Skip to main content
Erschienen in: Journal of Nanoparticle Research 2/2013

01.02.2013 | Research Paper

Size dependence study of the ordering temperature in the Fast Monte Carlo method

verfasst von: E. A. Velásquez, J. Mazo-Zuluaga, J. Mejía-López

Erschienen in: Journal of Nanoparticle Research | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the framework of the Fast Monte Carlo approach, we study the diameter dependence of the ordering temperature in magnetic nanostructures of cylindrical shape. For the purposes of this study, Fe cylindrical-shaped samples of different sizes (20 nm height, 30–100 nm in diameter) have been chosen, and their magnetic properties have been computed as functions of the scaled temperature. Two main set of results are concluded: (a) the ordering temperature of nanostructures follows a linear scaling relationship as a function of the scaling factor x, for all the studied sizes. This finding rules out a scaling relation Tc = x T c (where η is a scaling exponent, and Tc and T c are the scaled and true ordering temperatures) that has been proposed in the literature, and suggests that temperature should scale linearly with the scaling factor x. (b) For the nanostructures, there are three different order–disorder magnetic transition modes depending on the system’s size, in very good agreement with previous experimental reports.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albrecht O, Zierold R, Patzig C, Bachmann J, Sturm C, Rheinlnder B, Grundmann M, Grlitz D, Rauschenbach B, Nielsch K (2010) Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys Status Solidi (b) 247(6):1365–1371CrossRef Albrecht O, Zierold R, Patzig C, Bachmann J, Sturm C, Rheinlnder B, Grundmann M, Grlitz D, Rauschenbach B, Nielsch K (2010) Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition. Phys Status Solidi (b) 247(6):1365–1371CrossRef
Zurück zum Zitat Allende S, Altbir D, Nielsch K (2009) Magnetic cylindrical nanowires with single modulated diameter. Phys Rev B 80(17):174402CrossRef Allende S, Altbir D, Nielsch K (2009) Magnetic cylindrical nanowires with single modulated diameter. Phys Rev B 80(17):174402CrossRef
Zurück zum Zitat Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2008) Angular dependence of the transverse and vortex modesin magnetic nanotubes. Eur Phys J B 66(1):37–40CrossRef Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2008) Angular dependence of the transverse and vortex modesin magnetic nanotubes. Eur Phys J B 66(1):37–40CrossRef
Zurück zum Zitat Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2009) Asymmetric hysteresis loop in magnetostatic-biased multilayer nanowires. Nanotechnology 20(44):445707CrossRef Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2009) Asymmetric hysteresis loop in magnetostatic-biased multilayer nanowires. Nanotechnology 20(44):445707CrossRef
Zurück zum Zitat Bahiana M, Amaral F, Allende S, Altbir D (2006) Reversal modes in arrays of interacting magnetic Ni nanowires: Monte Carlo simulations and scaling technique. Phys Rev B 74(17):174412CrossRef Bahiana M, Amaral F, Allende S, Altbir D (2006) Reversal modes in arrays of interacting magnetic Ni nanowires: Monte Carlo simulations and scaling technique. Phys Rev B 74(17):174412CrossRef
Zurück zum Zitat Binder K (1997) Applications of Monte Carlo methods to statistical physics. Rep Prog Phys 60(5):487–559CrossRef Binder K (1997) Applications of Monte Carlo methods to statistical physics. Rep Prog Phys 60(5):487–559CrossRef
Zurück zum Zitat Chapman J, Aitchison P, Kirk K, McVitie S, Kools J, Gillies M (1998) Direct observation of magnetization reversal processes in micron-sized elements of spin-valve material. J Appl Phys 83(10):5321–5325CrossRef Chapman J, Aitchison P, Kirk K, McVitie S, Kools J, Gillies M (1998) Direct observation of magnetization reversal processes in micron-sized elements of spin-valve material. J Appl Phys 83(10):5321–5325CrossRef
Zurück zum Zitat Choe S-B, Acremann Y, Scholl A, Bauer A, Doran A, Sthr J, Padmore HA (2004) Vortex core-driven magnetization dynamics. Science 304(5669):420–422CrossRef Choe S-B, Acremann Y, Scholl A, Bauer A, Doran A, Sthr J, Padmore HA (2004) Vortex core-driven magnetization dynamics. Science 304(5669):420–422CrossRef
Zurück zum Zitat d’Albuquerquee Castro J, Altbir D, Retamal J, Vargas P (2002) Scaling approach to the magnetic phase diagram of nanosized systems. Phys Rev Lett 88(23):237202CrossRef d’Albuquerquee Castro J, Altbir D, Retamal J, Vargas P (2002) Scaling approach to the magnetic phase diagram of nanosized systems. Phys Rev Lett 88(23):237202CrossRef
Zurück zum Zitat Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Gruettner C, Ivkov R (2009) Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103 (7 pp) Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, van Lierop J, Gruettner C, Ivkov R (2009) Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103 (7 pp)
Zurück zum Zitat Gapin A, Ye X, Aubuchon J, Chen L, Tang Y, Jin S (2006) CoPt patterned media in anodized aluminum oxide templates. J Appl Phys 99:08G902 (3 pp) Gapin A, Ye X, Aubuchon J, Chen L, Tang Y, Jin S (2006) CoPt patterned media in anodized aluminum oxide templates. J Appl Phys 99:08G902 (3 pp)
Zurück zum Zitat Kittel C (1996) Introduction to solid state physics. Wiley, New York Kittel C (1996) Introduction to solid state physics. Wiley, New York
Zurück zum Zitat Landau DP, Binder K (2000) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge Landau DP, Binder K (2000) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge
Zurück zum Zitat Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90(10):102501CrossRef Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90(10):102501CrossRef
Zurück zum Zitat Landeros P, Suarez OJ, Cuchillo A, Vargas P (2009) Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes. Phys Rev B 79:024404CrossRef Landeros P, Suarez OJ, Cuchillo A, Vargas P (2009) Equilibrium states and vortex domain wall nucleation in ferromagnetic nanotubes. Phys Rev B 79:024404CrossRef
Zurück zum Zitat Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73(22):224444CrossRef Lang XY, Zheng WT, Jiang Q (2006) Size and interface effects on ferromagnetic and antiferromagnetic transition temperatures. Phys Rev B 73(22):224444CrossRef
Zurück zum Zitat Lebib A, Li SP, Natali M, Chen Y (2001) Size and thickness dependencies of magnetization reversal in Co dot arrays. J Appl Phys 89(7):3892CrossRef Lebib A, Li SP, Natali M, Chen Y (2001) Size and thickness dependencies of magnetization reversal in Co dot arrays. J Appl Phys 89(7):3892CrossRef
Zurück zum Zitat Martín JI, Nogués J, Liu K, Vicent JL, Schuller IK (2003) Ordered magnetic nanostructures: fabrication and properties. J Magn Magn Mater 256(1–3):449–501CrossRef Martín JI, Nogués J, Liu K, Vicent JL, Schuller IK (2003) Ordered magnetic nanostructures: fabrication and properties. J Magn Magn Mater 256(1–3):449–501CrossRef
Zurück zum Zitat Mejía-López J, Altbir D, Landeros P, Escrig J, Romero AH, Roshchin IV, Li CP, Fitzsimmons MR, Batlle X, Schuller IK (2010) Development of vortex state in circular magnetic nanodots Theory and experiment. Phys Rev B 81(18):184417CrossRef Mejía-López J, Altbir D, Landeros P, Escrig J, Romero AH, Roshchin IV, Li CP, Fitzsimmons MR, Batlle X, Schuller IK (2010) Development of vortex state in circular magnetic nanodots Theory and experiment. Phys Rev B 81(18):184417CrossRef
Zurück zum Zitat Mejía-López J, Soto P, Altbir D (2005) Asymmetric reversal of the hysteresis loop in exchange-biased nanodots. Phys Rev B 71(10):104422CrossRef Mejía-López J, Soto P, Altbir D (2005) Asymmetric reversal of the hysteresis loop in exchange-biased nanodots. Phys Rev B 71(10):104422CrossRef
Zurück zum Zitat Pal SK, Bahadur D (2010) Shape controlled synthesis of iron cobalt alloy magnetic nanoparticles using soft template method. Mater Lett 64(10):1127–1129CrossRef Pal SK, Bahadur D (2010) Shape controlled synthesis of iron cobalt alloy magnetic nanoparticles using soft template method. Mater Lett 64(10):1127–1129CrossRef
Zurück zum Zitat Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRef Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001CrossRef
Zurück zum Zitat Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194CrossRef Parkin SSP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194CrossRef
Zurück zum Zitat Peng Y, Zhang H, Pan S, Li H (2000) Magnetic properties and magnetization reversal of alpha-Fe nanowires deposited in alumina film. J Appl Phys 87(10):7405–7408CrossRef Peng Y, Zhang H, Pan S, Li H (2000) Magnetic properties and magnetization reversal of alpha-Fe nanowires deposited in alumina film. J Appl Phys 87(10):7405–7408CrossRef
Zurück zum Zitat Rana B, Agrawal M, Pal S, Barman A (2010) Magnetization reversal dynamics in clusters of single domain Ni nanoparticles. J Appl Phys 107:09B513 (3 pp) Rana B, Agrawal M, Pal S, Barman A (2010) Magnetization reversal dynamics in clusters of single domain Ni nanoparticles. J Appl Phys 107:09B513 (3 pp)
Zurück zum Zitat Roshchin IV, Li C-P, Suhl H, Batlle X, Roy S, Sinha SK, Park S, Pynn R, Fitzsimmons MR, Mejía-López J, Altbir D, Romero AH, Schuller IK (2009) Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering. Europhys Lett 86(6):67008CrossRef Roshchin IV, Li C-P, Suhl H, Batlle X, Roy S, Sinha SK, Park S, Pynn R, Fitzsimmons MR, Mejía-López J, Altbir D, Romero AH, Schuller IK (2009) Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering. Europhys Lett 86(6):67008CrossRef
Zurück zum Zitat Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T (2000) Magnetic vortex core observation in circular dots of permalloy. Science 289(5481):930–932CrossRef Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T (2000) Magnetic vortex core observation in circular dots of permalloy. Science 289(5481):930–932CrossRef
Zurück zum Zitat Singh DK, Krotkov R, Tuominen MT (2009) Magnetic transitions in ultra-small nanoscopic magnetic rings: theory and experiments. Phys Rev B 79:184409CrossRef Singh DK, Krotkov R, Tuominen MT (2009) Magnetic transitions in ultra-small nanoscopic magnetic rings: theory and experiments. Phys Rev B 79:184409CrossRef
Zurück zum Zitat Sun L, Searson PC, Chien CL (2000) Finite-size effects in nickel nanowire arrays. Phys Rev B 61(10):R6463–R6466CrossRef Sun L, Searson PC, Chien CL (2000) Finite-size effects in nickel nanowire arrays. Phys Rev B 61(10):R6463–R6466CrossRef
Zurück zum Zitat Vargas P, Altbir D, d’Albuquerque e Castro J (2006) Fast Monte Carlo method for magnetic nanoparticles. Phys Rev B 73(9):092417CrossRef Vargas P, Altbir D, d’Albuquerque e Castro J (2006) Fast Monte Carlo method for magnetic nanoparticles. Phys Rev B 73(9):092417CrossRef
Zurück zum Zitat Zhang W, Haas S (2010) Phase diagram of magnetization reversal processes in nanorings. Phys Rev B 81(6):064433CrossRef Zhang W, Haas S (2010) Phase diagram of magnetization reversal processes in nanorings. Phys Rev B 81(6):064433CrossRef
Zurück zum Zitat Zhang W, Singh R, Bray-Ali N, Haas S (2008) Scaling analysis and application: phase diagram of magnetic nanorings and elliptical nanoparticles. Phys Rev B 77:144428CrossRef Zhang W, Singh R, Bray-Ali N, Haas S (2008) Scaling analysis and application: phase diagram of magnetic nanorings and elliptical nanoparticles. Phys Rev B 77:144428CrossRef
Metadaten
Titel
Size dependence study of the ordering temperature in the Fast Monte Carlo method
verfasst von
E. A. Velásquez
J. Mazo-Zuluaga
J. Mejía-López
Publikationsdatum
01.02.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 2/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1437-4

Weitere Artikel der Ausgabe 2/2013

Journal of Nanoparticle Research 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.