Skip to main content
Erschienen in: Journal of Materials Science 27/2020

17.06.2020 | Energy materials

SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries

verfasst von: Xiaoyu Dong, Xing Zheng, Yichen Deng, Lingfeng Wang, Haiping Hong, Zhicheng Ju

Erschienen in: Journal of Materials Science | Ausgabe 27/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three-dimensional SiO2/nitrogen-doped graphene aerogels (SiO2/NGA) with different SiO2 loading masses have been synthesized by a facile hydrothermal route. This composite structure significantly increased capacity through surface and interface engineering, and the three-dimensional structure can greatly absorb the volume expansion of silica. When applied as the anode material for lithium-ion batteries (LIBs), the SiO2/NGA nanocomposite can deliver a specific capacity of more than 1000 mAh g−1 at a current density of 100 mA g−1 with long cycle stability. Moreover, it can also present an excellent capacity reversibility after the rate performance test. Further analysis reveals that the SiO2/NGA shows an enhanced contribution of capacitive charge mechanism and displays typical pseudocapacitive behavior. In this case, constructing nitrogen-doped aerogel composite is an effective direction for improving Si-based electrodes for potential applications as the electrode for LIBs.

Graphic abstract

Three-dimensional porous SiO2/nitrogen-doped aerogel (SiO2/NGA) was synthesized. This novel SiO2/NGA composite structure can effectively solving the problem of huge volume change during cycles as well as facilitate the fast diffusion of Li ions and Electronics, and thus achieve improved anode performance. As Li-ion batteries anode materials, which shows excellent electrochemical performance

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lin N, Zhou J, Wang L, Zhu Y, Qian Y (2015) Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 7:409–414 Lin N, Zhou J, Wang L, Zhu Y, Qian Y (2015) Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 7:409–414
2.
Zurück zum Zitat Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M et al (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737 Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M et al (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737
3.
Zurück zum Zitat Zhu G, Gu Y, Wang Y, Qu Q, Zheng H (2019) Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries. J Alloys Compd 787:928–934 Zhu G, Gu Y, Wang Y, Qu Q, Zheng H (2019) Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries. J Alloys Compd 787:928–934
4.
Zurück zum Zitat Zhang CL, Lu BR, Cao FH, Yu ZL, Cong HP, Yu SH (2018) Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. J Mater Chem A 6:12962–12968 Zhang CL, Lu BR, Cao FH, Yu ZL, Cong HP, Yu SH (2018) Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries. J Mater Chem A 6:12962–12968
5.
Zurück zum Zitat Yang M, Dai J, He M, Duan T, Yao W (2020) Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J Colloid Interf Sci 567:256–263 Yang M, Dai J, He M, Duan T, Yao W (2020) Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J Colloid Interf Sci 567:256–263
6.
Zurück zum Zitat Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274 Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274
7.
Zurück zum Zitat Haruta M, Okubo T, Masuo Y, Yoshida S, Tomita A, Takenaka T et al (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193 Haruta M, Okubo T, Masuo Y, Yoshida S, Tomita A, Takenaka T et al (2017) Temperature effects on SEI formation and cyclability of Si nanoflake powder anode in the presence of SEI-forming additives. Electrochim Acta 224:186–193
8.
Zurück zum Zitat Du F-H, Wang K-X, Chen J-S (2016) Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J Mater Chem A 4:32–50 Du F-H, Wang K-X, Chen J-S (2016) Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials. J Mater Chem A 4:32–50
9.
Zurück zum Zitat Chen H, Hou X, Chen F, Wang S, Bo W, Qiang R et al (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440 Chen H, Hou X, Chen F, Wang S, Bo W, Qiang R et al (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440
10.
Zurück zum Zitat Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192 Liu N, Lu Z, Zhao J, Mcdowell MT, Lee HW, Zhao W et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192
11.
Zurück zum Zitat Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2016) Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv Funct Mater 25:6701–6709 Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2016) Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv Funct Mater 25:6701–6709
12.
Zurück zum Zitat Yang S, Gu Y, Qu Q, Zhu G, Liu G, Battaglia VS et al (2018) Engineered Si@alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries. Electrochim Acta 270:480–489 Yang S, Gu Y, Qu Q, Zhu G, Liu G, Battaglia VS et al (2018) Engineered Si@alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries. Electrochim Acta 270:480–489
13.
Zurück zum Zitat Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y et al (2018) The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta 269:405–414 Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y et al (2018) The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochim Acta 269:405–414
14.
Zurück zum Zitat Choi JW, Hu L, Cui L, McDonough JR, Cui Y (2010) Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J Power Sources 195:8311–8316 Choi JW, Hu L, Cui L, McDonough JR, Cui Y (2010) Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J Power Sources 195:8311–8316
15.
Zurück zum Zitat Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315 Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7:310–315
16.
Zurück zum Zitat Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl 49:2146–2149 Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl 49:2146–2149
17.
Zurück zum Zitat Gao B, Sinha S, Fleming L, Zhou O (2010) Alloy formation in nanostructured silicon. Adv Mater 13:816–819 Gao B, Sinha S, Fleming L, Zhou O (2010) Alloy formation in nanostructured silicon. Adv Mater 13:816–819
18.
Zurück zum Zitat Kim T, Park S, Oh SM (2007) Solid-state NMR and electrochemical dilatometry study on Li + uptake/extraction mechanism in SiO electrode. J Electrochem Soc 154:A1112–A1117 Kim T, Park S, Oh SM (2007) Solid-state NMR and electrochemical dilatometry study on Li + uptake/extraction mechanism in SiO electrode. J Electrochem Soc 154:A1112–A1117
19.
Zurück zum Zitat Luo Z, Xiao Q, Lei G, Li Z, Tang C (2016) Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon 98:373–380 Luo Z, Xiao Q, Lei G, Li Z, Tang C (2016) Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon 98:373–380
20.
Zurück zum Zitat Jiao M, Liu K, Shi Z, Wang C (2016) SiO2/carbon composite microspheres with hollow core-shell structure as a high stability electrode for lithium ion batteries. Chemelectrochem 4:542–549 Jiao M, Liu K, Shi Z, Wang C (2016) SiO2/carbon composite microspheres with hollow core-shell structure as a high stability electrode for lithium ion batteries. Chemelectrochem 4:542–549
21.
Zurück zum Zitat Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430 Morita T, Takami N (2006) Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc 153:A425–A430
22.
Zurück zum Zitat Choi I, Min JL, Oh SM, Kim JJ (2012) Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM. Electrochim Acta 85:369–376 Choi I, Min JL, Oh SM, Kim JJ (2012) Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM. Electrochim Acta 85:369–376
23.
Zurück zum Zitat Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J et al (2015) Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale 7:8023–8034 Wang J, Zhou M, Tan G, Chen S, Wu F, Lu J et al (2015) Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale 7:8023–8034
24.
Zurück zum Zitat Hao S, Wang Z, Chen L (2016) Amorphous SiO2 in tunnel-structured mesoporous carbon and its anode performance in Li-ion batteries. Mater Design 111:616–621 Hao S, Wang Z, Chen L (2016) Amorphous SiO2 in tunnel-structured mesoporous carbon and its anode performance in Li-ion batteries. Mater Design 111:616–621
25.
Zurück zum Zitat Ju Y, Tang JA, Zhu K, Meng Y, Wang C, Chen G et al (2016) SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim Acta 191:411–416 Ju Y, Tang JA, Zhu K, Meng Y, Wang C, Chen G et al (2016) SiOx/C composite from rice husks as an anode material for lithium-ion batteries. Electrochim Acta 191:411–416
26.
Zurück zum Zitat Zhang H, Jing S, Hu Y, Jiang H, Li C (2016) A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J Power Sources 307:214–219 Zhang H, Jing S, Hu Y, Jiang H, Li C (2016) A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. J Power Sources 307:214–219
27.
Zurück zum Zitat Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H et al (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604 Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H et al (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604
28.
Zurück zum Zitat Liu H, Guo H, Liu B, Liang M, Lv Z, Adair KR et al (2018) Few-Layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv Funct Mater 28:1707480 Liu H, Guo H, Liu B, Liang M, Lv Z, Adair KR et al (2018) Few-Layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv Funct Mater 28:1707480
29.
Zurück zum Zitat Meng J, Yuan C, Yang S, Liu Y, Zhang J, Zheng X (2015) Facile Fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009 Meng J, Yuan C, Yang S, Liu Y, Zhang J, Zheng X (2015) Facile Fabrication of 3D SiO2@graphene aerogel composites as anode material for lithium ion batteries. Electrochim Acta 176:1001–1009
30.
Zurück zum Zitat Lin D, Yuen PY, Liu Y, Liu W, Cui Y (2018) A Silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:1802661 Lin D, Yuen PY, Liu Y, Liu W, Cui Y (2018) A Silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus. Adv Mater 30:1802661
31.
Zurück zum Zitat Cai D, Wang S, Lian P, Zhu X, Li D, Yang W et al (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497 Cai D, Wang S, Lian P, Zhu X, Li D, Yang W et al (2013) Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochim Acta 90:492–497
32.
Zurück zum Zitat Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915 Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22:8911–8915
33.
Zurück zum Zitat Liu H, Liu B, Guo H, Liang M, Zhang Y, Borjigin T et al (2018) N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy 51:639–648 Liu H, Liu B, Guo H, Liang M, Zhang Y, Borjigin T et al (2018) N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries. Nano Energy 51:639–648
34.
Zurück zum Zitat Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193 Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193
35.
Zurück zum Zitat Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R et al (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257:9193–9198 Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R et al (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257:9193–9198
36.
Zurück zum Zitat Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825 Li X, Geng D, Zhang Y, Meng X, Li R, Sun X (2011) Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 13:822–825
37.
Zurück zum Zitat Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434 Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434
38.
Zurück zum Zitat Wei L, Chen X, Yuan X, Miao C, Wang L, Wang Q et al (2017) Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 7:1701083 Wei L, Chen X, Yuan X, Miao C, Wang L, Wang Q et al (2017) Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv Energy Mater 7:1701083
39.
Zurück zum Zitat Kai-Xue W, Xin-Hao L, Jie-Sheng C (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545 Kai-Xue W, Xin-Hao L, Jie-Sheng C (2015) Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 27:527–545
40.
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482 Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482
41.
Zurück zum Zitat Hassan FM, Batmaz R, Li J, Wang X, Xiao X, Yu A et al (2015) Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat Commun 6:8597 Hassan FM, Batmaz R, Li J, Wang X, Xiao X, Yu A et al (2015) Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries. Nat Commun 6:8597
42.
Zurück zum Zitat Furquan M, Khatribail AR, Vijayalakshmi S, Mitra S (2018) Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. J Power Sources 382:56–68 Furquan M, Khatribail AR, Vijayalakshmi S, Mitra S (2018) Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery. J Power Sources 382:56–68
43.
Zurück zum Zitat Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437 Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437
44.
Zurück zum Zitat Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758 Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758
45.
Zurück zum Zitat David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998 David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7:10998
46.
Zurück zum Zitat Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228 Pei S, Cheng H (2012) The reduction of graphene oxide. Carbon 50:3210–3228
47.
Zurück zum Zitat Li H, Shen L, Wang J, Ding B, Nie P, Xu G et al (2014) Design of a nitrogen-doped, carbon-coated Li4Ti5O12 nanocomposite with a core-shell structure and its application for high-rate lithium-ion batteries. ChemPlusChem 79:128–133 Li H, Shen L, Wang J, Ding B, Nie P, Xu G et al (2014) Design of a nitrogen-doped, carbon-coated Li4Ti5O12 nanocomposite with a core-shell structure and its application for high-rate lithium-ion batteries. ChemPlusChem 79:128–133
48.
Zurück zum Zitat Su J, Zhao J, Li L, Zhang C, Chen C, Huang T et al (2017) Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes As anode materials for Li-ion batteries. ACS Appl Mater Interfaces 9:17807 Su J, Zhao J, Li L, Zhang C, Chen C, Huang T et al (2017) Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes As anode materials for Li-ion batteries. ACS Appl Mater Interfaces 9:17807
49.
Zurück zum Zitat Zhong X, Yang Z, Liu X, Wang J, Gu L, Yu Y (2015) General Strategy for fabricating sandwich-like graphene-based hybrid films for highly reversible lithium storage. ACS Appl Mater Interfaces 7:18320 Zhong X, Yang Z, Liu X, Wang J, Gu L, Yu Y (2015) General Strategy for fabricating sandwich-like graphene-based hybrid films for highly reversible lithium storage. ACS Appl Mater Interfaces 7:18320
50.
Zurück zum Zitat Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon Solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412 Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon Solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412
51.
Zurück zum Zitat Kim K, Kim MS, Choi H, Min KS, Kim KD, Kim JH (2017) Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries. Electron Mater Lett 13:1–8 Kim K, Kim MS, Choi H, Min KS, Kim KD, Kim JH (2017) Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries. Electron Mater Lett 13:1–8
52.
Zurück zum Zitat Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626 Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626
53.
Zurück zum Zitat Lv P, Zhao H, Gao C, Du Z, Wang J, Liu X (2015) SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources 274:542–550 Lv P, Zhao H, Gao C, Du Z, Wang J, Liu X (2015) SiOx–C dual-phase glass for lithium ion battery anode with high capacity and stable cycling performance. J Power Sources 274:542–550
54.
Zurück zum Zitat Zhao X, Li M, Chang KH, Lin YM (2014) Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res 7:1429–1438 Zhao X, Li M, Chang KH, Lin YM (2014) Composites of graphene and encapsulated silicon for practically viable high-performance lithium-ion batteries. Nano Res 7:1429–1438
55.
Zurück zum Zitat Pang G, Yuan C, Nie P, Zhu J, Zhang X, Li H et al (2016) Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Appl Mater Today 4:54–61 Pang G, Yuan C, Nie P, Zhu J, Zhang X, Li H et al (2016) Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Appl Mater Today 4:54–61
56.
Zurück zum Zitat Ko M, Chae S, Jeong S, Oh P, Cho J (2012) Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 8:8591 Ko M, Chae S, Jeong S, Oh P, Cho J (2012) Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 8:8591
57.
Zurück zum Zitat Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518 Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH et al (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518
58.
Zurück zum Zitat Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J et al (2017) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104 Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J et al (2017) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104
59.
Zurück zum Zitat Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507 Raymundo-Piñero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44:2498–2507
60.
Zurück zum Zitat Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929 Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929
61.
Zurück zum Zitat Simon P, Largeot C, Chmiola J, Lin R, Taberna P-L, Gogotsi Y (2008) Charge storage mechanism in sub-nanometer pores and its consequence for electrical double layer capacitors. meeting abstracts. MA2008-02, 498 Simon P, Largeot C, Chmiola J, Lin R, Taberna P-L, Gogotsi Y (2008) Charge storage mechanism in sub-nanometer pores and its consequence for electrical double layer capacitors. meeting abstracts. MA2008-02, 498
Metadaten
Titel
SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries
verfasst von
Xiaoyu Dong
Xing Zheng
Yichen Deng
Lingfeng Wang
Haiping Hong
Zhicheng Ju
Publikationsdatum
17.06.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 27/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04905-y

Weitere Artikel der Ausgabe 27/2020

Journal of Materials Science 27/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.