Skip to main content
Erschienen in: Journal of Materials Science 13/2019

10.04.2019 | Polymers

Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin

verfasst von: Zhonghao Xing, Wen Sun, Lida Wang, Zhengqing Yang, Suilin Wang, Guichang Liu

Erschienen in: Journal of Materials Science | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphite nanoplatelets (GNPs) are outstanding thermal conductive fillers due to their unique crystal structure which consists of layered graphene formed by sp2-hybridized carbon atoms, but their preparation process is time-consuming. Herein, a high-efficiency and low-cost method is developed to prepare GNPs with controlled size without destroying their crystal structure. GNPs with an average size around 20 μm are obtained by a facile nitric acid treatment within 0.5 h, and 1–5 μm GNPs are produced by controlling ultrasonic time within 6 h in cheap commercial detergent. In addition, thermal network is fabricated by combining ~ 20 μm GNPs with 1–5 μm GNPs in epoxy. The existing researches have qualitatively demonstrated that hybrid carbon fillers with obvious size differences can enhance the thermal conductivity of epoxy through size synergistic effects, but rare quantitative studies pay attention to optimize size synergistic effects. This work demonstrates that different degrees of size synergistic effects can be achieved by tuning the size of small-sized GNPs, the proportion of different sized GNPs and the content of hybrid fillers. The results show that when the hybrid filler loading is 20 wt% and the ratio of ~ 20 μm GNPs to 1.82 μm GNPs is 17:3, the composite produces the optimal size synergistic effect and thermal conductivity reaches 1.33 W/m K, increased by 739% over neat epoxy. This composite has promising application in the thermal management areas due to its high thermal conductivity and economic competitiveness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11CrossRef Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11CrossRef
2.
Zurück zum Zitat Jiang T, Kuila T, Kim NH, Ku BC, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125CrossRef Jiang T, Kuila T, Kim NH, Ku BC, Lee JH (2013) Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites. Compos Sci Technol 79:115–125CrossRef
3.
Zurück zum Zitat Gu JW, Yang XT, Lv ZY, Li N, Liang CB, Zhang QY (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22CrossRef Gu JW, Yang XT, Lv ZY, Li N, Liang CB, Zhang QY (2016) Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 92:15–22CrossRef
4.
Zurück zum Zitat Guo SM, Ma LC, Song GJ, Li XR, Li PY, Wang MY, Shi LL, Gu Z, Huang YD (2018) Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J Mater Sci 53(24):16318–16330. https://doi.org/10.1007/s10853-018-2788-0 CrossRef Guo SM, Ma LC, Song GJ, Li XR, Li PY, Wang MY, Shi LL, Gu Z, Huang YD (2018) Covalent grafting of triazine derivatives onto graphene oxide for preparation of epoxy composites with improved interfacial and mechanical properties. J Mater Sci 53(24):16318–16330. https://​doi.​org/​10.​1007/​s10853-018-2788-0 CrossRef
6.
Zurück zum Zitat Cho JC, Lee HY, Lim ST, Park MS, Oh YS, Cho MS, Lee YK (2010) Composition-dependent curing behavior and peel strength of epoxy resins for printed circuit boards (PCBs). Macromol Res 18(1):47–52CrossRef Cho JC, Lee HY, Lim ST, Park MS, Oh YS, Cho MS, Lee YK (2010) Composition-dependent curing behavior and peel strength of epoxy resins for printed circuit boards (PCBs). Macromol Res 18(1):47–52CrossRef
7.
Zurück zum Zitat Mu ML, Wan CY, McNally T (2017) Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Mater 4(4):042001CrossRef Mu ML, Wan CY, McNally T (2017) Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Mater 4(4):042001CrossRef
8.
Zurück zum Zitat Sun YF, Tang B, Huang WQ, Wang SL, Wang ZW, Wang XB, Zhu YJ, Tao CB (2016) Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Appl Therm Eng 103:892–900CrossRef Sun YF, Tang B, Huang WQ, Wang SL, Wang ZW, Wang XB, Zhu YJ, Tao CB (2016) Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Appl Therm Eng 103:892–900CrossRef
9.
Zurück zum Zitat Chen HY, Ginzburg VV, Yang J, Yang YF, Liu W, Huang Y, Du LB, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen HY, Ginzburg VV, Yang J, Yang YF, Liu W, Huang Y, Du LB, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
10.
Zurück zum Zitat Sadeghi E, Hsieh S, Bahrami M (2011) Thermal conductivity and contact resistance of metal foams. J Phys D Appl Phys 44(12):125406CrossRef Sadeghi E, Hsieh S, Bahrami M (2011) Thermal conductivity and contact resistance of metal foams. J Phys D Appl Phys 44(12):125406CrossRef
11.
Zurück zum Zitat Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams’ impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:94–105CrossRef Xiao X, Zhang P, Li M (2014) Effective thermal conductivity of open-cell metal foams’ impregnated with pure paraffin for latent heat storage. Int J Therm Sci 81:94–105CrossRef
14.
Zurück zum Zitat Cao JP, Zhao X, Zhao J, Zha JW, Hu GH, Dang ZM (2013) Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces 5(15):6915–6924CrossRef Cao JP, Zhao X, Zhao J, Zha JW, Hu GH, Dang ZM (2013) Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces 5(15):6915–6924CrossRef
15.
Zurück zum Zitat Leong CK, Aoyagi Y, Chung DDL (2006) Carbon black pastes as coatings for improving thermal gap-filling materials. Carbon 44(3):435–440CrossRef Leong CK, Aoyagi Y, Chung DDL (2006) Carbon black pastes as coatings for improving thermal gap-filling materials. Carbon 44(3):435–440CrossRef
16.
Zurück zum Zitat Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRef Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRef
17.
Zurück zum Zitat Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MKM, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stabil 110:137–148CrossRef Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MKM, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stabil 110:137–148CrossRef
18.
Zurück zum Zitat Eksik O, Bartolucci SF, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N (2016) A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon 101:239–244CrossRef Eksik O, Bartolucci SF, Gupta T, Fard H, Borca-Tasciuc T, Koratkar N (2016) A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core–shell additives. Carbon 101:239–244CrossRef
20.
Zurück zum Zitat Zhang Y, Heo YJ, Son YR, In I, An KH, Kim BJ, Park SJ (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460CrossRef Zhang Y, Heo YJ, Son YR, In I, An KH, Kim BJ, Park SJ (2019) Recent advanced thermal interfacial materials: a review of conducting mechanisms and parameters of carbon materials. Carbon 142:445–460CrossRef
21.
Zurück zum Zitat Chen GH, Wu CL, Weng WG, Wu DJ, Yan WL (2003) Preparation of polystyrene/graphite nanosheet composite. Polymer 44(6):1781–1784CrossRef Chen GH, Wu CL, Weng WG, Wu DJ, Yan WL (2003) Preparation of polystyrene/graphite nanosheet composite. Polymer 44(6):1781–1784CrossRef
22.
Zurück zum Zitat Quan H, Zhang BQ, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part A Appl S 40(9):1506–1513CrossRef Quan H, Zhang BQ, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos Part A Appl S 40(9):1506–1513CrossRef
23.
Zurück zum Zitat Zhou SX, Xu JZ, Yang QH, Chiang SW, Li BH, Du HD, Xu CJ, Kang FY (2013) Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 57:452–459CrossRef Zhou SX, Xu JZ, Yang QH, Chiang SW, Li BH, Du HD, Xu CJ, Kang FY (2013) Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 57:452–459CrossRef
24.
Zurück zum Zitat Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569CrossRef Yu AP, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569CrossRef
25.
Zurück zum Zitat Wang H, Wang SK, Lu WB, Li M, Gu YZ, Zhang YY, Zhang ZG (2018) Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification. Appl Surf Sci 442:170–177CrossRef Wang H, Wang SK, Lu WB, Li M, Gu YZ, Zhang YY, Zhang ZG (2018) Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification. Appl Surf Sci 442:170–177CrossRef
26.
Zurück zum Zitat Chen HY, Chen MH, Di JT, Xu G, Li HB, Li QW (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116(6):3903–3909CrossRef Chen HY, Chen MH, Di JT, Xu G, Li HB, Li QW (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116(6):3903–3909CrossRef
27.
Zurück zum Zitat Sagalianov I, Vovchenko L, Matzui L, Lazarenko O (2017) Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Nanoscale Res Lett 12:140CrossRef Sagalianov I, Vovchenko L, Matzui L, Lazarenko O (2017) Synergistic enhancement of the percolation threshold in hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Nanoscale Res Lett 12:140CrossRef
29.
Zurück zum Zitat Wu K, Xue Y, Yang WX, Chai SG, Chen F, Fu Q (2016) Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite—multi-wall carbon nanotubes ternary composites. Compos Sci Technol 130:28–35CrossRef Wu K, Xue Y, Yang WX, Chai SG, Chen F, Fu Q (2016) Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite—multi-wall carbon nanotubes ternary composites. Compos Sci Technol 130:28–35CrossRef
30.
Zurück zum Zitat Kang WS, Rhee KY, Park SJ (2016) Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites. Compos Part B Eng 94:238–244CrossRef Kang WS, Rhee KY, Park SJ (2016) Thermal, impact and toughness behaviors of expanded graphite/graphite oxide-filled epoxy composites. Compos Part B Eng 94:238–244CrossRef
31.
Zurück zum Zitat Zhang F, Li QY, Liu YJ, Zhang SJ, Wu CF, Guo WH (2016) Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim 123(1):431–437CrossRef Zhang F, Li QY, Liu YJ, Zhang SJ, Wu CF, Guo WH (2016) Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers. J Therm Anal Calorim 123(1):431–437CrossRef
32.
Zurück zum Zitat Mahanta NK, Loos MR, Zlocozower IM, Abramson AR (2015) Graphite-graphene hybrid filler system for high thermal conductivity of epoxy composites. J Mater Res 30(7):959–966CrossRef Mahanta NK, Loos MR, Zlocozower IM, Abramson AR (2015) Graphite-graphene hybrid filler system for high thermal conductivity of epoxy composites. J Mater Res 30(7):959–966CrossRef
33.
Zurück zum Zitat Xiang JL, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49(3):773–778CrossRef Xiang JL, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49(3):773–778CrossRef
34.
Zurück zum Zitat Li SS, Qi SH, Liu NL, Cao P, Zhang Y (2012) Preparation and thermal conductivity of novolac/Ni/graphite nanosheet composites. J Appl Polym Sci 124(5):4403–4408CrossRef Li SS, Qi SH, Liu NL, Cao P, Zhang Y (2012) Preparation and thermal conductivity of novolac/Ni/graphite nanosheet composites. J Appl Polym Sci 124(5):4403–4408CrossRef
35.
Zurück zum Zitat Mo ZL, Shi HF, Chen H, Niu GP, Zhao ZL, Wu YB (2009) Synthesis of graphite nanosheets/polyaniline nanorods composites with ultrasonic and conductivity. J Appl Polym Sci 112(2):573–578CrossRef Mo ZL, Shi HF, Chen H, Niu GP, Zhao ZL, Wu YB (2009) Synthesis of graphite nanosheets/polyaniline nanorods composites with ultrasonic and conductivity. J Appl Polym Sci 112(2):573–578CrossRef
36.
Zurück zum Zitat Yue XQ, Wang H, Wang SY, Zhang FC, Zhang RJ (2010) In-plane defects produced by ball-milling of expanded graphite. J Alloys Compd 505(1):286–290CrossRef Yue XQ, Wang H, Wang SY, Zhang FC, Zhang RJ (2010) In-plane defects produced by ball-milling of expanded graphite. J Alloys Compd 505(1):286–290CrossRef
37.
Zurück zum Zitat Li X, Xia JF, Li X, Shen YB, Hu TX, Ye DW, Jiang DY, Li Q (2018) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene synthesized by ball milling. Chem Lett 47(6):797–799CrossRef Li X, Xia JF, Li X, Shen YB, Hu TX, Ye DW, Jiang DY, Li Q (2018) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene synthesized by ball milling. Chem Lett 47(6):797–799CrossRef
38.
Zurück zum Zitat Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Compos Part A Appl Sci Manuf 38(7):1675–1682CrossRef Kalaitzidou K, Fukushima H, Drzal LT (2007) Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Compos Part A Appl Sci Manuf 38(7):1675–1682CrossRef
39.
Zurück zum Zitat Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398CrossRef Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398CrossRef
40.
Zurück zum Zitat Shang BF, Wu RK, Hu JY, Hu R, Luo XB (2018) Non-monotonously tuning thermal conductivity of graphite-nanosheets/paraffin composite by ultrasonic exfoliation. Int J Therm Sci 131:20–26CrossRef Shang BF, Wu RK, Hu JY, Hu R, Luo XB (2018) Non-monotonously tuning thermal conductivity of graphite-nanosheets/paraffin composite by ultrasonic exfoliation. Int J Therm Sci 131:20–26CrossRef
41.
Zurück zum Zitat Chen GH, Weng WG, Wu DJ, Wu CL, Lu JR, Wang PP, Chen XF (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42(4):753–759CrossRef Chen GH, Weng WG, Wu DJ, Wu CL, Lu JR, Wang PP, Chen XF (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42(4):753–759CrossRef
42.
Zurück zum Zitat Zhang J, Song XH, Ma S, Wang X, Wang WC, Chen ZD (2017) A novel sodium dodecyl benzene sulfonate modified expanded graphite paste electrode for sensitive and selective determination of dopamine in the presence of ascorbic acid and uric acid. J Electroanal Chem 795:10–16CrossRef Zhang J, Song XH, Ma S, Wang X, Wang WC, Chen ZD (2017) A novel sodium dodecyl benzene sulfonate modified expanded graphite paste electrode for sensitive and selective determination of dopamine in the presence of ascorbic acid and uric acid. J Electroanal Chem 795:10–16CrossRef
43.
