Skip to main content
Erschienen in: Meccanica 11-12/2018

16.06.2018

Size- and shape-dependent effective conductivity of porous media with spheroidal gas-filled inclusions

verfasst von: H. Le Quang, Y. Xu, Q.-C. He

Erschienen in: Meccanica | Ausgabe 11-12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous media containing gas-filled inclusions embedded in a solid phase constitute an important class of natural or artificial materials of both theoretical and practical interest. In these materials, thermal conductivity is one of the most important properties. In a variety of situations of practical interest, when the characteristic size of gas-filled inclusions is comparable with the mean free path of gas molecules and when the slip flow regime is considered, the behavior of gas near solid surfaces cannot be described by classical thermal conductivity equations. In fact, the boundary conditions at the solid surfaces must be modified by considering that the temperature and normal heat flux simultaneously suffer a discontinuity. The first purpose of the present work is to develop an efficient and accurate micromechanical model capable of estimating the effective conductivity of porous materials while taking into account the discontinuities of the temperature and normal heat flux across solid surfaces and the non-spherical form of gas-filled inclusions. The second purpose of the present work is to study the dependencies of the effective conductivity on the size and shape of gas-filled inclusions. By applying the micromechanical model based on the differential scheme and by using the solution results obtained for auxiliary dilute problem accounting for modified boundary conditions on surface solids, the closed-form expression for the effective conductivity is obtained. Numerical results are provided to illustrate the dependence of the effective conductivity on the size and shape of gas-filled inclusions in the case of randomly oriented inclusions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Goldstein RJ, Ibele WE, Patankar SV, Simon TW, Kuehn TH, Strykowski PJ, Tamma KK, Heberlein JVR, Davidson JH, Bischof J, Kulacki FA, Kortshagen U, Garrick S, Srinivasan V (2006) Heat transfer–a review of 2003 literature. Int J Heat Mass Transfer 49:451–534CrossRefMATH Goldstein RJ, Ibele WE, Patankar SV, Simon TW, Kuehn TH, Strykowski PJ, Tamma KK, Heberlein JVR, Davidson JH, Bischof J, Kulacki FA, Kortshagen U, Garrick S, Srinivasan V (2006) Heat transfer–a review of 2003 literature. Int J Heat Mass Transfer 49:451–534CrossRefMATH
3.
Zurück zum Zitat Eshelby JD (1961) Elastic inclusions and heterogeneities. Progress in solid mechanics, vol 2. North-Holland, Amsterdam (Chapter 3) Eshelby JD (1961) Elastic inclusions and heterogeneities. Progress in solid mechanics, vol 2. North-Holland, Amsterdam (Chapter 3)
4.
Zurück zum Zitat Zimmerman RW (1989) Thermal conductivity of fluid-saturated rocks. J Pet Sci Eng 3:219–227CrossRef Zimmerman RW (1989) Thermal conductivity of fluid-saturated rocks. J Pet Sci Eng 3:219–227CrossRef
5.
Zurück zum Zitat Shafiro B, Kachanov M (2000) Anisotropic effective conductivity of materials with non-randomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87:8561–8569CrossRefADS Shafiro B, Kachanov M (2000) Anisotropic effective conductivity of materials with non-randomly oriented inclusions of diverse ellipsoidal shapes. J Appl Phys 87:8561–8569CrossRefADS
6.
Zurück zum Zitat Sevostianov I (2006) Thermal conductivity of a material containing cracks of arbitrary shape. Int J Eng Sci 44:513–528CrossRef Sevostianov I (2006) Thermal conductivity of a material containing cracks of arbitrary shape. Int J Eng Sci 44:513–528CrossRef
7.
Zurück zum Zitat Gruescu C, Giraud A, Homand F, Kondo D, Do DP (2007) Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct 44:811–833CrossRefMATH Gruescu C, Giraud A, Homand F, Kondo D, Do DP (2007) Effective thermal conductivity of partially saturated porous rocks. Int J Solids Struct 44:811–833CrossRefMATH
8.
Zurück zum Zitat Giraud A, Gruescu C, Do DP, Homand F, Kondo D (2007) Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44:2627–2647CrossRefMATH Giraud A, Gruescu C, Do DP, Homand F, Kondo D (2007) Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities. Int J Solids Struct 44:2627–2647CrossRefMATH
9.
Zurück zum Zitat Bary B (2011) Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes. Int J Numer Anal Methods Geomech 35:1560–1586CrossRef Bary B (2011) Estimation of poromechanical and thermal conductivity properties of unsaturated isotropically microcracked cement pastes. Int J Numer Anal Methods Geomech 35:1560–1586CrossRef
10.
Zurück zum Zitat Chen Y, Li D, Jiang Q, Zhou C (2012) Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. Int J Rock Mech Min Sci 50:102–116CrossRef Chen Y, Li D, Jiang Q, Zhou C (2012) Micromechanical analysis of anisotropic damage and its influence on effective thermal conductivity in brittle rocks. Int J Rock Mech Min Sci 50:102–116CrossRef
11.
Zurück zum Zitat Chen Y, Zhou S, Hu R, Zhou C (2015) A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites. Int J Heat Mass Transfer 83:731–740CrossRef Chen Y, Zhou S, Hu R, Zhou C (2015) A homogenization-based model for estimating effective thermal conductivity of unsaturated compacted bentonites. Int J Heat Mass Transfer 83:731–740CrossRef
12.
Zurück zum Zitat Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int J Eng Sci 12:331–351CrossRefMATH Sanchez-Palencia E (1974) Comportement local et macroscopique d’un type de milieux physiques hétérogènes. Int J Eng Sci 12:331–351CrossRefMATH
13.
Zurück zum Zitat Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, AmsterdamMATH Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, AmsterdamMATH
14.
Zurück zum Zitat Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer, DordrechtCrossRefMATH Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer, DordrechtCrossRefMATH
15.
Zurück zum Zitat Ene HI, Polisevski D (1987) Thermal flow in porous media. Reidel, Holland, DordrechtCrossRef Ene HI, Polisevski D (1987) Thermal flow in porous media. Reidel, Holland, DordrechtCrossRef
16.
Zurück zum Zitat Auriault JL, Sanchez-Palencia E (1977) Etude du comportement macroscopique d’un milieu poreux saturé déformable. J Mec 16:575–603MATH Auriault JL, Sanchez-Palencia E (1977) Etude du comportement macroscopique d’un milieu poreux saturé déformable. J Mec 16:575–603MATH
17.
18.
Zurück zum Zitat Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—I. Derivation of macroscale equations. Adv Water Resour 20:127–144CrossRefADS Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—I. Derivation of macroscale equations. Adv Water Resour 20:127–144CrossRefADS
19.
Zurück zum Zitat Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—II. Calculation of effective coefficients. Adv Water Resour 20:145–156CrossRefADS Lee CK, Mei CC (1997) Thermal consolidation in porous media by homogenization theory—II. Calculation of effective coefficients. Adv Water Resour 20:145–156CrossRefADS
20.
21.
Zurück zum Zitat Cercignani C (1975) Theory and applications of the Boltzmann equation. Scottish Academic Press, EdinburghMATH Cercignani C (1975) Theory and applications of the Boltzmann equation. Scottish Academic Press, EdinburghMATH
22.
Zurück zum Zitat Markov M, Levin V, Mousatov A, Kazatchenko E (2017) Effective thermal conductivity of inhomogeneous medium containing gas-filled inclusions. Math Meth Appl Sci 40:3283–3289MathSciNetCrossRefMATH Markov M, Levin V, Mousatov A, Kazatchenko E (2017) Effective thermal conductivity of inhomogeneous medium containing gas-filled inclusions. Math Meth Appl Sci 40:3283–3289MathSciNetCrossRefMATH
23.
Zurück zum Zitat Markov A, Levin V, Markov M (2016) Effective thermal conductivity of gas-solid mixtures. Effect of the size of inclusions. Int J Heat Mass Transfer 98:108–113CrossRef Markov A, Levin V, Markov M (2016) Effective thermal conductivity of gas-solid mixtures. Effect of the size of inclusions. Int J Heat Mass Transfer 98:108–113CrossRef
24.
Zurück zum Zitat Sharipov F (2007) Rarefied gas dynamics and its applications to vacuum technology. On-line publication: fisica.ufpr.br/sharipov/CERN.pdf Sharipov F (2007) Rarefied gas dynamics and its applications to vacuum technology. On-line publication: fisica.ufpr.br/sharipov/CERN.pdf
25.
Zurück zum Zitat Bedeaux D, Albano AM, Mazur P (1976) Boundary conditions and nonequilibrium thermodynamics. Physica A82:438–462CrossRefADS Bedeaux D, Albano AM, Mazur P (1976) Boundary conditions and nonequilibrium thermodynamics. Physica A82:438–462CrossRefADS
27.
Zurück zum Zitat Yalamov YI, Poddoskin AB, Yushkanov AA (1980) Boundary conditions for the flow of a nonuniformly heated gas around a spherical surface of small curvature. Sov Phys Dokl 25:734–737ADS Yalamov YI, Poddoskin AB, Yushkanov AA (1980) Boundary conditions for the flow of a nonuniformly heated gas around a spherical surface of small curvature. Sov Phys Dokl 25:734–737ADS
28.
Zurück zum Zitat Zhdanov VM, Roldugin VI (2002) On a kinetic justification of the generalized nonequilibrium thermodynamics of multicomponent systems. J Exp Theor Phys 95:682–696CrossRefADS Zhdanov VM, Roldugin VI (2002) On a kinetic justification of the generalized nonequilibrium thermodynamics of multicomponent systems. J Exp Theor Phys 95:682–696CrossRefADS
29.
Zurück zum Zitat Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Kinetic coefficients in the boundary-value problem on the slip of a multiatomic gas with rotational degrees of freedom. High Temp 39:912–920CrossRef Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Kinetic coefficients in the boundary-value problem on the slip of a multiatomic gas with rotational degrees of freedom. High Temp 39:912–920CrossRef
30.
Zurück zum Zitat Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Slip coefficients and macro parameter jumps of a diatomic gas with rotational degrees of freedom on a weekly curved spherical surface. Fluid Mech 51:132–142MATH Poddoskin AB, Yushkanov AA, Yalamov YI (2001) Slip coefficients and macro parameter jumps of a diatomic gas with rotational degrees of freedom on a weekly curved spherical surface. Fluid Mech 51:132–142MATH
31.
Zurück zum Zitat Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRefADS Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147CrossRefADS
32.
Zurück zum Zitat Shenoy VB (2002) Size-dependent rigidities of nanosized torsional elements. Int J Solids Struct 39:4039–4052CrossRefMATH Shenoy VB (2002) Size-dependent rigidities of nanosized torsional elements. Int J Solids Struct 39:4039–4052CrossRefMATH
33.
Zurück zum Zitat Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104-1–094104-11ADS Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104-1–094104-11ADS
34.
Zurück zum Zitat Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 8:1827–1854MathSciNetCrossRefMATHADS Dingreville R, Qu J, Cherkaoui M (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 8:1827–1854MathSciNetCrossRefMATHADS
35.
Zurück zum Zitat Kurti N, Rollin BV, Simon F (1936) Preliminary experiments on temperature equilibrium at very low temperatures. Physica 3:266–274CrossRefADS Kurti N, Rollin BV, Simon F (1936) Preliminary experiments on temperature equilibrium at very low temperatures. Physica 3:266–274CrossRefADS
36.
Zurück zum Zitat Keesom WH, Keesom AP (1936) On the heat conductivity of liquid helium. Physica 3:359–360CrossRefADS Keesom WH, Keesom AP (1936) On the heat conductivity of liquid helium. Physica 3:359–360CrossRefADS
37.
Zurück zum Zitat Kapitza SB (1941) The study of heat transfert in Helium II. J Phys (USSR) 4:181–210 Kapitza SB (1941) The study of heat transfert in Helium II. J Phys (USSR) 4:181–210
38.
Zurück zum Zitat Pham-Huy H, Sanchez-Palencia E (1974) Phénomènes de transmission à travers des couches minces de conductivité élevée. J Math Anal Appl 47:284–309MathSciNetCrossRefMATH Pham-Huy H, Sanchez-Palencia E (1974) Phénomènes de transmission à travers des couches minces de conductivité élevée. J Math Anal Appl 47:284–309MathSciNetCrossRefMATH
39.
Zurück zum Zitat Stora E, He QC, Bary B (2006) Influence of inclusion shape on the effective linear elastic properties of hardened cement pastes. Cem Concr Res 36:1330–1344CrossRef Stora E, He QC, Bary B (2006) Influence of inclusion shape on the effective linear elastic properties of hardened cement pastes. Cem Concr Res 36:1330–1344CrossRef
40.
Zurück zum Zitat Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552CrossRefMATH Benveniste Y, Miloh T (1986) The effective conductivity of composites with imperfect thermal contact at constituent interfaces. Int J Eng Sci 24:1537–1552CrossRefMATH
41.
Zurück zum Zitat Miloh T, Benveniste Y (1999) On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proc R Soc Lond A455:2687–2706MathSciNetCrossRefMATHADS Miloh T, Benveniste Y (1999) On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proc R Soc Lond A455:2687–2706MathSciNetCrossRefMATHADS
42.
Zurück zum Zitat Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 84:2261–2267CrossRefADS Hashin Z (2001) Thin interphase/imperfect interface in conduction. J Appl Phys 84:2261–2267CrossRefADS
43.
Zurück zum Zitat Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. University Press, CambridgeMATH Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. University Press, CambridgeMATH
44.
Zurück zum Zitat Jasiuk I, Tsuchida E, Mura T (1987) The sliding inclusion under shear. Int J Solids Struct 23:1373–1385CrossRefMATH Jasiuk I, Tsuchida E, Mura T (1987) The sliding inclusion under shear. Int J Solids Struct 23:1373–1385CrossRefMATH
45.
Zurück zum Zitat Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4:1–16CrossRef Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4:1–16CrossRef
Metadaten
Titel
Size- and shape-dependent effective conductivity of porous media with spheroidal gas-filled inclusions
verfasst von
H. Le Quang
Y. Xu
Q.-C. He
Publikationsdatum
16.06.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 11-12/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0864-9

Weitere Artikel der Ausgabe 11-12/2018

Meccanica 11-12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.