one training image per person. In: First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC’06) (vol 2, pp 113–116). IEEE. https://​doi.​org/​10.​1109/​ICICIC.​2006.​343
36.
Zurück zum Zitat Zhao Y, Ma Y, Ji S (2010) Face recognition with single training image per person based on wavelet transform and virtual information. In: 2010 First International Conference on Pervasive Computing, Signal Processing and Applications (pp 277–280). IEEE. https://doi.org/10.1109/PCSPA.2010.74 Zhao Y, Ma Y, Ji S (2010) Face recognition with single training image per person based on wavelet transform and virtual information. In: 2010 First International Conference on Pervasive Computing, Signal Processing and Applications (pp 277–280). IEEE. https://​doi.​org/​10.​1109/​PCSPA.​2010.​74
Metadaten
Titel
Single-sample face and ear recognition using virtual sample generation with 2D local patches
verfasst von
Vivek Tomar
Nitin Kumar
Publikationsdatum
30.08.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 19/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06463-5