Zurück zum Zitat Yu YS, Xu CG, Li XS (2018) Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate. J Ind Eng Chem 59:64–69CrossRef Yu YS, Xu CG, Li XS (2018) Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate. J Ind Eng Chem 59:64–69CrossRef
44.
Zurück zum Zitat Zhou SH, Wei DL, Shi HY, Feng X, Xue KW, Zhang F, Song WB (2013) Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application. Talanta 107:349–355CrossRef Zhou SH, Wei DL, Shi HY, Feng X, Xue KW, Zhang F, Song WB (2013) Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal/oxide nanocomposites for sensing application. Talanta 107:349–355CrossRef
45.
Zurück zum Zitat Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
46.
Zurück zum Zitat Tang B, Hu GX, Gao HY (2010) Raman spectroscopic characterization of graphene. Appl Spectrosc Rev 45(5):369–407CrossRef Tang B, Hu GX, Gao HY (2010) Raman spectroscopic characterization of graphene. Appl Spectrosc Rev 45(5):369–407CrossRef
47.
Zurück zum Zitat Mhike W, Focke WW, Mackenzie J, Mills EJ, Badenhorst H (2018) Stearyl alcohol/palm triple pressed acid-graphite nanocomposites as phase change materials. Thermochim Acta 663:77–84CrossRef Mhike W, Focke WW, Mackenzie J, Mills EJ, Badenhorst H (2018) Stearyl alcohol/palm triple pressed acid-graphite nanocomposites as phase change materials. Thermochim Acta 663:77–84CrossRef
48.
Zurück zum Zitat Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246CrossRef Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246CrossRef
49.
Zurück zum Zitat Huang T, Zeng XL, Yao YM, Sun R, Meng FL, Xu JB, Wong CP (2017) A novel h-BN-RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density. RSC Adv 7(38):23355–23362CrossRef Huang T, Zeng XL, Yao YM, Sun R, Meng FL, Xu JB, Wong CP (2017) A novel h-BN-RGO hybrids for epoxy resin composites achieving enhanced high thermal conductivity and energy density. RSC Adv 7(38):23355–23362CrossRef
50.
Zurück zum Zitat Wang ZP, Shoji M, Baba K, Ito T, Ogata H (2014) Microwave plasma-assisted regeneration of carbon nanosheets with bi- and trilayer of graphene and their application to photovoltaic cells. Carbon 67:326–335CrossRef Wang ZP, Shoji M, Baba K, Ito T, Ogata H (2014) Microwave plasma-assisted regeneration of carbon nanosheets with bi- and trilayer of graphene and their application to photovoltaic cells. Carbon 67:326–335CrossRef
51.
Zurück zum Zitat Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330CrossRef Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330CrossRef
52.
Zurück zum Zitat He JH, Wan YQ, Xu L (2007) Nano-effects, quantum-like properties in electrospun nanofibers. Chaos Solitons Fractals 33(1):26–37CrossRef He JH, Wan YQ, Xu L (2007) Nano-effects, quantum-like properties in electrospun nanofibers. Chaos Solitons Fractals 33(1):26–37CrossRef
53.
Zurück zum Zitat Bae YH, Yu MJ, Vu MC, Choi WK, Kim SR (2018) Synergistic effects of segregated network by polymethylmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Compos Sci Technol 155:144–150CrossRef Bae YH, Yu MJ, Vu MC, Choi WK, Kim SR (2018) Synergistic effects of segregated network by polymethylmethacrylate beads and sintering of copper nanoparticles on thermal and electrical properties of epoxy composites. Compos Sci Technol 155:144–150CrossRef
54.
Zurück zum Zitat Pei QX, Zhang YW, Sha ZD, Shenoy VB (2012) Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 100(10):101901CrossRef Pei QX, Zhang YW, Sha ZD, Shenoy VB (2012) Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 100(10):101901CrossRef
55.
Zurück zum Zitat Zhang YH, Choi JR, Park SJ (2018) Interlayer polymerization in amine-terminated macromolecular chain grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos Part A Appl Sci manuf 109:498–506CrossRef Zhang YH, Choi JR, Park SJ (2018) Interlayer polymerization in amine-terminated macromolecular chain grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos Part A Appl Sci manuf 109:498–506CrossRef
56.
Zurück zum Zitat Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, Alehashem MS, Dahari M, Kazi SN (2016) Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf 77:15–21CrossRef Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, Alehashem MS, Dahari M, Kazi SN (2016) Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf 77:15–21CrossRef
Metadaten
Titel
Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin
verfasst von
Zhonghao Xing
Wen Sun
Lida Wang
Zhengqing Yang
Suilin Wang
Guichang Liu
Publikationsdatum
10.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03525-5

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science 13/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.