Skip to main content
Erschienen in: Journal of Nanoparticle Research 9/2018

01.09.2018 | Research Paper

Size and shape-dependent melting mechanism of Pd nanoparticles

verfasst von: Movaffaq Kateb, Maryam Azadeh, Pirooz Marashi, Snorri Ingvarsson

Erschienen in: Journal of Nanoparticle Research | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics simulation was employed to understand the thermodynamic behavior of cuboctahedron (cub) and icosahedron (ico) nanoparticles with 2–20 number of full shells. The original embedded atom method (EAM) was compared to the more recent highly optimized version as inter-atomic potential. The thermal stability of clusters were probed using potential energy and specific heat capacity as well as structure analysis by radial distribution function (G(r)) and common neighbor analysis (CNA), simultaneously, to make a comprehensive picture of the solid-state and melting transitions. The result shows ico is the only stable shape of small clusters (Pd55–Pd309 using original EAM and Pd55 using optimized version) those are melting uniformly due to their small diameter. An exception is cub Pd309 modeled via optimized EAM that transforms to ico at elevated temperatures. A similar cub to ico transition was predicted by original EAM for Pd923–Pd2075 clusters, while for the larger clusters both cub and ico are stable up to the melting point. As detected by \(G(r)\) and CNA, moderate and large cub clusters were showing surface melting by nucleation of the liquid phase at (100) planes and growth of liquid phase at the surface before inward growth. While diagonal (one corner to another) melting was dominating over ico clusters owing to their partitioned structure, which retarded the growth of the liquid phase. The large ico clusters, using optimized EAM, presented a combination of surface and diagonal melting due to the simultaneous diagonal melting started from different corners. Finally, the melting temperature as well as latent heat of fusion were calculated and compared with the available models and previous studies, which showed, unlike the present result, the models failed to predict size-dependent motif cross-over.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
version 14 Apr 2013 available at http://​lammps.​sandia.​gov
 
