Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.08.2020 | Original Paper | Ausgabe 4/2020

International Journal on Document Analysis and Recognition (IJDAR) 4/2020

Single shot multi-oriented text detection based on local and non-local features

Zeitschrift:
International Journal on Document Analysis and Recognition (IJDAR) > Ausgabe 4/2020
Autoren:
XiaoQian Li, Jie Liu, ShuWu Zhang, GuiXuan Zhang, Yang Zheng
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In order to improve the robustness of text detector on scene text of various scales, a single shot text detector that combines local and non-local features is proposed in this paper. A dilated inception module for local feature extraction and a text self-attention module for non-local feature extraction are presented, and these two kinds of modules are integrated into single shot detector (SSD) of generic object detection so as to perform multi-oriented text detection in natural scene. The proposed modules make a contribution to richer and wider receptive field and enhance feature representation. Furthermore, the performance of our text detector is improved. In addition, compared with previous text detectors based on SSD which classify positive and negative samples depending on default boxes, we exploit pixels as reference for more accurate matching with ground truth which avoids complex anchor design. Furthermore, to evaluate the effectiveness of the proposed method, we carry out several comparative experiments on public standard benchmarks and analyze the experimental results in detail. The experimental results illustrate that the proposed text detector can compete with the state-of-the-art methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner