Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

13.07.2021

Six-Port Quarter Wavelength Slotted MIMO Antenna for 5G Mobile Phone

verfasst von: D. Rajesh Kumar, G. Venkat Babu

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, six-port Multi-Band MIMO antenna is presented for 5G mobile phone applications. The proposed antenna array is designed by making six open-ended slots in the ground plane which is printed on the backside of 0.8 mm thick FR4 substrate. The proposed antenna operates in the frequency band 3.33 GHz–3.63 GHz (covers LTE band 42) with − 10 dB impedance bandwidth of 300 MHz. Nevertheless, for 3:1 VSWR (− 6 dB impedance bandwidth), the total bandwidth is 500 MHz from 3.3 to 3.8 GHz (includes LTE bands 43, 48, 49 and 52). The prototype of the six-element antenna array is fabricated and measured. The measured isolation is better than 16 dB without employing any decoupling techniques, making the antenna highly equipped for 5G mobile applications. MIMO parameters like Envelope Correlation Coefficient, and Peak Channel Capacity are measured. The robustness of the six-port MIMO antenna system is validated by estimating the user's hand effects and Specific Absorption Rate. Better agreement between the simulated and measured results exhibit, the proposed antenna is a promising candidate for future cellular applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu, Su., Zhang, M., Wen, H., et al. (2017). Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium. Science and Reports, 7(12162), 1–9. Xu, Su., Zhang, M., Wen, H., et al. (2017). Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium. Science and Reports, 7(12162), 1–9.
2.
Zurück zum Zitat Zhao, A., & Zhouyou, R. (2019). Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antennas Wireless Propagation Letters, 18, 152–156.CrossRef Zhao, A., & Zhouyou, R. (2019). Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications. IEEE Antennas Wireless Propagation Letters, 18, 152–156.CrossRef
3.
Zurück zum Zitat Sun, L., Feng, H., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.CrossRef Sun, L., Feng, H., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.CrossRef
4.
Zurück zum Zitat Li, M.-Y. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves and Antennas Propagation, 11(12), 1810–1816.CrossRef Li, M.-Y. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves and Antennas Propagation, 11(12), 1810–1816.CrossRef
5.
Zurück zum Zitat Parchin, N. O., Al-Yasir, Y. I. A., Ali, A. H., et al. (2019). Eight-element dual polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 9, 15612–15622.CrossRef Parchin, N. O., Al-Yasir, Y. I. A., Ali, A. H., et al. (2019). Eight-element dual polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access, 9, 15612–15622.CrossRef
6.
Zurück zum Zitat Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.CrossRef Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.CrossRef
7.
Zurück zum Zitat Abdullah, M., Ban, Y.-L., Kang, K., et al. (2017). Eight-element antenna array at 3.5 GHz for MIMO wireless application. Progress in Electromagnetic Research C, 78, 209–217.CrossRef Abdullah, M., Ban, Y.-L., Kang, K., et al. (2017). Eight-element antenna array at 3.5 GHz for MIMO wireless application. Progress in Electromagnetic Research C, 78, 209–217.CrossRef
8.
Zurück zum Zitat Zhao, X., Yeo, S. P., & Ong, L. C. (2018). Decoupling of inverted-F antennas with high order modes of ground plane for 5G mobile MIMO platform. IEEE Transactions on Antenna and Propagation, 66(9), 4485–4495.CrossRef Zhao, X., Yeo, S. P., & Ong, L. C. (2018). Decoupling of inverted-F antennas with high order modes of ground plane for 5G mobile MIMO platform. IEEE Transactions on Antenna and Propagation, 66(9), 4485–4495.CrossRef
9.
Zurück zum Zitat Wong, K.-L., Lu, J.-Y., Chen, L.-Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174–181.CrossRef Wong, K.-L., Lu, J.-Y., Chen, L.-Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174–181.CrossRef
10.
Zurück zum Zitat Parchin, N. O., Al-Yasir, Y. I. A., Noras, J. M., et al. (EuCAP 2019). Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications. In 13th European Conference on Antennas and Propagation, (p. 1–4). Krakow, Poland. Parchin, N. O., Al-Yasir, Y. I. A., Noras, J. M., et al. (EuCAP 2019). Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications. In 13th European Conference on Antennas and Propagation, (p. 1–4). Krakow, Poland.
11.
Zurück zum Zitat Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2016). Eight-port orthogonally dual polarized antenna array for 5G smartphone applications. IEEE Transactions on Antennas and Propagation, 64(9), 3820–3830.MathSciNetCrossRef Li, M.-Y., Ban, Y.-L., Xu, Z.-Q., et al. (2016). Eight-port orthogonally dual polarized antenna array for 5G smartphone applications. IEEE Transactions on Antennas and Propagation, 64(9), 3820–3830.MathSciNetCrossRef
12.