2
Version 2.7.1 available at http://​ovito.​org/​
 
Literatur
Zurück zum Zitat Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. The J Phys Chem A 110(4):1518–1523CrossRef Alavi S, Thompson DL (2006) Molecular dynamics simulations of the melting of aluminum nanoparticles. The J Phys Chem A 110(4):1518–1523CrossRef
Zurück zum Zitat Alemany MMG, Diéguez O, Rey C, Gallego LJ (1999) Molecular-dynamics study of the dynamic properties of fcc transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method. Physical Review B: Condensed Matter 60(13):9208–9211. https://doi.org/10.1103/PhysRevB.60.9208 CrossRef Alemany MMG, Diéguez O, Rey C, Gallego LJ (1999) Molecular-dynamics study of the dynamic properties of fcc transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method. Physical Review B: Condensed Matter 60(13):9208–9211. https://​doi.​org/​10.​1103/​PhysRevB.​60.​9208 CrossRef
Zurück zum Zitat Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford university press, Oxford Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford university press, Oxford
Zurück zum Zitat Ashcroft NW, Mermin ND (1976) Solid state physics holt. Rinehart and Winston, New York Ashcroft NW, Mermin ND (1976) Solid state physics holt. Rinehart and Winston, New York
Zurück zum Zitat Attarian Shandiz M, Safaei A (2008) Melting entropy and enthalpy of metallic nanoparticles. Mater Lett 62(24):3954–3956CrossRef Attarian Shandiz M, Safaei A (2008) Melting entropy and enthalpy of metallic nanoparticles. Mater Lett 62(24):3954–3956CrossRef
Zurück zum Zitat Baletto F, Mottet C, Ferrando R (2000) Reentrant morphology transition in the growth of free silver nanoclusters. Phys Rev Lett 84(24):5544CrossRef Baletto F, Mottet C, Ferrando R (2000) Reentrant morphology transition in the growth of free silver nanoclusters. Phys Rev Lett 84(24):5544CrossRef
Zurück zum Zitat Baletto F, Mottet C, Ferrando R (2001) Microscopic mechanisms of the growth of metastable silver icosahedra. Phys Rev B 63(15):155,408CrossRef Baletto F, Mottet C, Ferrando R (2001) Microscopic mechanisms of the growth of metastable silver icosahedra. Phys Rev B 63(15):155,408CrossRef
Zurück zum Zitat Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. The J Chem Phys 116(9):3856–3863CrossRef Baletto F, Ferrando R, Fortunelli A, Montalenti F, Mottet C (2002) Crossover among structural motifs in transition and noble-metal clusters. The J Chem Phys 116(9):3856–3863CrossRef
Zurück zum Zitat Bertoldi DS, Millán EN, Guillermet AF (2017) Thermodynamics of the melting process in au nano-clusters: phenomenology, energy, entropy and quasi-chemical modeling. J Phys Chem Solids 111:286–293CrossRef Bertoldi DS, Millán EN, Guillermet AF (2017) Thermodynamics of the melting process in au nano-clusters: phenomenology, energy, entropy and quasi-chemical modeling. J Phys Chem Solids 111:286–293CrossRef
Zurück zum Zitat Chen T, Zhang Y, Xu W (2016) Size-dependent catalytic kinetics and dynamics of Pd nanocubes: a single-particle study. Phys Chem Chem Phys 18(32):22,494–22,502CrossRef Chen T, Zhang Y, Xu W (2016) Size-dependent catalytic kinetics and dynamics of Pd nanocubes: a single-particle study. Phys Chem Chem Phys 18(32):22,494–22,502CrossRef
Zurück zum Zitat Dinsdale AT (1991) SGTE Data for pure elements. Calphad 15(4):317–425CrossRef Dinsdale AT (1991) SGTE Data for pure elements. Calphad 15(4):317–425CrossRef
Zurück zum Zitat Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3d computer graphics. Comput Mater Sci 2(2):279–286CrossRef Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3d computer graphics. Comput Mater Sci 2(2):279–286CrossRef
Zurück zum Zitat Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983CrossRef Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983CrossRef
Zurück zum Zitat Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256(5062):1425–1427CrossRef Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256(5062):1425–1427CrossRef
Zurück zum Zitat Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Clarendon Press, Oxford
Zurück zum Zitat Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. The J Chem Phys 111(5):2176–2180CrossRef Jiang Q, Shi HX, Zhao M (1999) Melting thermodynamics of organic nanocrystals. The J Chem Phys 111(5):2176–2180CrossRef
Zurück zum Zitat Jiang Q, Yang CC, Li JC (2002) Melting enthalpy depression of nanocrystals. Mater Lett 56 (6):1019–1021CrossRef Jiang Q, Yang CC, Li JC (2002) Melting enthalpy depression of nanocrystals. Mater Lett 56 (6):1019–1021CrossRef
Zurück zum Zitat José-Yacamán M, Marín-Almazo M, Ascencio JA (2001) High resolution TEM studies on palladium nanoparticles. J Mol Catal A Chem 173(1):61–74CrossRef José-Yacamán M, Marín-Almazo M, Ascencio JA (2001) High resolution TEM studies on palladium nanoparticles. J Mol Catal A Chem 173(1):61–74CrossRef
Zurück zum Zitat Kateb M, Dehghani K (2012) Comparison of fracture behavior of sharp with blunt crack tip in nanocrystalline materials by molecular dynamics simulation. Int J Mod Phys: Conference Series 5:410–417 Kateb M, Dehghani K (2012) Comparison of fracture behavior of sharp with blunt crack tip in nanocrystalline materials by molecular dynamics simulation. Int J Mod Phys: Conference Series 5:410–417
Zurück zum Zitat Kraftmakher YA (1986) Equilibrium concentration of vacancies in metals. In: Seeger A, Schumacher D, Schilling W, Diehl J (eds) Vacancies and interstitials in metals: international conference proceeding, North Holland, Amsterdam, pp 59, held in jülich, Germany September pp 23-28 Kraftmakher YA (1986) Equilibrium concentration of vacancies in metals. In: Seeger A, Schumacher D, Schilling W, Diehl J (eds) Vacancies and interstitials in metals: international conference proceeding, North Holland, Amsterdam, pp 59, held in jülich, Germany September pp 23-28
Zurück zum Zitat Lee YJ, Lee EK, Kim S, Nieminen RM (2001) Effect of potential energy distribution on the melting of clusters. Phys Rev Lett 86(6):999CrossRef Lee YJ, Lee EK, Kim S, Nieminen RM (2001) Effect of potential energy distribution on the melting of clusters. Phys Rev Lett 86(6):999CrossRef
Zurück zum Zitat Liang T, Zhou D, Wu Z, Shi P (2017) Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study. Nanotechnology 28(48):485,704CrossRef Liang T, Zhou D, Wu Z, Shi P (2017) Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study. Nanotechnology 28(48):485,704CrossRef
Zurück zum Zitat Lindemann FA (1910) The calculation of molecular vibration frequencies. Physikalische Zeitschrift 11:609–612 Lindemann FA (1910) The calculation of molecular vibration frequencies. Physikalische Zeitschrift 11:609–612
Zurück zum Zitat Miao L, Bhethanabotla VR, Joseph B (2005) Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation. Phys Rev B 72(13):134,109CrossRef Miao L, Bhethanabotla VR, Joseph B (2005) Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation. Phys Rev B 72(13):134,109CrossRef
Zurück zum Zitat Pan Y, Huang S, Liu Z, Wang W (2005) Molecular dynamics simulation of shell-symmetric Pd nanoclusters. Mol Simul 31(14-15):1057–1061CrossRef Pan Y, Huang S, Liu Z, Wang W (2005) Molecular dynamics simulation of shell-symmetric Pd nanoclusters. Mol Simul 31(14-15):1057–1061CrossRef
Zurück zum Zitat Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117 (1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117 (1):1–19CrossRef
Zurück zum Zitat Plimpton SJ, Thompson AP (2012) Computational aspects of many-body potentials. MRS Bull 37(5):513–521CrossRef Plimpton SJ, Thompson AP (2012) Computational aspects of many-body potentials. MRS Bull 37(5):513–521CrossRef
Zurück zum Zitat Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, New Jersey Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. Wiley, New Jersey
Zurück zum Zitat Qi W (2016) Nanoscopic thermodynamics. Acc Chem Res 49(9):1587–1595CrossRef Qi W (2016) Nanoscopic thermodynamics. Acc Chem Res 49(9):1587–1595CrossRef
Zurück zum Zitat Qi Y, Çagin T, Johnson WL, Goddard WA III (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. The J Chem Phys 115(1):385–394CrossRef Qi Y, Çagin T, Johnson WL, Goddard WA III (2001) Melting and crystallization in Ni nanoclusters: the mesoscale regime. The J Chem Phys 115(1):385–394CrossRef
Zurück zum Zitat Rangel E, Sansores E, Vallejo E, Hernández-Hernández A, López-Pérez P (2016) Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Phys Chem Chem Phys 18(48):33, 158–33,170CrossRef Rangel E, Sansores E, Vallejo E, Hernández-Hernández A, López-Pérez P (2016) Study of the interplay between N-graphene defects and small Pd clusters for enhanced hydrogen storage via a spill-over mechanism. Phys Chem Chem Phys 18(48):33, 158–33,170CrossRef
Zurück zum Zitat Rao CN, Rao KK (1964) Effect of temperature on the lattice parameters of some silver-palladium alloys. Can J Phys 42(7):1336–1342CrossRef Rao CN, Rao KK (1964) Effect of temperature on the lattice parameters of some silver-palladium alloys. Can J Phys 42(7):1336–1342CrossRef
Zurück zum Zitat Rossi G, Ferrando R (2007) Freezing of gold nanoclusters into poly-decahedral structures. Nanotechnology 18(22):225,706CrossRef Rossi G, Ferrando R (2007) Freezing of gold nanoclusters into poly-decahedral structures. Nanotechnology 18(22):225,706CrossRef
Zurück zum Zitat Safaei A (2010) The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals. J Nanoparticle Res 12(3):759–776CrossRef Safaei A (2010) The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals. J Nanoparticle Res 12(3):759–776CrossRef
Zurück zum Zitat Schebarchov D, Hendy S (2006) Solid-liquid phase coexistence and structural transitions in palladium clusters. Physical Review B 73(12):121,402CrossRef Schebarchov D, Hendy S (2006) Solid-liquid phase coexistence and structural transitions in palladium clusters. Physical Review B 73(12):121,402CrossRef
Zurück zum Zitat Schmidt M, Kusche R, von Issendorff B, Haberland H (1998) Irregular variations in the melting point of size-selected atomic clusters. Nature 393(6682):238–240CrossRef Schmidt M, Kusche R, von Issendorff B, Haberland H (1998) Irregular variations in the melting point of size-selected atomic clusters. Nature 393(6682):238–240CrossRef
Zurück zum Zitat Shim JH, Lee BJ, Cho YW (2002) Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf Sci 512(3):262–268CrossRef Shim JH, Lee BJ, Cho YW (2002) Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf Sci 512(3):262–268CrossRef
Zurück zum Zitat Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28(2):784CrossRef Steinhardt PJ, Nelson DR, Ronchetti M (1983) Bond-orientational order in liquids and glasses. Phys Rev B 28(2):784CrossRef
Zurück zum Zitat Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015,012CrossRef Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1):015,012CrossRef
Zurück zum Zitat Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177(6):518–523CrossRef Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177(6):518–523CrossRef
Zurück zum Zitat Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62(1):267–276CrossRef Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62(1):267–276CrossRef
Zurück zum Zitat Vanselow R, Howe RF (1988) Chemistry and physics of solid surfaces VII, vol 10. Springer, BerlinCrossRef Vanselow R, Howe RF (1988) Chemistry and physics of solid surfaces VII, vol 10. Springer, BerlinCrossRef
Zurück zum Zitat Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-Jones molecules. Phys Rev 159(1):98CrossRef Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-Jones molecules. Phys Rev 159(1):98CrossRef
Zurück zum Zitat Wang W, Xu J, Zhao Y, Qi G, Wang Q, Wang C, Li J, Deng F (2017) Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization. Phys Chem Chem Phys 19(14):9349–9353CrossRef Wang W, Xu J, Zhao Y, Qi G, Wang Q, Wang C, Li J, Deng F (2017) Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization. Phys Chem Chem Phys 19(14):9349–9353CrossRef
Zurück zum Zitat Waseda Y (1980) The structure of non-crystalline materials: liquids and amorphous solids. McGraw-Hill International Book Co., New York Waseda Y (1980) The structure of non-crystalline materials: liquids and amorphous solids. McGraw-Hill International Book Co., New York
Zurück zum Zitat Westergren J, Nordholm S (2003) Melting of palladium clusters–density of states determination by Monte Carlo simulation. Chem Phys 290(2):189–209CrossRef Westergren J, Nordholm S (2003) Melting of palladium clusters–density of states determination by Monte Carlo simulation. Chem Phys 290(2):189–209CrossRef
Zurück zum Zitat Zhang H, Douglas JF (2013) Glassy interfacial dynamics of Ni nanoparticles: part I colored noise, dynamic heterogeneity and collective atomic motion. Soft matter 9(4):1254–1265CrossRef Zhang H, Douglas JF (2013) Glassy interfacial dynamics of Ni nanoparticles: part I colored noise, dynamic heterogeneity and collective atomic motion. Soft matter 9(4):1254–1265CrossRef
Zurück zum Zitat Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62(15): 10,548CrossRef Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62(15): 10,548CrossRef
Zurück zum Zitat Zhang Y, Wen YH, Zhu ZZ, Sun SG (2010) Structure and stability of fe nanocrystals: an atomistic study. The J Phys Chem C 114(44):18,841–18,846CrossRef Zhang Y, Wen YH, Zhu ZZ, Sun SG (2010) Structure and stability of fe nanocrystals: an atomistic study. The J Phys Chem C 114(44):18,841–18,846CrossRef
Zurück zum Zitat Zhao SJ, Wang SQ, Cheng DY, Ye HQ (2001) Three distinctive melting mechanisms in isolated nanoparticles. The J Phys Chem B 105(51):12,857–12,860CrossRef Zhao SJ, Wang SQ, Cheng DY, Ye HQ (2001) Three distinctive melting mechanisms in isolated nanoparticles. The J Phys Chem B 105(51):12,857–12,860CrossRef
Metadaten
Titel
Size and shape-dependent melting mechanism of Pd nanoparticles
verfasst von
Movaffaq Kateb
Maryam Azadeh
Pirooz Marashi
Snorri Ingvarsson
Publikationsdatum
01.09.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 9/2018
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-018-4355-7

Weitere Artikel der Ausgabe 9/2018

Journal of Nanoparticle Research 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.