Skip to main content

2022 | OriginalPaper | Buchkapitel

15. Singlet Fission Solar Cells

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The high-energy (blue) part of the solar spectrum is inefficiently converted in conventional solar cells, mainly because the high-energy excitations thermalize to the bandgap before they are extracted. Several strategies have been devised to tackle these thermalization losses, most prominently tandem solar cells. However, these tandem cells require an intricate device design and current matching in case of a series connection. Downconversion via singlet fission and quantum cutting promise a better use of the high-energy photons, avoiding a large fraction of the thermalization losses, but without the intricate fabrication and design constraints of tandem cells. In this chapter we review the progress made towards efficient singlet fission and quantum cutting downconversion. We start with the potential for solar cell integration, reviewing the different integration schemes and their efficiency potential. In the second part we review the progress towards solar cells that utilize singlet fission and quantum cutting from all-organic devices to hybrid two-bandgap devices and fully optical integration. Finally, we lay out the challenges for using these downconversion schemes in commercial solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat IRENA. Renewable Capacity Statistics 2020. International Renewable Energy Agency (2020) IRENA. Renewable Capacity Statistics 2020. International Renewable Energy Agency (2020)
3.
Zurück zum Zitat Energy Watch Group. Global Energy System based on 100% Renewable Energy. Energy Watch Group (2019) Energy Watch Group. Global Energy System based on 100% Renewable Energy. Energy Watch Group (2019)
4.
Zurück zum Zitat W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef
5.
Zurück zum Zitat Edmond D Jackson, Solar energy converter (U.S. Patent No. 2,949,498) (1960) Edmond D Jackson, Solar energy converter (U.S. Patent No. 2,949,498) (1960)
6.
Zurück zum Zitat D.L. Dexter, Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18–19, 779–784 (1979)CrossRef D.L. Dexter, Two ideas on energy transfer phenomena: ion-pair effects involving the OH stretching mode, and sensitization of photovoltaic cells. J. Lumin. 18–19, 779–784 (1979)CrossRef
7.
Zurück zum Zitat M.A. Green et al., Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020)CrossRef M.A. Green et al., Solar cell efficiency tables (Version 55). Prog. Photovolt. Res. Appl. 28, 3–15 (2020)CrossRef
8.
Zurück zum Zitat H. Liu et al., The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Opt. Express 23, A382 (2015)CrossRef H. Liu et al., The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Opt. Express 23, A382 (2015)CrossRef
9.
Zurück zum Zitat M.H.M.H. Futscher, B. Ehrler, Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett. 2, 2089–2095 (2017)CrossRef M.H.M.H. Futscher, B. Ehrler, Modeling the performance limitations and prospects of perovskite/Si tandem solar cells under realistic operating conditions. ACS Energy Lett. 2, 2089–2095 (2017)CrossRef
10.
Zurück zum Zitat A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839 (1980)CrossRef A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13, 839 (1980)CrossRef
11.
Zurück zum Zitat S.P. Bremner, M.Y. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovoltaics Res. Appl. 16, 225–233 (2008)CrossRef S.P. Bremner, M.Y. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovoltaics Res. Appl. 16, 225–233 (2008)CrossRef
12.
Zurück zum Zitat A.S. Brown, M.A. Green, Detailed balance limit for the series constrained two terminal tandem solar cell, in Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, (North-Holland, 2002), pp. 96–100 A.S. Brown, M.A. Green, Detailed balance limit for the series constrained two terminal tandem solar cell, in Physica E: Low-Dimensional Systems and Nanostructures, vol. 14, (North-Holland, 2002), pp. 96–100
13.
Zurück zum Zitat T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency. IEEE J. Photovoltaics 4, 208–214 (2014)CrossRef T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% efficiency. IEEE J. Photovoltaics 4, 208–214 (2014)CrossRef
14.
Zurück zum Zitat M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016)CrossRef M.H. Futscher, B. Ehrler, Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 1, 863–868 (2016)CrossRef
15.
Zurück zum Zitat M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017)CrossRef M.T. Hörantner, H.J. Snaith, Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017)CrossRef
17.
Zurück zum Zitat T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)CrossRef T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)CrossRef
18.
Zurück zum Zitat T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef
19.
Zurück zum Zitat Z. Huang et al., Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015)CrossRef Z. Huang et al., Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 5552–5557 (2015)CrossRef
20.
Zurück zum Zitat M. Wu et al., Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10, 31–34 (2015)CrossRef M. Wu et al., Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 10, 31–34 (2015)CrossRef
22.
Zurück zum Zitat C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016)CrossRef C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016)CrossRef
26.
Zurück zum Zitat J.V. Frangioni, In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003)CrossRef J.V. Frangioni, In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003)CrossRef
30.
Zurück zum Zitat H. Park, S. Chang, S. Park, W.K. Kim, Outdoor performance test of bifacial n-type silicon photovoltaic modules. Sustainability 11 (2019) H. Park, S. Chang, S. Park, W.K. Kim, Outdoor performance test of bifacial n-type silicon photovoltaic modules. Sustainability 11 (2019)
31.
Zurück zum Zitat A.J. Nozik et al., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef A.J. Nozik et al., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010)CrossRef
32.
Zurück zum Zitat R.J. Ellingson et al., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005)CrossRef R.J. Ellingson et al., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005)CrossRef
33.
Zurück zum Zitat M.M.C. Hanna, A.A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 74510 (2006)CrossRef M.M.C. Hanna, A.A.J. Nozik, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 74510 (2006)CrossRef
34.
Zurück zum Zitat C. Smith, D. Binks, Multiple exciton generation in colloidal nanocrystals. Nanomaterials 4, 19–45 (2013)CrossRef C. Smith, D. Binks, Multiple exciton generation in colloidal nanocrystals. Nanomaterials 4, 19–45 (2013)CrossRef
35.
Zurück zum Zitat J.M. Luther et al., Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 7, 1779–1784 (2007)CrossRef J.M. Luther et al., Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 7, 1779–1784 (2007)CrossRef
38.
Zurück zum Zitat M.L. Steigerwald, L.E. Brus, Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 19, 471–495 (1989)CrossRef M.L. Steigerwald, L.E. Brus, Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 19, 471–495 (1989)CrossRef
39.
Zurück zum Zitat I.J.I. Kramer, E.H. Sargent, Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)CrossRef I.J.I. Kramer, E.H. Sargent, Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)CrossRef
40.
Zurück zum Zitat A. Luque, A. Martí, A.J. Nozik, Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007)CrossRef A. Luque, A. Martí, A.J. Nozik, Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull. 32, 236–241 (2007)CrossRef
41.
Zurück zum Zitat O.E. Semonin et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)CrossRef O.E. Semonin et al., Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)CrossRef
42.
Zurück zum Zitat M.L.M.L. Böhm et al., Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 15, 7987–7993 (2015)CrossRef M.L.M.L. Böhm et al., Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 15, 7987–7993 (2015)CrossRef
43.
Zurück zum Zitat N.J.L.K. Davis et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259 (2015)CrossRef N.J.L.K. Davis et al., Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259 (2015)CrossRef
46.
Zurück zum Zitat D. Zhou et al., Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 29 (2017) D. Zhou et al., Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater. 29 (2017)
49.
Zurück zum Zitat M.J. Crane, D.M. Kroupa, D.R. Gamelin, Detailed-balance analysis of Yb3+:CsPb(Cl1-: XBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ. Sci. (2019). https://doi.org/10.1039/c9ee01493d M.J. Crane, D.M. Kroupa, D.R. Gamelin, Detailed-balance analysis of Yb3+:CsPb(Cl1-: XBrx)3 quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy Environ. Sci. (2019). https://​doi.​org/​10.​1039/​c9ee01493d
51.
Zurück zum Zitat G.B. Piland, C.J. Bardeen, How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015)CrossRef G.B. Piland, C.J. Bardeen, How morphology affects singlet fission in crystalline tetracene. J. Phys. Chem. Lett. 6, 1841–1846 (2015)CrossRef
52.
Zurück zum Zitat A.J. Musser et al., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015)CrossRef A.J. Musser et al., Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015)CrossRef
53.
Zurück zum Zitat A.B. Kolomeisky, X. Feng, A.I. Krylov, A simple kinetic model for singlet fission: a role of electronic and entropic contributions to macroscopic rates. J. Phys. Chem. C 118, 5188–5195 (2014)CrossRef A.B. Kolomeisky, X. Feng, A.I. Krylov, A simple kinetic model for singlet fission: a role of electronic and entropic contributions to macroscopic rates. J. Phys. Chem. C 118, 5188–5195 (2014)CrossRef
54.
Zurück zum Zitat S. Yoo et al., Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing. Solid State Electron. 51, 1367–1375 (2007)CrossRef S. Yoo et al., Analysis of improved photovoltaic properties of pentacene/C60 organic solar cells: effects of exciton blocking layer thickness and thermal annealing. Solid State Electron. 51, 1367–1375 (2007)CrossRef
55.
Zurück zum Zitat A.K. Pandey, S. Dabos-Seignon, J.-M. Nunzi, Pentacene: PTCDI-C_{13}H_{27} molecular blends efficiently harvest light for solar cell applications. Appl. Phys. Lett. 89, 113506 (2006)CrossRef A.K. Pandey, S. Dabos-Seignon, J.-M. Nunzi, Pentacene: PTCDI-C_{13}H_{27} molecular blends efficiently harvest light for solar cell applications. Appl. Phys. Lett. 89, 113506 (2006)CrossRef
56.
Zurück zum Zitat J. Lee, P.J. Jadhav, M.A. Baldo, High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 33301 (2009)CrossRef J. Lee, P.J. Jadhav, M.A. Baldo, High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 33301 (2009)CrossRef
57.
Zurück zum Zitat P.J. Jadhav et al., Triplet exciton dissociation in singlet exciton fission photovoltaics. Adv. Mater. 24, 6169–6174 (2012)CrossRef P.J. Jadhav et al., Triplet exciton dissociation in singlet exciton fission photovoltaics. Adv. Mater. 24, 6169–6174 (2012)CrossRef
58.
Zurück zum Zitat P.P.J. Jadhav, A. Mohanty, J.M. Sussman, J. Lee, M.A. Baldo, Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11, 1495–1498 (2011)CrossRef P.P.J. Jadhav, A. Mohanty, J.M. Sussman, J. Lee, M.A. Baldo, Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11, 1495–1498 (2011)CrossRef
59.
Zurück zum Zitat P.S. Abthagir et al., Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method. J. Phys. Chem. B 109, 23918–23924 (2005)CrossRef P.S. Abthagir et al., Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method. J. Phys. Chem. B 109, 23918–23924 (2005)CrossRef
60.
Zurück zum Zitat T.C. Wu et al., Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014)CrossRef T.C. Wu et al., Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014)CrossRef
61.
Zurück zum Zitat L. Yang et al., Solution-Processable singlet fission photovoltaic devices. Nano Lett. 15, 354–358 (2014)CrossRef L. Yang et al., Solution-Processable singlet fission photovoltaic devices. Nano Lett. 15, 354–358 (2014)CrossRef
62.
Zurück zum Zitat B. Ehrler, M.W.B. Wilson, A. Rao, R.H. Friend, N.C. Greenham, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)CrossRef B. Ehrler, M.W.B. Wilson, A. Rao, R.H. Friend, N.C. Greenham, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)CrossRef
63.
Zurück zum Zitat B. Ehrler et al., In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nat. Commun. 3, 1019 (2012)CrossRef B. Ehrler et al., In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nat. Commun. 3, 1019 (2012)CrossRef
64.
Zurück zum Zitat M. Yuan et al., Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 16016 (2016)CrossRef M. Yuan et al., Colloidal quantum dot solids for solution-processed solar cells. Nat. Energy 1, 16016 (2016)CrossRef
65.
Zurück zum Zitat N.J. Thompson et al., Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014)CrossRef N.J. Thompson et al., Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014)CrossRef
66.
Zurück zum Zitat M. Tabachnyk et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014)CrossRef M. Tabachnyk et al., Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014)CrossRef
67.
Zurück zum Zitat J. Xia et al., Singlet fission: progress and prospects in solar cells. Adv. Mater. 29 (2017) J. Xia et al., Singlet fission: progress and prospects in solar cells. Adv. Mater. 29 (2017)
68.
Zurück zum Zitat C. Jundt et al., Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995)CrossRef C. Jundt et al., Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett. 241, 84–88 (1995)CrossRef
69.
Zurück zum Zitat N. Renaud, F.C. Grozema, Intermolecular vibrational modes speed up singlet fission in perylenediimide crystals. J. Phys. Chem. Lett. 6, 360–365 (2015)CrossRef N. Renaud, F.C. Grozema, Intermolecular vibrational modes speed up singlet fission in perylenediimide crystals. J. Phys. Chem. Lett. 6, 360–365 (2015)CrossRef
70.
Zurück zum Zitat S.W. Eaton et al., Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013)CrossRef S.W. Eaton et al., Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 135, 14701–14712 (2013)CrossRef
71.
Zurück zum Zitat S.W. Eaton et al., Singlet exciton fission in thin films of tert-butyl-substituted terrylenes. J. Phys. Chem. A 119, 4151–4161 (2015)CrossRef S.W. Eaton et al., Singlet exciton fission in thin films of tert-butyl-substituted terrylenes. J. Phys. Chem. A 119, 4151–4161 (2015)CrossRef
72.
Zurück zum Zitat S.N. Sanders et al., Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015)CrossRef S.N. Sanders et al., Quantitative intramolecular singlet fission in bipentacenes. J. Am. Chem. Soc. 137, 8965–8972 (2015)CrossRef
73.
Zurück zum Zitat N. Alagna et al., Singlet fission in tetraaza-TIPS-pentacene oligomers: from fs excitation to μs triplet decay via the biexcitonic state. J. Phys. Chem. B 123, 10780–10793 (2019)CrossRef N. Alagna et al., Singlet fission in tetraaza-TIPS-pentacene oligomers: from fs excitation to μs triplet decay via the biexcitonic state. J. Phys. Chem. B 123, 10780–10793 (2019)CrossRef
74.
Zurück zum Zitat N.V. Korovina, C.H. Chang, J.C. Johnson, Spatial separation of triplet excitons drives endothermic singlet fission. Nat. Chem. 12, 391–398 (2020)CrossRef N.V. Korovina, C.H. Chang, J.C. Johnson, Spatial separation of triplet excitons drives endothermic singlet fission. Nat. Chem. 12, 391–398 (2020)CrossRef
75.
Zurück zum Zitat E. Busby et al., A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14, 426–433 (2015)CrossRef E. Busby et al., A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14, 426–433 (2015)CrossRef
76.
Zurück zum Zitat A.J. Musser et al., Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013)CrossRef A.J. Musser et al., Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013)CrossRef
77.
Zurück zum Zitat D.N. Congreve et al., External quantum efficiency above 100% in a singlet-exciton-fission based organic photovoltaic cell. Science 340, 334–337 (2013)CrossRef D.N. Congreve et al., External quantum efficiency above 100% in a singlet-exciton-fission based organic photovoltaic cell. Science 340, 334–337 (2013)CrossRef
78.
Zurück zum Zitat D. Guo et al., Charge transfer dynamics in a singlet fission organic molecule and organometal perovskite bilayer structure. J. Mater. Chem. A 8, 5572–5579 (2020)CrossRef D. Guo et al., Charge transfer dynamics in a singlet fission organic molecule and organometal perovskite bilayer structure. J. Mater. Chem. A 8, 5572–5579 (2020)CrossRef
79.
Zurück zum Zitat S. Jäckle et al., Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci. Rep. 5, 13008 (2015)CrossRef S. Jäckle et al., Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells. Sci. Rep. 5, 13008 (2015)CrossRef
81.
Zurück zum Zitat S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014)CrossRef S. Reineke, M.A. Baldo, Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014)CrossRef
82.
Zurück zum Zitat S.W. Tabernig, B. Daiber, T. Wang, B. Ehrler, Enhancing silicon solar cells with singlet fission: the case for Förster resonant energy transfer using a quantum dot intermediate. J. Photonics Energy 8 (2018) S.W. Tabernig, B. Daiber, T. Wang, B. Ehrler, Enhancing silicon solar cells with singlet fission: the case for Förster resonant energy transfer using a quantum dot intermediate. J. Photonics Energy 8 (2018)
87.
Zurück zum Zitat M.H. Futscher, A. Rao, B. Ehrler, The potential of singlet fission photon multipliers as an alternative to silicon-based tandem solar cells. ACS Energy Lett. 3, 2587–2592 (2018)CrossRef M.H. Futscher, A. Rao, B. Ehrler, The potential of singlet fission photon multipliers as an alternative to silicon-based tandem solar cells. ACS Energy Lett. 3, 2587–2592 (2018)CrossRef
88.
Zurück zum Zitat D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRef D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)CrossRef
89.
Zurück zum Zitat G.D. Scholes, Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003)CrossRef G.D. Scholes, Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003)CrossRef
90.
Zurück zum Zitat M. Tabachnyk, B. Ehrler, S. Bayliss, R.H. Friend, N.C. Greenham, Triplet diffusion in singlet exciton fission sensitized pentacene solar cells. Appl. Phys. Lett. 103, 153302 (2013)CrossRef M. Tabachnyk, B. Ehrler, S. Bayliss, R.H. Friend, N.C. Greenham, Triplet diffusion in singlet exciton fission sensitized pentacene solar cells. Appl. Phys. Lett. 103, 153302 (2013)CrossRef
93.
Zurück zum Zitat S.L. Bayliss et al., Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014)CrossRef S.L. Bayliss et al., Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014)CrossRef
94.
Zurück zum Zitat R.W. MacQueen et al., Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018)CrossRef R.W. MacQueen et al., Crystalline silicon solar cells with tetracene interlayers: the path to silicon-singlet fission heterojunction devices. Mater. Horiz. 5, 1065–1075 (2018)CrossRef
96.
Zurück zum Zitat M.J.Y. Tayebjee, A.A. Gray-Weale, T.W. Schmidt, Thermodynamic limit of exciton fission solar cell efficiency. J. Phys. Chem. Lett. 3, 2749–2754 (2012)CrossRef M.J.Y. Tayebjee, A.A. Gray-Weale, T.W. Schmidt, Thermodynamic limit of exciton fission solar cell efficiency. J. Phys. Chem. Lett. 3, 2749–2754 (2012)CrossRef
97.
Zurück zum Zitat P.D. Reusswig, D.N. Congreve, N.J. Thompson, M.A. Baldo, Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012)CrossRef P.D. Reusswig, D.N. Congreve, N.J. Thompson, M.A. Baldo, Enhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizer. Appl. Phys. Lett. 101, 113304 (2012)CrossRef
98.
Zurück zum Zitat H. Lu, X. Chen, J.E. Anthony, J.C. Johnson, M.C. Beard, Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019)CrossRef H. Lu, X. Chen, J.E. Anthony, J.C. Johnson, M.C. Beard, Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019)CrossRef
100.
101.
Zurück zum Zitat J. Lehr et al., Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Sol. Energy Mater. Sol. Cells 208, 110367 (2020)CrossRef J. Lehr et al., Energy yield of bifacial textured perovskite/silicon tandem photovoltaic modules. Sol. Energy Mater. Sol. Cells 208, 110367 (2020)CrossRef
102.
Zurück zum Zitat G. Coletti et al., Bifacial four-terminal perovskite/silicon tandem solar cells and modules. ACS Energy Lett. 5, 1676–1680 (2020)CrossRef G. Coletti et al., Bifacial four-terminal perovskite/silicon tandem solar cells and modules. ACS Energy Lett. 5, 1676–1680 (2020)CrossRef
Metadaten
Titel
Singlet Fission Solar Cells
verfasst von
Bruno Ehrler
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_15

Neuer Inhalt