Zurück zum Zitat Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2015). 16-antenna array in the smartphone for the 3.5-GHz MIMO operation. In Asia Pacific Microwave conference, (p. 1–3). Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2015). 16-antenna array in the smartphone for the 3.5-GHz MIMO operation. In Asia Pacific Microwave conference, (p. 1–3).
13.
Zurück zum Zitat Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and optical technology Letters, 58(1), 174–181.CrossRef Wong, K. L., Lu, J. Y., Chen, L. Y., et al. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and optical technology Letters, 58(1), 174–181.CrossRef
14.
Zurück zum Zitat Lu, J. Y., Wong, K. L., Li, W. Y. (2016). Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. In Proceedings of IEEE 5th Asia-Pacific Conf on Antennas and Propagation, (p. 323–324). Lu, J. Y., Wong, K. L., Li, W. Y. (2016). Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8×8 MIMO operation. In Proceedings of IEEE 5th Asia-Pacific Conf on Antennas and Propagation, (p. 323–324).
15.
Zurück zum Zitat Jiang, W., Liu, B., Cui, Y. Q., et al. (2019). High-isolation eight element MIMO array for 5G smartphone applications. IEEE Access, 7, 34104–34112.CrossRef Jiang, W., Liu, B., Cui, Y. Q., et al. (2019). High-isolation eight element MIMO array for 5G smartphone applications. IEEE Access, 7, 34104–34112.CrossRef
16.
Zurück zum Zitat Jiang, W., Cui, Y. Q., Liu, B., et al. (2019). A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access, 7, 112554–112563.CrossRef Jiang, W., Cui, Y. Q., Liu, B., et al. (2019). A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications. IEEE Access, 7, 112554–112563.CrossRef
17.
Zurück zum Zitat Xu, H., Zhou, H., Gao, S., et al. (2017). Multimode de coupling technique with independent tuning characteristic for mobile terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6739–6751.CrossRef Xu, H., Zhou, H., Gao, S., et al. (2017). Multimode de coupling technique with independent tuning characteristic for mobile terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6739–6751.CrossRef
18.
Zurück zum Zitat Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2016). Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Transactions on Antenna and Propagation, 64(9), 3820–3830.MathSciNetCrossRef Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2016). Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Transactions on Antenna and Propagation, 64(9), 3820–3830.MathSciNetCrossRef
19.
Zurück zum Zitat Li, M. Y., Xu, Z. Q., Ban, Y. L., et al. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves & Antennas Propagation, 11(12), 1810–1816.CrossRef Li, M. Y., Xu, Z. Q., Ban, Y. L., et al. (2017). Eight-port orthogonally dual-polarized MIMO antennas using loop structures for 5G smartphone. IET Microwaves & Antennas Propagation, 11(12), 1810–1816.CrossRef
20.
Zurück zum Zitat Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.CrossRef Li, M. Y., Ban, Y. L., Xu, Z. Q., et al. (2018). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160–6170.CrossRef
21.
Zurück zum Zitat Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. IEEE Access, 6, 28041–28053.CrossRef Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphone. IEEE Access, 6, 28041–28053.CrossRef
22.
Zurück zum Zitat Liu, Y., Ren, A. D., Liu, H., et al. (2019). Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7, 45679–45692.CrossRef Liu, Y., Ren, A. D., Liu, H., et al. (2019). Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7, 45679–45692.CrossRef
23.
Zurück zum Zitat Sun, L. B., Feng, H. G., & Li, Y. (2018). Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microwave and optical technology Letters, 60(7), 1751–1756.CrossRef Sun, L. B., Feng, H. G., & Li, Y. (2018). Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal. Microwave and optical technology Letters, 60(7), 1751–1756.CrossRef
24.
Zurück zum Zitat Sun, L. B., Feng, H. G., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.CrossRef Sun, L. B., Feng, H. G., Li, Y., et al. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal mode pairs. IEEE Transactions on Antenna and Propagation, 66(11), 6364–6369.CrossRef
25.
Zurück zum Zitat Ren, A. D., Liu, Y., & Sim, C. Y. D. (2019). A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Transactions on Antenna and Propagation, 67(10), 6430–6438.CrossRef Ren, A. D., Liu, Y., & Sim, C. Y. D. (2019). A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Transactions on Antenna and Propagation, 67(10), 6430–6438.CrossRef
26.
Zurück zum Zitat Wong, K. L., Tsai, C. Y., & Lu, J. Y. (2017). Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Transactions on Antenna and Propagation, 65(4), 1765–1778.MathSciNetCrossRef Wong, K. L., Tsai, C. Y., & Lu, J. Y. (2017). Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Transactions on Antenna and Propagation, 65(4), 1765–1778.MathSciNetCrossRef
27.
Zurück zum Zitat Wong, K. L., Chen, Y. H., & Li, W. Y. (2018). Decoupled compact ultra-wideband MIMO antennas covering 3300–6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. Microwave and Optical Technology Letters, 60(10), 2345–2351. Wong, K. L., Chen, Y. H., & Li, W. Y. (2018). Decoupled compact ultra-wideband MIMO antennas covering 3300–6000 MHz for the fifth-generation mobile and 5 GHz WLAN operations in the future smartphone. Microwave and Optical Technology Letters, 60(10), 2345–2351.
28.
Zurück zum Zitat Wong, K. L., Lin, B. W., & Lin, S. E. (2019). High-isolation conjoined loop multi-input multi-output antennas for the fifth-generation tablet device. Microwave and Optical Technology Letters, 61(1), 111–119.CrossRef Wong, K. L., Lin, B. W., & Lin, S. E. (2019). High-isolation conjoined loop multi-input multi-output antennas for the fifth-generation tablet device. Microwave and Optical Technology Letters, 61(1), 111–119.CrossRef
29.
Zurück zum Zitat Zhang, X. G., Li, Y. X., Wang, W., et al. (2019). Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smart phones. IEEE Access, 7, 72273–72282.CrossRef Zhang, X. G., Li, Y. X., Wang, W., et al. (2019). Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smart phones. IEEE Access, 7, 72273–72282.CrossRef
30.
Zurück zum Zitat Lu, J. Y., Chang, H. J., Wong, K. L. 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. In Proc IEEE Int Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, (p. 1220–1221). Lu, J. Y., Chang, H. J., Wong, K. L. 10-antenna array in the smartphone for the 3.6-GHz MIMO operation. In Proc IEEE Int Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, (p. 1220–1221).
31.
Zurück zum Zitat Wong, K. L., Chang, H. J., & Li, W. Y. (2018). Integrated triple wide band triple-inverted-F antenna covering 617–960/ 1710–2690/3300–4200 MHz for 4G/5G communications in the smart phone. Microwave and Optical Technology Letters, 60(9), 2091–2096.CrossRef Wong, K. L., Chang, H. J., & Li, W. Y. (2018). Integrated triple wide band triple-inverted-F antenna covering 617–960/ 1710–2690/3300–4200 MHz for 4G/5G communications in the smart phone. Microwave and Optical Technology Letters, 60(9), 2091–2096.CrossRef
32.
Zurück zum Zitat Huang, C., Jiao, Y. C., & Weng, Z. B. (2018). Novel compact CRLHTL-based tri-band MIMO antenna element for the 5G mobile handsets. Microwave and Optical Technology Letters, 60(10), 2559–2564. Huang, C., Jiao, Y. C., & Weng, Z. B. (2018). Novel compact CRLHTL-based tri-band MIMO antenna element for the 5G mobile handsets. Microwave and Optical Technology Letters, 60(10), 2559–2564.
33.
Zurück zum Zitat Chen, Q. G., Lin, H. W., Wang, J. P., et al. (2019). Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Transactions on Antenna and Propagation, 67(3), 1476–1487.CrossRef Chen, Q. G., Lin, H. W., Wang, J. P., et al. (2019). Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Transactions on Antenna and Propagation, 67(3), 1476–1487.CrossRef
34.
Zurück zum Zitat Deng, C. J., Liu, D., & Lv, X. (2019). Tightly-arranged four-element MIMO antennas for 5G mobile terminals. IEEE Transactions on Antenna and Propagation, 7(10), 6353–6361.CrossRef Deng, C. J., Liu, D., & Lv, X. (2019). Tightly-arranged four-element MIMO antennas for 5G mobile terminals. IEEE Transactions on Antenna and Propagation, 7(10), 6353–6361.CrossRef
35.
Zurück zum Zitat Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2019). High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smart phones. IEEE Transactions on Antenna and Propagation, 67(6), 3820–3830.CrossRef Li, Y. X., Sim, C. Y. D., Luo, Y., et al. (2019). High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smart phones. IEEE Transactions on Antenna and Propagation, 67(6), 3820–3830.CrossRef
36.
Zurück zum Zitat Certification C. (2011). Test Plan for mobile station over the air performance, Method of Measurement for radiated Power receiver performance, revision 3.1 January 2011. Certification C. (2011). Test Plan for mobile station over the air performance, Method of Measurement for radiated Power receiver performance, revision 3.1 January 2011.
37.
Zurück zum Zitat Fallah, M., Heydari, A. A., Mallahzadeh, A. R., & Kashani, F. H. (2011). Design and SAR reduction of the vest antenna using metamaterial for broadband applications. Applied Computational Electromagnetics Society Journal, 26, 141–155. Fallah, M., Heydari, A. A., Mallahzadeh, A. R., & Kashani, F. H. (2011). Design and SAR reduction of the vest antenna using metamaterial for broadband applications. Applied Computational Electromagnetics Society Journal, 26, 141–155.
38.
Zurück zum Zitat Ban, Y. L., Li, C., Sim, C. Y. D., et al. (2016). 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access, 4, 2981–2988.CrossRef Ban, Y. L., Li, C., Sim, C. Y. D., et al. (2016). 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access, 4, 2981–2988.CrossRef
Metadaten
Titel
Six-Port Quarter Wavelength Slotted MIMO Antenna for 5G Mobile Phone
verfasst von
D. Rajesh Kumar
G. Venkat Babu
Publikationsdatum
13.07.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08733-4

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt