Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS))

verfasst von : Eugene A. Olevsky, Dina V. Dudina

Erschienen in: Field-Assisted Sintering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the principles and physical mechanisms of low-voltage electric pulse sintering (including spark plasma sintering (SPS)) are introduced. The low-voltage electric pulse sintering equipment is described. The experimental and theoretical analyses of the temperature distribution specifics and the possibilities of temperature control under SPS conditions are presented. Various physical phenomena of thermal and nonthermal (field) nature occurring at micro- and macro-level during SPS are discussed. The analyzed thermal factors include macroscopic temperature gradients, local temperature gradients at the inter-particle contacts, high heating rates, and thermal diffusion. The analyzed field factors include electromigration, the possibility of plasma formation, electroplasticity, and breakdown of oxide layers at the inter-particle contacts. The respective constitutive models of SPS are introduced. The results of coupled electromagnetic–thermal–mechanical finite element solutions of SPS problems are described. Various processing and testing methods developed using SPS equipment are analyzed. Selected examples of processes and materials developed using SPS, including SPS-based joining, are introduced. SPS-based surface engineering and processing of porous materials are introduced in addition to the description of SPS of dense bulk materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Inoue K (1962) Electric Discharge sintering. US Patent 3241965 Inoue K (1962) Electric Discharge sintering. US Patent 3241965
2.
Zurück zum Zitat Inoue K (1966) Apparatus for electrically sintering discrete bodies. US Patent 3250892 Inoue K (1966) Apparatus for electrically sintering discrete bodies. US Patent 3250892
3.
Zurück zum Zitat Raichenko AI, Burenkov GL, Khrienko AF, Litvinenko VP (1976) Electric discharge sintering of binary powder mixtures. Sov Powder Metall Met Ceram 15:602–606CrossRef Raichenko AI, Burenkov GL, Khrienko AF, Litvinenko VP (1976) Electric discharge sintering of binary powder mixtures. Sov Powder Metall Met Ceram 15:602–606CrossRef
4.
Zurück zum Zitat Raichenko AI (1987) Basics of electric current-assisted sintering. Moscow, Metallurgiya, 128 p (in Russian) Raichenko AI (1987) Basics of electric current-assisted sintering. Moscow, Metallurgiya, 128 p (in Russian)
5.
Zurück zum Zitat Slosman AI, Matrenin SV (1994) Electric discharge sintering of ceramics based on zirconium dioxide. Refractories 35:296–297 (in Russian)CrossRef Slosman AI, Matrenin SV (1994) Electric discharge sintering of ceramics based on zirconium dioxide. Refractories 35:296–297 (in Russian)CrossRef
6.
Zurück zum Zitat Matrenin SV, Slosman AI, Myachin YV (2005) Electric discharge sintering of a Fe-Ti antifriction alloy. News Tomsk State Polytech Univ 308:74–77 (in Russian) Matrenin SV, Slosman AI, Myachin YV (2005) Electric discharge sintering of a Fe-Ti antifriction alloy. News Tomsk State Polytech Univ 308:74–77 (in Russian)
7.
Zurück zum Zitat Zamula MV, Derevyanko AV, Kolesnichenko VG, Samelyuk AV, Zgalat-Lozinskii OB, Ragulya AV (2007) Electric discharge sintering of TiN-AlN nanocomposites. Powder Metall Met Ceram 46:325–331CrossRef Zamula MV, Derevyanko AV, Kolesnichenko VG, Samelyuk AV, Zgalat-Lozinskii OB, Ragulya AV (2007) Electric discharge sintering of TiN-AlN nanocomposites. Powder Metall Met Ceram 46:325–331CrossRef
8.
Zurück zum Zitat Petukhov AS, Khobta IV, Ragulya AV, Derevyanko AV, Raichenko AI, Isaeva LP, Koval’chenko AM (2007) Reactive electric discharge sintering of TiN-TiB2. Powder Metall Met Ceram 46:525–532CrossRef Petukhov AS, Khobta IV, Ragulya AV, Derevyanko AV, Raichenko AI, Isaeva LP, Koval’chenko AM (2007) Reactive electric discharge sintering of TiN-TiB2. Powder Metall Met Ceram 46:525–532CrossRef
9.
Zurück zum Zitat Popov VP, Raichenko AI (2000) Kinetics of electric discharge sintering of high-speed steel powders. Powder Metall Met Ceram 39:545–548CrossRef Popov VP, Raichenko AI (2000) Kinetics of electric discharge sintering of high-speed steel powders. Powder Metall Met Ceram 39:545–548CrossRef
10.
Zurück zum Zitat Petukhov AS (2009) The influence of various technological conditions on the processes of reactive electric discharge sintering composition TiN-TiB2. Powder Metall Met Ceram 11–12:13–22 (in Russian) Petukhov AS (2009) The influence of various technological conditions on the processes of reactive electric discharge sintering composition TiN-TiB2. Powder Metall Met Ceram 11–12:13–22 (in Russian)
11.
Zurück zum Zitat Kolesnichenko VG, Popov VP, Zgalat-Lozinskii OB, Klochkov LA, Lobunets TF, Raichenko AI (2011) Field assisted sintering of nanocrystalline titanium nitride powder. Powder Metall Met Ceram 50:3–4CrossRef Kolesnichenko VG, Popov VP, Zgalat-Lozinskii OB, Klochkov LA, Lobunets TF, Raichenko AI (2011) Field assisted sintering of nanocrystalline titanium nitride powder. Powder Metall Met Ceram 50:3–4CrossRef
12.
Zurück zum Zitat Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials 6:4375–4440CrossRef Olevsky EA, Aleksandrova EV, Ilyina AM, Dudina DV, Novoselov AN, Pelve KY, Grigoryev EG (2013) Outside mainstream electronic databases: review of studies conducted in the USSR and post-soviet countries on electric current-assisted consolidation of powder materials. Materials 6:4375–4440CrossRef
13.
Zurück zum Zitat Crivelli IV, Esposito E, Mele G, Siniscalchi A (1973) Formatura per Spark Sintering. Metallurgia Italiana 65(11):611–618 Crivelli IV, Esposito E, Mele G, Siniscalchi A (1973) Formatura per Spark Sintering. Metallurgia Italiana 65(11):611–618
14.
Zurück zum Zitat Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRef Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRef
15.
Zurück zum Zitat Sukhov OV, Baidenko AA, Istomina TI, Raichenko AI, Popov VP, Svechkov AV, Goldberg MS (1987) Densification kinetics of a copper-tin powder composite during electric discharge sintering. Sov Powder Metall Met Ceram 26:530–532CrossRef Sukhov OV, Baidenko AA, Istomina TI, Raichenko AI, Popov VP, Svechkov AV, Goldberg MS (1987) Densification kinetics of a copper-tin powder composite during electric discharge sintering. Sov Powder Metall Met Ceram 26:530–532CrossRef
16.
Zurück zum Zitat Raichenko AI, Kol’chinskii MZ, Levina DA (1976) Electric discharge sintering of oxidized metal powders. Sov Powder Metall Met Ceram 15:754–759 Raichenko AI, Kol’chinskii MZ, Levina DA (1976) Electric discharge sintering of oxidized metal powders. Sov Powder Metall Met Ceram 15:754–759
17.
Zurück zum Zitat Raichenko AI, Istomina TI, Troyan IA (2000) Powder sintering with application of an electric current and periodic mechanical pulses. Powder Metall Met Ceram 39(3–4):198–201CrossRef Raichenko AI, Istomina TI, Troyan IA (2000) Powder sintering with application of an electric current and periodic mechanical pulses. Powder Metall Met Ceram 39(3–4):198–201CrossRef
18.
Zurück zum Zitat Tokita M (1993) Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Japan 30(11):790–804CrossRef Tokita M (1993) Trends in advanced SPS spark plasma sintering systems and technology. J Soc Powder Technol Japan 30(11):790–804CrossRef
19.
Zurück zum Zitat Tokita M (2013) Spark plasma sintering (SPS) method, systems and applications. In: Editor-in-Chief Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing and properties. 2nd edn. Academic Press, USA, pp 1149–1178 (in Russian) Tokita M (2013) Spark plasma sintering (SPS) method, systems and applications. In: Editor-in-Chief Somiya S (ed) Handbook of advanced ceramics: materials, applications, processing and properties. 2nd edn. Academic Press, USA, pp 1149–1178 (in Russian)
20.
Zurück zum Zitat Omori M (2000) Basic research and industrial production using the spark plasma system (SPS). Mater Sci Eng A 287(2):183–188CrossRef Omori M (2000) Basic research and industrial production using the spark plasma system (SPS). Mater Sci Eng A 287(2):183–188CrossRef
21.
Zurück zum Zitat Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177CrossRef Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177CrossRef
22.
Zurück zum Zitat Groza JR, Zavaliangos A (2003) Nanostructured bulk solids by field activated sintering. Rev Adv Mater Sci 5:24–33 Groza JR, Zavaliangos A (2003) Nanostructured bulk solids by field activated sintering. Rev Adv Mater Sci 5:24–33
23.
Zurück zum Zitat Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef
24.
Zurück zum Zitat Munir ZA, Quach D, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19CrossRef Munir ZA, Quach D, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94(1):1–19CrossRef
25.
Zurück zum Zitat Garay JE (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRef Garay JE (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468CrossRef
26.
Zurück zum Zitat Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRef Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRef
27.
Zurück zum Zitat Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 625218, 12 Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 625218, 12
28.
Zurück zum Zitat Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, Nanomaterials and nanostructures, vol 4. Studium Press LLC, pp 237–264 Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, Nanomaterials and nanostructures, vol 4. Studium Press LLC, pp 237–264
29.
Zurück zum Zitat Locci AM, Orrù R, Cao G, Munir ZA (2003) Field-activated pressure-assisted synthesis of NiTi. Intermetallics 11:555–571CrossRef Locci AM, Orrù R, Cao G, Munir ZA (2003) Field-activated pressure-assisted synthesis of NiTi. Intermetallics 11:555–571CrossRef
30.
Zurück zum Zitat Gauthier V, Bernard F, Gaffet E, Munir ZA, Larpin JP (2001) Synthesis of nanocrystalline NbAl3 by mechanical and field activation. Intermetallics 9:571–580CrossRef Gauthier V, Bernard F, Gaffet E, Munir ZA, Larpin JP (2001) Synthesis of nanocrystalline NbAl3 by mechanical and field activation. Intermetallics 9:571–580CrossRef
31.
Zurück zum Zitat Meng QS, Fan WH, Chen RX, Munir ZA (2011) Thermoelectric properties of Sc- and Y-doped Mg2Si prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 509:7922–7926CrossRef Meng QS, Fan WH, Chen RX, Munir ZA (2011) Thermoelectric properties of Sc- and Y-doped Mg2Si prepared by field-activated and pressure-assisted reactive sintering. J Alloys Compd 509:7922–7926CrossRef
32.
Zurück zum Zitat Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A 394(1–2):139–148CrossRef Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater Sci Eng A 394(1–2):139–148CrossRef
33.
Zurück zum Zitat Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Modelling of the temperature distribution during field assisted sintering. Acta Mater 53:4379–4388CrossRef Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Modelling of the temperature distribution during field assisted sintering. Acta Mater 53:4379–4388CrossRef
34.
Zurück zum Zitat Langer J, Quach DV, Groza JR, Guillon O (2011) A comparison between FAST and SPS apparatuses based on the sintering of oxide ceramics. Int J Appl Ceram Technol 8(6):1459–1467CrossRef Langer J, Quach DV, Groza JR, Guillon O (2011) A comparison between FAST and SPS apparatuses based on the sintering of oxide ceramics. Int J Appl Ceram Technol 8(6):1459–1467CrossRef
35.
Zurück zum Zitat Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57(18):5454–5465CrossRef Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57(18):5454–5465CrossRef
36.
Zurück zum Zitat Langer J, Hoffmann MJ, Guillon O (2011) Electric field assisted sintering in comparison to hot pressing of yttria stabilized zirconia. J Am Ceram Soc 94(1):131–138CrossRef Langer J, Hoffmann MJ, Guillon O (2011) Electric field assisted sintering in comparison to hot pressing of yttria stabilized zirconia. J Am Ceram Soc 94(1):131–138CrossRef
37.
Zurück zum Zitat Langer J, Hoffmann MJ, Guillon O (2011) Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: a comparative study. J Am Ceram Soc 94(8):2344–2353CrossRef Langer J, Hoffmann MJ, Guillon O (2011) Electric field-assisted sintering and hot pressing of semiconductive zinc oxide: a comparative study. J Am Ceram Soc 94(8):2344–2353CrossRef
38.
Zurück zum Zitat Lee G, Olevsky EA, Manière C, Maximenko A, Izhvanov O, Back C, McKittrick J (2018) Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater 144:524–533CrossRef Lee G, Olevsky EA, Manière C, Maximenko A, Izhvanov O, Back C, McKittrick J (2018) Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering. Acta Mater 144:524–533CrossRef
39.
Zurück zum Zitat Wei X, Giuntini D, Maximenko AL, Haines CD, Olevsky EA (2015) Experimental investigation of electric contact resistance in spark plasma sintering tooling setup. J Am Ceram Soc 98(11):3553–3560CrossRef Wei X, Giuntini D, Maximenko AL, Haines CD, Olevsky EA (2015) Experimental investigation of electric contact resistance in spark plasma sintering tooling setup. J Am Ceram Soc 98(11):3553–3560CrossRef
40.
Zurück zum Zitat Manière C, Durand L, Brisson E, Desplats H, Carré P, Rogeon P, Estournès C (2016) Contact resistances in spark plasma sintering: from in-situ and ex-situ determinations to an extended model for the scale up of the process. J Eur Ceram Soc 37(4):1593–1605CrossRef Manière C, Durand L, Brisson E, Desplats H, Carré P, Rogeon P, Estournès C (2016) Contact resistances in spark plasma sintering: from in-situ and ex-situ determinations to an extended model for the scale up of the process. J Eur Ceram Soc 37(4):1593–1605CrossRef
41.
Zurück zum Zitat Zhang F, Reich M, Kessler O, Burkel E (2013) The potential of rapid cooling spark plasma sintering for metallic materials. Mater Today 16(5):192–197CrossRef Zhang F, Reich M, Kessler O, Burkel E (2013) The potential of rapid cooling spark plasma sintering for metallic materials. Mater Today 16(5):192–197CrossRef
42.
Zurück zum Zitat Manière C, Lee G, Olevsky EA (2017) Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process. Results Physics 7:1494–1497CrossRef Manière C, Lee G, Olevsky EA (2017) Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process. Results Physics 7:1494–1497CrossRef
43.
Zurück zum Zitat Hulbert DM, Anders A, Dudina DV, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) The absence of plasma in “spark plasma sintering”. J Appl Phys 104:033305 7 pCrossRef Hulbert DM, Anders A, Dudina DV, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee AK (2008) The absence of plasma in “spark plasma sintering”. J Appl Phys 104:033305 7 pCrossRef
44.
Zurück zum Zitat Saunders T, Grasso S, Reece MJ (2015) Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc 35:871–877CrossRef Saunders T, Grasso S, Reece MJ (2015) Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc 35:871–877CrossRef
45.
Zurück zum Zitat Song X, Liu X, Zhang J (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89(2):494–500CrossRef Song X, Liu X, Zhang J (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89(2):494–500CrossRef
46.
Zurück zum Zitat Aman Y, Garnier V, Djurado E (2012) Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina. J Mater Sci 47:5766–5773CrossRef Aman Y, Garnier V, Djurado E (2012) Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina. J Mater Sci 47:5766–5773CrossRef
47.
Zurück zum Zitat Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A 350:184–189CrossRef Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A 350:184–189CrossRef
48.
Zurück zum Zitat Vasiliev P, Akhtar F, Grins J, Mouzon J, Andersson C, Hedlund J, Bergström L (2010) Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies. Appl Mater Interfaces 2(3):732–737CrossRef Vasiliev P, Akhtar F, Grins J, Mouzon J, Andersson C, Hedlund J, Bergström L (2010) Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies. Appl Mater Interfaces 2(3):732–737CrossRef
49.
Zurück zum Zitat Dudina DV, Mali VI, Anisimov AG, Bulina NV, Korchagin MA, Lomovsky OI, Bataev IA, Bataev VA (2013) Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: possible microstructure formation scenarios. Met Mater Int 19(6):1235–1241 Dudina DV, Mali VI, Anisimov AG, Bulina NV, Korchagin MA, Lomovsky OI, Bataev IA, Bataev VA (2013) Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: possible microstructure formation scenarios. Met Mater Int 19(6):1235–1241
50.
Zurück zum Zitat Zhao S, Song X, Zhang J, Liu X (2008) Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC-Co. Mater Sci Eng A 473:323–329 Zhao S, Song X, Zhang J, Liu X (2008) Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC-Co. Mater Sci Eng A 473:323–329
51.
Zurück zum Zitat Holland TB, Thron AM, Bonifacio CS, Mukherjee AK, van Benthem K (2010) Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl Phys Lett 96:243106 3 pCrossRef Holland TB, Thron AM, Bonifacio CS, Mukherjee AK, van Benthem K (2010) Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl Phys Lett 96:243106 3 pCrossRef
52.
Zurück zum Zitat Matsuno M, Bonifacio CS, Rufner JF, Thron AM, Holland TB, Mukherjee AK, van Benthem K (2012) In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles. J Mater Res 18:2431–2440CrossRef Matsuno M, Bonifacio CS, Rufner JF, Thron AM, Holland TB, Mukherjee AK, van Benthem K (2012) In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles. J Mater Res 18:2431–2440CrossRef
53.
Zurück zum Zitat Bonifacio CS, Rufner JF, Holland TB, van Benthem K (2012) In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett 101:093107 5 pCrossRef Bonifacio CS, Rufner JF, Holland TB, van Benthem K (2012) In situ transmission electron microscopy study of dielectric breakdown of surface oxides during electric field-assisted sintering of nickel nanoparticles. Appl Phys Lett 101:093107 5 pCrossRef
54.
Zurück zum Zitat Bonifacio CS, Holland TB, van Benthem K (2013) Evidence of surface cleaning during electric field assisted sintering. Scr Mater 69:769–772CrossRef Bonifacio CS, Holland TB, van Benthem K (2013) Evidence of surface cleaning during electric field assisted sintering. Scr Mater 69:769–772CrossRef
55.
Zurück zum Zitat Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Effects of heating rate and particle size on pulse electric current sintering of alumina. Scr Mater 48:1631–1636CrossRef Zhou Y, Hirao K, Yamauchi Y, Kanzaki S (2003) Effects of heating rate and particle size on pulse electric current sintering of alumina. Scr Mater 48:1631–1636CrossRef
56.
Zurück zum Zitat Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927CrossRef Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85(8):1921–1927CrossRef
57.
Zurück zum Zitat Chu MY, Rahaman MN, Dejonghe LC, Brook RJ (1991) Effect of heating rate on sintering and coarsening. J Am Ceram Soc 74:1217–1225CrossRef Chu MY, Rahaman MN, Dejonghe LC, Brook RJ (1991) Effect of heating rate on sintering and coarsening. J Am Ceram Soc 74:1217–1225CrossRef
58.
Zurück zum Zitat Stanciu LA, Kodash VY, Groza JR (2001) Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A 32:2633–2638CrossRef Stanciu LA, Kodash VY, Groza JR (2001) Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders. Metall Mater Trans A 32:2633–2638CrossRef
59.
Zurück zum Zitat Ivensen VA (1973) Densification of metal powders during sintering. Consultants Bureau, New YorkCrossRef Ivensen VA (1973) Densification of metal powders during sintering. Consultants Bureau, New YorkCrossRef
60.
Zurück zum Zitat Dabhade VV, Mohan TRR, Ramakrishnan P (2007) Dilatometric sintering study of titanium–titanium nitride nano/nanocomposite powders. Powder Metall 50:33–39CrossRef Dabhade VV, Mohan TRR, Ramakrishnan P (2007) Dilatometric sintering study of titanium–titanium nitride nano/nanocomposite powders. Powder Metall 50:33–39CrossRef
61.
Zurück zum Zitat Bhattacharjee PP, Sinha SK, Upadhyaya A (2007) Effect of sintering temperature on grain boundary character distribution in pure nickel. Scr Mater 56:13–16CrossRef Bhattacharjee PP, Sinha SK, Upadhyaya A (2007) Effect of sintering temperature on grain boundary character distribution in pure nickel. Scr Mater 56:13–16CrossRef
62.
Zurück zum Zitat Panda PC, Mobley WM, Raj R (1989) Effect of the heating rate on the relative rates of sintering and crystallization in glass. J Am Ceram Soc 72:2361–2364CrossRef Panda PC, Mobley WM, Raj R (1989) Effect of the heating rate on the relative rates of sintering and crystallization in glass. J Am Ceram Soc 72:2361–2364CrossRef
63.
Zurück zum Zitat Panda PC, Raj R (1989) Sintering and crystallization of glass at constant heating rates. J Am Ceram Soc 72:1564–1566CrossRef Panda PC, Raj R (1989) Sintering and crystallization of glass at constant heating rates. J Am Ceram Soc 72:1564–1566CrossRef
64.
Zurück zum Zitat Gillia O, Bouvard D (2000) Phenomenological analysis of densification kinetics during sintering: application to WC–co mixture. Mater Sci Eng A 279:185–191CrossRef Gillia O, Bouvard D (2000) Phenomenological analysis of densification kinetics during sintering: application to WC–co mixture. Mater Sci Eng A 279:185–191CrossRef
65.
Zurück zum Zitat Johnson DL (1990) Temperature-gradient-driven diffusion in rapid-rate sintering—comment. J Am Ceram Soc 73(8):2576–2578CrossRef Johnson DL (1990) Temperature-gradient-driven diffusion in rapid-rate sintering—comment. J Am Ceram Soc 73(8):2576–2578CrossRef
66.
Zurück zum Zitat Roura P, Costa J, Farjas J (2002) Is sintering enhanced under non-isothermal conditions? Mater Sci Eng A 337(1–2):248–253CrossRef Roura P, Costa J, Farjas J (2002) Is sintering enhanced under non-isothermal conditions? Mater Sci Eng A 337(1–2):248–253CrossRef
67.
Zurück zum Zitat Olevsky EA, Kushnarev B, Maximenko A, Tikare V, Braginsky M (2005) Modelling of anisotropic sintering in crystalline ceramics. Philos Mag 85(19):2123–2146CrossRef Olevsky EA, Kushnarev B, Maximenko A, Tikare V, Braginsky M (2005) Modelling of anisotropic sintering in crystalline ceramics. Philos Mag 85(19):2123–2146CrossRef
68.
Zurück zum Zitat Bross P, Exner HE (1979) Computer simulation of sintering processes. Acta Metall 27:1013–1020CrossRef Bross P, Exner HE (1979) Computer simulation of sintering processes. Acta Metall 27:1013–1020CrossRef
69.
Zurück zum Zitat Exner HE (1987) Neck shape and limiting GBD/SD ratios in solid state sintering. Acta Metall 35:587–591CrossRef Exner HE (1987) Neck shape and limiting GBD/SD ratios in solid state sintering. Acta Metall 35:587–591CrossRef
70.
Zurück zum Zitat Takahashi Y, Ueno F, Nishiguchi K (1988) A numerical analysis of the void-shrinkage process controlled by surface-diffusion. Acta Metall 36:3007–3018CrossRef Takahashi Y, Ueno F, Nishiguchi K (1988) A numerical analysis of the void-shrinkage process controlled by surface-diffusion. Acta Metall 36:3007–3018CrossRef
71.
Zurück zum Zitat Bouvard D, McMeeking RM (1996) Deformation of interparticle necks by diffusion-controlled creep. J Am Ceram Soc 79:666–672CrossRef Bouvard D, McMeeking RM (1996) Deformation of interparticle necks by diffusion-controlled creep. J Am Ceram Soc 79:666–672CrossRef
72.
Zurück zum Zitat Zhang W, Schneibel JH (1995) The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study. Acta Metall Mater 43:4377–4386CrossRef Zhang W, Schneibel JH (1995) The sintering of two particles by surface and grain boundary diffusion—a two-dimensional numerical study. Acta Metall Mater 43:4377–4386CrossRef
73.
Zurück zum Zitat Swinkels FB, Ashby MF (1980) Role of surface redistribution in sintering by grain boundary transport. Powder Metall 23(1):1–6CrossRef Swinkels FB, Ashby MF (1980) Role of surface redistribution in sintering by grain boundary transport. Powder Metall 23(1):1–6CrossRef
74.
Zurück zum Zitat Swinkels FB, Ashby MF (1981) A second report on sintering diagrams. Acta Metall 29:259–281CrossRef Swinkels FB, Ashby MF (1981) A second report on sintering diagrams. Acta Metall 29:259–281CrossRef
75.
Zurück zum Zitat Svoboda J, Riedel H (1995) Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion. Acta Metall Mater 43(2):499–506CrossRef Svoboda J, Riedel H (1995) Quasi-equilibrium sintering for coupled grain-boundary and surface diffusion. Acta Metall Mater 43(2):499–506CrossRef
76.
Zurück zum Zitat Schwarz S, Thron AM, Rufner J, van Benthem K, Guillon O (2012) Low temperature sintering of nanocrystalline zinc oxide: effect of heating rate achieved by field assisted sintering/spark plasma sintering. J Am Ceram Soc 95(8):2451–2457CrossRef Schwarz S, Thron AM, Rufner J, van Benthem K, Guillon O (2012) Low temperature sintering of nanocrystalline zinc oxide: effect of heating rate achieved by field assisted sintering/spark plasma sintering. J Am Ceram Soc 95(8):2451–2457CrossRef
77.
Zurück zum Zitat Olevsky EA, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55(12):1175–1178CrossRef Olevsky EA, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55(12):1175–1178CrossRef
78.
Zurück zum Zitat Olevsky EA, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102:114913 12 p CrossRef Olevsky EA, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J Appl Phys 102:114913 12 p CrossRef
79.
Zurück zum Zitat Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92S:122–132CrossRef Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92S:122–132CrossRef
80.
Zurück zum Zitat Skorokhod VV, Olevskii EA, Shtern MB (1993) Continuum theory of sintering. I. Phenomenological model. Analysis of the effect of external forces on the kinetics of sintering. Powder Metall Met Ceram 32(1):21–26CrossRef Skorokhod VV, Olevskii EA, Shtern MB (1993) Continuum theory of sintering. I. Phenomenological model. Analysis of the effect of external forces on the kinetics of sintering. Powder Metall Met Ceram 32(1):21–26CrossRef
81.
Zurück zum Zitat Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using the continuum theory for sintering—I. Theoretical analysis. Acta Mater 44:707–713CrossRef Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using the continuum theory for sintering—I. Theoretical analysis. Acta Mater 44:707–713CrossRef
82.
Zurück zum Zitat Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using continuum theory for sintering—II. Application to fibre reinforced titanium alloys. Acta Mater 44:715–724CrossRef Olevsky E, Dudek HJ, Kaysser WA (1996) Hiping conditions for processing of metal matrix composites using continuum theory for sintering—II. Application to fibre reinforced titanium alloys. Acta Mater 44:715–724CrossRef
83.
Zurück zum Zitat Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRef Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRef
84.
Zurück zum Zitat Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23(2):41–100CrossRef Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23(2):41–100CrossRef
85.
Zurück zum Zitat Olevsky EA, Ma J, LaSalvia JC, Meyers MA (2007) Densification of porous bodies in a granular pressure-transmitting medium. Acta Mater 55:1351–1366CrossRef Olevsky EA, Ma J, LaSalvia JC, Meyers MA (2007) Densification of porous bodies in a granular pressure-transmitting medium. Acta Mater 55:1351–1366CrossRef
86.
Zurück zum Zitat Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127CrossRef Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127CrossRef
87.
Zurück zum Zitat Maximenko AL, Olevsky EA (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52:2953–2963CrossRef Maximenko AL, Olevsky EA (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52:2953–2963CrossRef
88.
Zurück zum Zitat Skorokhod VV (1972) Reologicheskie Osnovy Teorii Spekaniya (Rheological Basis of Theory of Sintering) Naukova Dumka, Kiev (in Russian) Skorokhod VV (1972) Reologicheskie Osnovy Teorii Spekaniya (Rheological Basis of Theory of Sintering) Naukova Dumka, Kiev (in Russian)
89.
Zurück zum Zitat Olevsky EA, Tikare V, Garino T (2006) Multi-scale study of sintering: a review. J Am Ceram Soc 89:1914–1922CrossRef Olevsky EA, Tikare V, Garino T (2006) Multi-scale study of sintering: a review. J Am Ceram Soc 89:1914–1922CrossRef
90.
Zurück zum Zitat Tikare V, Braginsky M, Olevsky E, Johnson DL (2005) Numerical simulation of anisotropic shrinkage in a 2D compact of elongated particles. J Am Ceram Soc 88(1):59–65CrossRef Tikare V, Braginsky M, Olevsky E, Johnson DL (2005) Numerical simulation of anisotropic shrinkage in a 2D compact of elongated particles. J Am Ceram Soc 88(1):59–65CrossRef
91.
Zurück zum Zitat Braginsky M, Tikare V, Olevsky E (2005) Numerical simulation of solid state sintering. Int J Solids Struct 42:621–636CrossRef Braginsky M, Tikare V, Olevsky E (2005) Numerical simulation of solid state sintering. Int J Solids Struct 42:621–636CrossRef
92.
Zurück zum Zitat Tikare V, Braginsky M, Olevsky EA (2003) Numerical simulation of solid-state sintering: I. Sintering of three particles. J Am Ceram Soc 86:49–53CrossRef Tikare V, Braginsky M, Olevsky EA (2003) Numerical simulation of solid-state sintering: I. Sintering of three particles. J Am Ceram Soc 86:49–53CrossRef
93.
Zurück zum Zitat Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, New York Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, New York
94.
Zurück zum Zitat Hsueh CH, Evans AG, Cannon RM, Brook RJ (1986) Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall 34(5):927–936CrossRef Hsueh CH, Evans AG, Cannon RM, Brook RJ (1986) Viscoelastic stresses and sintering damage in heterogeneous powder compacts. Acta Metall 34(5):927–936CrossRef
95.
Zurück zum Zitat Du ZZ, Cocks ACF (1992) Constitutive models for the sintering of ceramic components—I. Material models. Acta Metall Mater 40(8):1969–1979CrossRef Du ZZ, Cocks ACF (1992) Constitutive models for the sintering of ceramic components—I. Material models. Acta Metall Mater 40(8):1969–1979CrossRef
96.
Zurück zum Zitat Beck PA, Kremer JC, Demer L (1947) Grain growth in high purity aluminum. Phys Rev 71:555CrossRef Beck PA, Kremer JC, Demer L (1947) Grain growth in high purity aluminum. Phys Rev 71:555CrossRef
97.
Zurück zum Zitat Olevsky EA, Strutt ER, Meyers MA (2002) Combustion synthesis and quasi-isostatic densification of powder cermets. J Mater Process Technol 121(1):157–166CrossRef Olevsky EA, Strutt ER, Meyers MA (2002) Combustion synthesis and quasi-isostatic densification of powder cermets. J Mater Process Technol 121(1):157–166CrossRef
98.
99.
Zurück zum Zitat Schottky G (1965) A theory of thermal diffusion based on lattice dynamics of a linear chain. Phys Status Solidi 8(1):357–368CrossRef Schottky G (1965) A theory of thermal diffusion based on lattice dynamics of a linear chain. Phys Status Solidi 8(1):357–368CrossRef
100.
Zurück zum Zitat Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Am Ceram Soc 72(6):1080–1084CrossRef Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Am Ceram Soc 72(6):1080–1084CrossRef
101.
Zurück zum Zitat Matlock JH, Stark JP (1971) Thermal diffusion of vacancies in aluminum. Acta Metall 19(9):923–931CrossRef Matlock JH, Stark JP (1971) Thermal diffusion of vacancies in aluminum. Acta Metall 19(9):923–931CrossRef
102.
Zurück zum Zitat Wirtz K (1943) The kinetic theory of thermodiffusion in crystal lattices. Phys Z 44:221–231 Wirtz K (1943) The kinetic theory of thermodiffusion in crystal lattices. Phys Z 44:221–231
103.
Zurück zum Zitat Kornyushin YV (1980) Influence of external magnetic and electric fields on sintering, structure and properties. J Mater Sci 15(3):799–801CrossRef Kornyushin YV (1980) Influence of external magnetic and electric fields on sintering, structure and properties. J Mater Sci 15(3):799–801CrossRef
104.
Zurück zum Zitat Kornyushin YV (2004) Phenomenological theory of sintering and its application to swelling. Sci Sinter 36:143–154CrossRef Kornyushin YV (2004) Phenomenological theory of sintering and its application to swelling. Sci Sinter 36:143–154CrossRef
105.
Zurück zum Zitat Rowe DM (2006) Thermoelectrics handbook: macro to Nano. CRC/Taylor & Francis, Boca Raton Rowe DM (2006) Thermoelectrics handbook: macro to Nano. CRC/Taylor & Francis, Boca Raton
106.
Zurück zum Zitat Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Am Ceram Soc 74(4):849–850CrossRef Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Am Ceram Soc 74(4):849–850CrossRef
107.
Zurück zum Zitat Gostomelskiy VS, Krupnova LV (1985) Growth and healing of pores in metals under the action of current pulses. Phys Chem Mater Treat (Fizika I Khimiya obrabotki Materialov) 4:82–87 (in Russian) Gostomelskiy VS, Krupnova LV (1985) Growth and healing of pores in metals under the action of current pulses. Phys Chem Mater Treat (Fizika I Khimiya obrabotki Materialov) 4:82–87 (in Russian)
108.
Zurück zum Zitat Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394(1–2):132–138CrossRef Chen W, Anselmi-Tamburini U, Garay JE, Groza JR, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process I. Effect of dc pulsing on reactivity. Mater Sci Eng A 394(1–2):132–138CrossRef
109.
Zurück zum Zitat Xie G, Ohashi O, Chiba K, Yamaguchi N, Song M, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359(1–2):384–390CrossRef Xie G, Ohashi O, Chiba K, Yamaguchi N, Song M, Furuya K, Noda T (2003) Frequency effect on pulse electric current sintering process of pure aluminum powder. Mater Sci Eng A 359(1–2):384–390CrossRef
110.
Zurück zum Zitat Scherge M, Bauer CL, Mullins WW (1995) Stress distribution and mass transport along grain boundaries during steady-state electromigration. Acta Metall Mater 43(9):3525–3538CrossRef Scherge M, Bauer CL, Mullins WW (1995) Stress distribution and mass transport along grain boundaries during steady-state electromigration. Acta Metall Mater 43(9):3525–3538CrossRef
111.
Zurück zum Zitat Blech IA, Herring C (1976) Stress generation by electromigration. Appl Phys Lett 29(3):131–133CrossRef Blech IA, Herring C (1976) Stress generation by electromigration. Appl Phys Lett 29(3):131–133CrossRef
112.
Zurück zum Zitat Xie G, Ohashi O, Yamaguchi N (2002) Sintering behavior of aluminum powder by Spark Plasma Sintering. Trans Mater Res Soc Jpn 27:743–746 Xie G, Ohashi O, Yamaguchi N (2002) Sintering behavior of aluminum powder by Spark Plasma Sintering. Trans Mater Res Soc Jpn 27:743–746
113.
Zurück zum Zitat Holland TB, Tran TB, Quach DV, Anselmi-Tamburini U, Groza JR, Mukherjee AK (2012) Athermal and thermal mechanisms of sintering at high heating rates in the presence and absence of an externally applied field. J Eur Ceram Soc 32(14):3675–3683CrossRef Holland TB, Tran TB, Quach DV, Anselmi-Tamburini U, Groza JR, Mukherjee AK (2012) Athermal and thermal mechanisms of sintering at high heating rates in the presence and absence of an externally applied field. J Eur Ceram Soc 32(14):3675–3683CrossRef
114.
Zurück zum Zitat Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRef Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in < 5 s at 850 degrees C. J Am Ceram Soc 93:3556–3559CrossRef
115.
Zurück zum Zitat Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1–2):100–107CrossRef Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1–2):100–107CrossRef
116.
Zurück zum Zitat Ruszkiewicz B, Grimm T, Ragai I, Mears L, Roth JT (2017) A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci Eng 139(11):110801CrossRef Ruszkiewicz B, Grimm T, Ragai I, Mears L, Roth JT (2017) A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci Eng 139(11):110801CrossRef
117.
Zurück zum Zitat Salandro WA, Jones JJ, Bunget C, Mears L, Roth JT (2015) The effect of electric current on metals, electrically assisted forming: modeling and control. Springer International Publishing, Cham, pp 37–54 Salandro WA, Jones JJ, Bunget C, Mears L, Roth JT (2015) The effect of electric current on metals, electrically assisted forming: modeling and control. Springer International Publishing, Cham, pp 37–54
118.
Zurück zum Zitat Roth JT, Loker I, Mauck D, Warner M, Golovashchenko SF, Krause A (2008) Enhanced formability of 5754 aluminum sheet metal using electric pulsing. Trans North Am Manuf Res Inst SME 36:405–412 Roth JT, Loker I, Mauck D, Warner M, Golovashchenko SF, Krause A (2008) Enhanced formability of 5754 aluminum sheet metal using electric pulsing. Trans North Am Manuf Res Inst SME 36:405–412
119.
Zurück zum Zitat Kang W, Beniam I, Qidwai SM (2016) In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Rev Sci Instrum 87(9):095001CrossRef Kang W, Beniam I, Qidwai SM (2016) In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Rev Sci Instrum 87(9):095001CrossRef
120.
Zurück zum Zitat Kim SJ, Kim SD, Yoo D, Lee J, Rhyim Y, Kim D (2016) Evaluation of the athermal effect of electric pulsing on the recovery behavior of magnesium alloy. Met Mater Trans A 47(12):6368–6373CrossRef Kim SJ, Kim SD, Yoo D, Lee J, Rhyim Y, Kim D (2016) Evaluation of the athermal effect of electric pulsing on the recovery behavior of magnesium alloy. Met Mater Trans A 47(12):6368–6373CrossRef
121.
Zurück zum Zitat Mukherjee AK (2002) An examination of the constitutive equation for elevated temperature plasticity. Mater Sci Eng A 322:1–22CrossRef Mukherjee AK (2002) An examination of the constitutive equation for elevated temperature plasticity. Mater Sci Eng A 322:1–22CrossRef
122.
Zurück zum Zitat Zlokazov VO, Potemkin VV, Stepanov AV, Chikin DG (1992) Influence of structural defects on 1/f in thin niobium films. Radiophys Quantum Electron 35(11):610–613 Zlokazov VO, Potemkin VV, Stepanov AV, Chikin DG (1992) Influence of structural defects on 1/f in thin niobium films. Radiophys Quantum Electron 35(11):610–613
123.
Zurück zum Zitat Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69(2):107–111CrossRef Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69(2):107–111CrossRef
124.
Zurück zum Zitat Kumar M, Umezawa N, Ishii S, Nagao T (2016) Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photonics 3(1):43–50CrossRef Kumar M, Umezawa N, Ishii S, Nagao T (2016) Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photonics 3(1):43–50CrossRef
125.
Zurück zum Zitat Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85(4):573–575CrossRef Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85(4):573–575CrossRef
126.
Zurück zum Zitat Kino T, Endo T, Kawata S (1974) Deviations from Matthiessen's rule of the electrical resistivity of dislocations in aluminum. J Phys Soc Jpn 36(3):698–705CrossRef Kino T, Endo T, Kawata S (1974) Deviations from Matthiessen's rule of the electrical resistivity of dislocations in aluminum. J Phys Soc Jpn 36(3):698–705CrossRef
127.
Zurück zum Zitat Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33(12):2163–2174CrossRef Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33(12):2163–2174CrossRef
128.
Zurück zum Zitat Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012(2012):983470 13 p Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012(2012):983470 13 p
129.
Zurück zum Zitat Hulbert DM, Jiang D, Kuntz JD, Kodera Y, Mukherjee AK (2007) A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic. Scr Mater 56(12):1103–1106CrossRef Hulbert DM, Jiang D, Kuntz JD, Kodera Y, Mukherjee AK (2007) A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic. Scr Mater 56(12):1103–1106CrossRef
130.
Zurück zum Zitat Jiang D, Hulbert DM, Kuntz JD, Anselmi-Tamburini U, Mukherjee AK (2007) Spark plasma sintering: a high strain rate low-temperature forming tool for ceramics. Mater Sci Eng A 463:89–93CrossRef Jiang D, Hulbert DM, Kuntz JD, Anselmi-Tamburini U, Mukherjee AK (2007) Spark plasma sintering: a high strain rate low-temperature forming tool for ceramics. Mater Sci Eng A 463:89–93CrossRef
131.
Zurück zum Zitat Zhan GD, Garay JE, Mukherjee AK (2005) Ultralow-temperature superplasticity in nanoceramic composites. Nano Lett 5(12):2593–2597CrossRef Zhan GD, Garay JE, Mukherjee AK (2005) Ultralow-temperature superplasticity in nanoceramic composites. Nano Lett 5(12):2593–2597CrossRef
132.
Zurück zum Zitat Aleksandrova EV, Ilyina AM, Grigoryev EG, Olevsky EA (2015) Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J Am Ceram Soc 98(11):3509–3517CrossRef Aleksandrova EV, Ilyina AM, Grigoryev EG, Olevsky EA (2015) Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J Am Ceram Soc 98(11):3509–3517CrossRef
133.
Zurück zum Zitat Wei X, Maximenko AL, Back C, Izhvanov O, Olevsky EA (2017) Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation. Philos Mag Lett 97:265–272CrossRef Wei X, Maximenko AL, Back C, Izhvanov O, Olevsky EA (2017) Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation. Philos Mag Lett 97:265–272CrossRef
134.
Zurück zum Zitat Ratzker B, Sokol M, Kalabukhov S, Frage N (2016) Creep of polycrystalline magnesium aluminate spinel studied by an SPS apparatus. Materials 9(6):493CrossRef Ratzker B, Sokol M, Kalabukhov S, Frage N (2016) Creep of polycrystalline magnesium aluminate spinel studied by an SPS apparatus. Materials 9(6):493CrossRef
135.
Zurück zum Zitat Ratzker B, Sokol M, Kalabukhov S, Frage N (2017) Using a spark plasma sintering apparatus as a tool in a compressive creep study of fine-grained alumina. Ceram Int 43:9369–9376CrossRef Ratzker B, Sokol M, Kalabukhov S, Frage N (2017) Using a spark plasma sintering apparatus as a tool in a compressive creep study of fine-grained alumina. Ceram Int 43:9369–9376CrossRef
136.
Zurück zum Zitat Manière C, Durand L, Weibel A, Chevallier G, Estournès C (2016) A sacrificial material approach for spark plasma sintering of complex shapes. Scr Mater 124:126–128CrossRef Manière C, Durand L, Weibel A, Chevallier G, Estournès C (2016) A sacrificial material approach for spark plasma sintering of complex shapes. Scr Mater 124:126–128CrossRef
137.
Zurück zum Zitat Manière C, Nigito E, Durand L, Weibel A, Beynet Y, Estournès C (2017) Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol 320:340–345CrossRef Manière C, Nigito E, Durand L, Weibel A, Beynet Y, Estournès C (2017) Spark plasma sintering and complex shapes: the deformed interfaces approach. Powder Technol 320:340–345CrossRef
138.
Zurück zum Zitat Martin G, Fabrègue D, Mercier F, Chafino-Aixa JA, Dendievel R, Blandin JJ (2016) Coupling electron beam melting and spark plasma sintering: a new processing route for achieving titanium architectured microstructures. Scr Mater 122:5–9CrossRef Martin G, Fabrègue D, Mercier F, Chafino-Aixa JA, Dendievel R, Blandin JJ (2016) Coupling electron beam melting and spark plasma sintering: a new processing route for achieving titanium architectured microstructures. Scr Mater 122:5–9CrossRef
139.
Zurück zum Zitat Yang J, Trapp J, Guo Q, Kieback B (2013) Joining of 316L stainless steel by using spark plasma sintering method. Mater Des 52:179–189CrossRef Yang J, Trapp J, Guo Q, Kieback B (2013) Joining of 316L stainless steel by using spark plasma sintering method. Mater Des 52:179–189CrossRef
140.
Zurück zum Zitat Rizzo S, Grasso S, Salvo M, Casalegno V, Reece MJ, Ferraris M (2014) Joining of C/SiC composites by spark plasma sintering technique. J Eur Ceram Soc 3:903–913CrossRef Rizzo S, Grasso S, Salvo M, Casalegno V, Reece MJ, Ferraris M (2014) Joining of C/SiC composites by spark plasma sintering technique. J Eur Ceram Soc 3:903–913CrossRef
141.
Zurück zum Zitat Grasso S, Tatarko P, Rizzo S, Porwal H, Hu C, Katoh Y, Salvo M, Reece MJ, Ferraris M (2014) Joining of beta-SiC by spark plasma sintering. J Eur Ceram Soc 34:1681–1686CrossRef Grasso S, Tatarko P, Rizzo S, Porwal H, Hu C, Katoh Y, Salvo M, Reece MJ, Ferraris M (2014) Joining of beta-SiC by spark plasma sintering. J Eur Ceram Soc 34:1681–1686CrossRef
142.
Zurück zum Zitat Dong H, Yu Y, Jin X, Tian X, He W, Ma W (2016) Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Ceram Int 42:14463–14468CrossRef Dong H, Yu Y, Jin X, Tian X, He W, Ma W (2016) Microstructure and mechanical properties of SiC-SiC joints joined by spark plasma sintering. Ceram Int 42:14463–14468CrossRef
143.
Zurück zum Zitat Cui G, Wei X, Olevsky EA, German RM, Chen J (2016) The manufacturing of high porosity iron with an ultra-fine microstructure via free pressureless spark plasma sintering. Materials 9:495CrossRef Cui G, Wei X, Olevsky EA, German RM, Chen J (2016) The manufacturing of high porosity iron with an ultra-fine microstructure via free pressureless spark plasma sintering. Materials 9:495CrossRef
144.
Zurück zum Zitat Giuntini D, Wei X, Maximenko AL, Wei L, Ilyina AM, Olevsky EA (2013) Initial stage of free pressureless spark-plasma sintering of vanadium carbide: determination of surface diffusion parameters. Int J Refract Met Hard Mater 41:501–506CrossRef Giuntini D, Wei X, Maximenko AL, Wei L, Ilyina AM, Olevsky EA (2013) Initial stage of free pressureless spark-plasma sintering of vanadium carbide: determination of surface diffusion parameters. Int J Refract Met Hard Mater 41:501–506CrossRef
145.
Zurück zum Zitat Dudina DV (2017) Application of a spark plasma sintering facility for the heat treatment of compact and powder materials. Inorg Mater 53(6):658–663CrossRef Dudina DV (2017) Application of a spark plasma sintering facility for the heat treatment of compact and powder materials. Inorg Mater 53(6):658–663CrossRef
146.
Zurück zum Zitat Rymorov EV, Dyn'kin LK (1973) Wear resistance of parts clad with sintered layers welded on by the electric contact technique. Sov Powder Metall Met Ceram 12(7):569–572CrossRef Rymorov EV, Dyn'kin LK (1973) Wear resistance of parts clad with sintered layers welded on by the electric contact technique. Sov Powder Metall Met Ceram 12(7):569–572CrossRef
147.
Zurück zum Zitat Mel’nikov LA (1971) Investigation of the roller butt welding of steel sheet 1–3 mm thick using iron powders. Synopsis of thesis, Bryansk, 1971 (in Russian) Mel’nikov LA (1971) Investigation of the roller butt welding of steel sheet 1–3 mm thick using iron powders. Synopsis of thesis, Bryansk, 1971 (in Russian)
148.
Zurück zum Zitat Ryabinina ON, Raichenko AI, Pushkarev VV (1982) Infiltration of graphite by aluminum during electric-discharge sintering. Sov Powder Metall Met Ceram 21(3):179–181 Ryabinina ON, Raichenko AI, Pushkarev VV (1982) Infiltration of graphite by aluminum during electric-discharge sintering. Sov Powder Metall Met Ceram 21(3):179–181
149.
Zurück zum Zitat Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRef Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRef
150.
Zurück zum Zitat Xie G, Louzguine-Luzgin DV, Kimura H, Inoue A (2007) Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Appl Phys Lett 90:241902CrossRef Xie G, Louzguine-Luzgin DV, Kimura H, Inoue A (2007) Nearly full density Ni52.5Nb10Zr15Ti15Pt7.5Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glass obtained by spark plasma sintering of gas atomized powders. Appl Phys Lett 90:241902CrossRef
151.
Zurück zum Zitat Wang Z, Georgarakis K, Nakayama K, Li Y, Tsarkov A, Xie G, Dudina D, Louzguine D, Yavari AR (2016) Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci Rep 6:24384CrossRef Wang Z, Georgarakis K, Nakayama K, Li Y, Tsarkov A, Xie G, Dudina D, Louzguine D, Yavari AR (2016) Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci Rep 6:24384CrossRef
152.
Zurück zum Zitat Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL (2011) Toughening in graphene ceramic composites. ACS Nano 5(4):3182–3190CrossRef Walker LS, Marotto VR, Rafiee MA, Koratkar N, Corral EL (2011) Toughening in graphene ceramic composites. ACS Nano 5(4):3182–3190CrossRef
153.
Zurück zum Zitat Azarniya A, Sovizi S, Azarniya A, Reza Rahmani Taji Boyuk M, Varol T, Nithyadharseni P, Reza Madaah Hosseini H, Ramakrishna S, Reddy MV (2017) Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites. Nanoscale 9:12779–12820CrossRef Azarniya A, Sovizi S, Azarniya A, Reza Rahmani Taji Boyuk M, Varol T, Nithyadharseni P, Reza Madaah Hosseini H, Ramakrishna S, Reddy MV (2017) Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites. Nanoscale 9:12779–12820CrossRef
154.
Zurück zum Zitat Demirskyi D, Sakka Y, Vasylkiv O (2015) Consolidation of B4C-TaB2 eutectic composites by spark plasma sintering. J Asian Ceramic Soc 3(4):369–372CrossRef Demirskyi D, Sakka Y, Vasylkiv O (2015) Consolidation of B4C-TaB2 eutectic composites by spark plasma sintering. J Asian Ceramic Soc 3(4):369–372CrossRef
155.
Zurück zum Zitat Demirskyi D, Sakka Y (2014) In situ fabrication of B4C-NbB2 eutectic composites by spark plasma sintering. J Am Ceram Soc 97:2376–2378CrossRef Demirskyi D, Sakka Y (2014) In situ fabrication of B4C-NbB2 eutectic composites by spark plasma sintering. J Am Ceram Soc 97:2376–2378CrossRef
156.
Zurück zum Zitat Khaleghi E, Lin YS, Meyers MA, Olevsky EA (2010) Spark plasma sintering of tantalum carbide. Scr Mater 63:577–580CrossRef Khaleghi E, Lin YS, Meyers MA, Olevsky EA (2010) Spark plasma sintering of tantalum carbide. Scr Mater 63:577–580CrossRef
157.
Zurück zum Zitat Rudolf CC, Agarwal A, Boesl B (2016) TaC–NbC formed by spark plasma sintering with the addition of sintering additives. J Ceram Soc Japan 124(4):381–387CrossRef Rudolf CC, Agarwal A, Boesl B (2016) TaC–NbC formed by spark plasma sintering with the addition of sintering additives. J Ceram Soc Japan 124(4):381–387CrossRef
158.
Zurück zum Zitat Jiang D, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AK (2008) Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J Am Ceram Soc 91(1):151–154CrossRef Jiang D, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AK (2008) Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J Am Ceram Soc 91(1):151–154CrossRef
159.
Zurück zum Zitat Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92(2):358–364CrossRef Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92(2):358–364CrossRef
160.
Zurück zum Zitat Sokol M, Halabi M, Kalabukhov S, Frage N (2017) Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS). J Eur Ceram Soc 37:755–762CrossRef Sokol M, Halabi M, Kalabukhov S, Frage N (2017) Nano-structured MgAl2O4 spinel consolidated by high pressure spark plasma sintering (HPSPS). J Eur Ceram Soc 37:755–762CrossRef
161.
Zurück zum Zitat Khasanov OL, Dvilis ES, Bikbaeva ZG, Paygin VD, Khasanov AO (2017) Relationship of optical properties and elastoplastic characteristics of transparent spark-plasma-sintered YSZ ceramics. J Ceram Sci Technol 8(1):161–168 Khasanov OL, Dvilis ES, Bikbaeva ZG, Paygin VD, Khasanov AO (2017) Relationship of optical properties and elastoplastic characteristics of transparent spark-plasma-sintered YSZ ceramics. J Ceram Sci Technol 8(1):161–168
162.
Zurück zum Zitat Noudem JG, Kenfaui D, Chateigner D, Gomina M (2012) Toward the enhancement of thermoelectric properties of lamellar Ca3Co4O9 by edge-free spark plasma texturing. Scr Mater 66:258–260CrossRef Noudem JG, Kenfaui D, Chateigner D, Gomina M (2012) Toward the enhancement of thermoelectric properties of lamellar Ca3Co4O9 by edge-free spark plasma texturing. Scr Mater 66:258–260CrossRef
163.
Zurück zum Zitat Bhame SD, Pravarthana D, Prellier W, Noudem JG (2013) Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3. Appl Phys Lett 102:211901CrossRef Bhame SD, Pravarthana D, Prellier W, Noudem JG (2013) Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3. Appl Phys Lett 102:211901CrossRef
164.
Zurück zum Zitat He Z, Katsui H, Goto T (2016) High-hardness diamond composite consolidated by spark plasma sintering. J Amer Ceram Soc 99(6):1862–1865CrossRef He Z, Katsui H, Goto T (2016) High-hardness diamond composite consolidated by spark plasma sintering. J Amer Ceram Soc 99(6):1862–1865CrossRef
165.
Zurück zum Zitat Jayalakshmi S, Gupta M (2015) Metallic amorphous alloy reinforcements in light metal matrices, Springer, 2015 - Technology & Engineering, 112 p Jayalakshmi S, Gupta M (2015) Metallic amorphous alloy reinforcements in light metal matrices, Springer, 2015 - Technology & Engineering, 112 p
166.
Zurück zum Zitat Hakamada M, Yamada Y, Nomura T, Kusuda H, Chen Y, Mabuchi M (2005) Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering. Mater Trans 46(2):186–188CrossRef Hakamada M, Yamada Y, Nomura T, Kusuda H, Chen Y, Mabuchi M (2005) Effect of sintering temperature on compressive properties of porous aluminum produced by spark plasma sintering. Mater Trans 46(2):186–188CrossRef
167.
Zurück zum Zitat Dudina DV, Lomovsky OI, Korchagin MA, Mali VI (2004) Reactions in a metal matrix: synthesis and properties of TiB2-cu nanocomposites. Chem Sustain Dev 12:319–325 Dudina DV, Lomovsky OI, Korchagin MA, Mali VI (2004) Reactions in a metal matrix: synthesis and properties of TiB2-cu nanocomposites. Chem Sustain Dev 12:319–325
168.
Zurück zum Zitat Kwon YS, Dudina DV, Korchagin MA, Lomovsky OI (2004) Microstructure changes in TiB2-cu nanocomposite under sintering. J Mater Sci 39(16–17):5325–5331CrossRef Kwon YS, Dudina DV, Korchagin MA, Lomovsky OI (2004) Microstructure changes in TiB2-cu nanocomposite under sintering. J Mater Sci 39(16–17):5325–5331CrossRef
169.
Zurück zum Zitat Kim JS, Kwon YS, Lomovsky OI, Korchagin MA, Mali VI, Dudina DV (2006) A synthetic route for metal-ceramic interpenetrating phase composites. Mater Lett 60(29–30):3723–3726CrossRef Kim JS, Kwon YS, Lomovsky OI, Korchagin MA, Mali VI, Dudina DV (2006) A synthetic route for metal-ceramic interpenetrating phase composites. Mater Lett 60(29–30):3723–3726CrossRef
170.
Zurück zum Zitat Korchagin MA, Dudina DV (2007) Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites. Comb Expl Shock Waves 43(2):176–187CrossRef Korchagin MA, Dudina DV (2007) Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites. Comb Expl Shock Waves 43(2):176–187CrossRef
171.
Zurück zum Zitat Bokhonov BB, Dudina DV (2013) Recrystallisation-accompanied phase separation in ag–Fe and ag–Ni nanocomposites: a route to structure tailoring of nanoporous silver. RSC Adv 3(31):12655–12661CrossRef Bokhonov BB, Dudina DV (2013) Recrystallisation-accompanied phase separation in ag–Fe and ag–Ni nanocomposites: a route to structure tailoring of nanoporous silver. RSC Adv 3(31):12655–12661CrossRef
172.
Zurück zum Zitat Fu YQ, Shearwood C, Xu B, Yu LG, Khor KA (2010) Characterization of spark plasma sintered ag nanopowders. Nanotechnology 21(11):115707CrossRef Fu YQ, Shearwood C, Xu B, Yu LG, Khor KA (2010) Characterization of spark plasma sintered ag nanopowders. Nanotechnology 21(11):115707CrossRef
173.
Zurück zum Zitat Dudina DV, Ukhina AV, Bokhonov BB, Mali VI, Anisimov AG, Bulina NV, Skovorodin IN (2015) Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation. Sci Sinter 47:237–248CrossRef Dudina DV, Ukhina AV, Bokhonov BB, Mali VI, Anisimov AG, Bulina NV, Skovorodin IN (2015) Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation. Sci Sinter 47:237–248CrossRef
174.
Zurück zum Zitat Bokhonov BB, Dudina DV, Ukhina AV, Korchagin MA, Bulina NV, Mali VI, Anisimov AG (2015) Formation of self-supporting porous graphite structures by spark plasma sintering of nickel-amorphous carbon mixtures. J Phys Chem Solids 76:192–202CrossRef Bokhonov BB, Dudina DV, Ukhina AV, Korchagin MA, Bulina NV, Mali VI, Anisimov AG (2015) Formation of self-supporting porous graphite structures by spark plasma sintering of nickel-amorphous carbon mixtures. J Phys Chem Solids 76:192–202CrossRef
175.
Zurück zum Zitat Dudina DV, Bokhonov BB, Mukherjee AK (2016) Network distribution of reinforcements in composites produced by sintering: microstructure formation and influence on consolidation behavior and properties. J Ceram Soc Jpn 124:289–295CrossRef Dudina DV, Bokhonov BB, Mukherjee AK (2016) Network distribution of reinforcements in composites produced by sintering: microstructure formation and influence on consolidation behavior and properties. J Ceram Soc Jpn 124:289–295CrossRef
176.
Zurück zum Zitat Dudina DV, Ukhina AV, Bokhonov BB, Korchagin MA, Bulina NV, Kato H (2017) The influence of the formation of Fe3C on graphitization in a carbon-rich iron-amorphous carbon mixture processed by spark plasma sintering and annealing. Ceram Int 43:11902–11906 Dudina DV, Ukhina AV, Bokhonov BB, Korchagin MA, Bulina NV, Kato H (2017) The influence of the formation of Fe3C on graphitization in a carbon-rich iron-amorphous carbon mixture processed by spark plasma sintering and annealing. Ceram Int 43:11902–11906
177.
Zurück zum Zitat Mali VI, Anisimov AG, Kurguzov VD, Dudina DV, Bokhonov BB (2013) Spark Plasma Sintering for the production of micron- and nanoscale materials. Proceedings of Taiwan-Russia Bilateral Symposium on Materials Processing at micro and nano level, Novosibirsk, p 116–119 Mali VI, Anisimov AG, Kurguzov VD, Dudina DV, Bokhonov BB (2013) Spark Plasma Sintering for the production of micron- and nanoscale materials. Proceedings of Taiwan-Russia Bilateral Symposium on Materials Processing at micro and nano level, Novosibirsk, p 116–119
178.
Zurück zum Zitat Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bataev IA, Skovorodin IN, Bokhonov BB (2015) Porous electrically conductive materials produced by spark plasma sintering and hot pressing of nanodiamonds. Ceram Int 41:12459–12463CrossRef Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bataev IA, Skovorodin IN, Bokhonov BB (2015) Porous electrically conductive materials produced by spark plasma sintering and hot pressing of nanodiamonds. Ceram Int 41:12459–12463CrossRef
179.
Zurück zum Zitat Kuznetsov VL, Butenko YV, Chuvilin AL, Romanenko AI, Okotrub AV (2001) Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem Phys Lett 336:397–404CrossRef Kuznetsov VL, Butenko YV, Chuvilin AL, Romanenko AI, Okotrub AV (2001) Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem Phys Lett 336:397–404CrossRef
Metadaten
Titel
Sintering by Low-Voltage Electric Pulses (Including Spark Plasma Sintering (SPS))
verfasst von
Eugene A. Olevsky
Dina V. Dudina
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-76032-2_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.