Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Size Effects During Nanoindentation: Molecular Dynamics Simulation

verfasst von : George Z. Voyiadjis, Mohammadreza Yaghoobi

Erschienen in: Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, the molecular dynamics (MD) simulation of nanoindentation experiment is revisited. The MD simulation provides valuable insight into the atomistic process occurring during nanoindentation. First, the simulation details and methodology for MD analysis of nanoindentation are presented. The effects of boundary conditions on the nanoindentation response are studied in more detail. The dislocation evolution patterns are then studied using the information provided by atomistic simulation. Different characteristics of metallic sample during nanoindentation experiment, which have been predicted by theoretical models, are investigated. Next, the nature of size effects in samples with small length scales are studied during nanoindentation. The results indicate that the size effects at small indentation depths cannot be modeled using the forest hardening model, and the source exhaustion mechanism controls the size effects at the initial stages of nanoindentation. The total dislocation length increases by increasing the dislocation density which reduces the material strength according to the exhaustion hardening mechanisms. The dislocation interactions with each other become important as the dislocation content increases. Finally, the effects of grain boundary (GB) on the controlling mechanisms of size effects are studied using molecular dynamics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat A.H. Almasri, G.Z. Voyiadjis, Nano-indentation in FCC metals: experimental study. Acta Mech. 209, 1–9 (2010)CrossRef A.H. Almasri, G.Z. Voyiadjis, Nano-indentation in FCC metals: experimental study. Acta Mech. 209, 1–9 (2010)CrossRef
Zurück zum Zitat R.K.A. Al-Rub, G.Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004)CrossRef R.K.A. Al-Rub, G.Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments. Int. J. Plast. 20, 1139–1182 (2004)CrossRef
Zurück zum Zitat M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)CrossRef M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992)CrossRef
Zurück zum Zitat S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich, Anomalous plastic deformation at surfaces: nanoindentation of gold single crystals. Phys. Rev. B 55, 16057–16060 (1997)CrossRef S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich, Anomalous plastic deformation at surfaces: nanoindentation of gold single crystals. Phys. Rev. B 55, 16057–16060 (1997)CrossRef
Zurück zum Zitat C.F.O. Dahlberg, Y. Saito, M.S. Öztop, J.W. Kysar, Geometrically necessary dislocation density measurements associated with different angles of indentations. Int. J. Plast. 54, 81–95 (2014)CrossRef C.F.O. Dahlberg, Y. Saito, M.S. Öztop, J.W. Kysar, Geometrically necessary dislocation density measurements associated with different angles of indentations. Int. J. Plast. 54, 81–95 (2014)CrossRef
Zurück zum Zitat M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)CrossRef
Zurück zum Zitat E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 57, 559–569 (2009)CrossRef E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer, Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater. 57, 559–569 (2009)CrossRef
Zurück zum Zitat E. Demir, D. Raabe, F. Roters, The mechanical size effect as a mean-field breakdown phenomenon: example of microscale single crystal beam bending. Acta Mater. 58, 1876–1886 (2010)CrossRef E. Demir, D. Raabe, F. Roters, The mechanical size effect as a mean-field breakdown phenomenon: example of microscale single crystal beam bending. Acta Mater. 58, 1876–1886 (2010)CrossRef
Zurück zum Zitat K. Durst, B. Backes, M. Göken, Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr. Mater. 52, 1093–1097 (2005)CrossRef K. Durst, B. Backes, M. Göken, Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr. Mater. 52, 1093–1097 (2005)CrossRef
Zurück zum Zitat J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015)CrossRef J.A. El-Awady, Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015)CrossRef
Zurück zum Zitat J.A. El-Awady, M. Wen, N.M. Ghoniem, The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids 57, 32–50 (2009)CrossRef J.A. El-Awady, M. Wen, N.M. Ghoniem, The role of the weakest-link mechanism in controlling the plasticity of micropillars. J. Mech. Phys. Solids 57, 32–50 (2009)CrossRef
Zurück zum Zitat D. Faken, H. Jonsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994)CrossRef D. Faken, H. Jonsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994)CrossRef
Zurück zum Zitat J.R. Greer, Nano and Cell Mechanics: Fundamentals and Frontiers. Wiley, Chichester, pp 163–190 (2013)CrossRef J.R. Greer, Nano and Cell Mechanics: Fundamentals and Frontiers. Wiley, Chichester, pp 163–190 (2013)CrossRef
Zurück zum Zitat A. Hasnaoui, P.M. Derlet, H. Van Swygenhoven, Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Mater. 52, 2251–2258 (2004)CrossRef A. Hasnaoui, P.M. Derlet, H. Van Swygenhoven, Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Mater. 52, 2251–2258 (2004)CrossRef
Zurück zum Zitat H. Jang, D. Farkas, Interaction of lattice dislocations with a grain boundary during nanoindentation simulation. Mater. Lett. 61, 868–871 (2007)CrossRef H. Jang, D. Farkas, Interaction of lattice dislocations with a grain boundary during nanoindentation simulation. Mater. Lett. 61, 868–871 (2007)CrossRef
Zurück zum Zitat C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)CrossRef C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)CrossRef
Zurück zum Zitat C.C. Koch, I.A. Ovid’ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007)CrossRef C.C. Koch, I.A. Ovid’ko, S. Seal, S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007)CrossRef
Zurück zum Zitat M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, M. Nomura, Modeling of dislocation–grain boundary interactions in FCC metals. J. Nucl. Mater. 323, 281–289 (2003)CrossRef M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, M. Nomura, Modeling of dislocation–grain boundary interactions in FCC metals. J. Nucl. Mater. 323, 281–289 (2003)CrossRef
Zurück zum Zitat O. Kraft, P. Gruber, R. Mönig, D. Weygand, Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010)CrossRef O. Kraft, P. Gruber, R. Mönig, D. Weygand, Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010)CrossRef
Zurück zum Zitat Y. Kulkarni, R.J. Asaroa, D. Farkas, Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scr. Mater. 60, 532–535 (2009)CrossRef Y. Kulkarni, R.J. Asaroa, D. Farkas, Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scr. Mater. 60, 532–535 (2009)CrossRef
Zurück zum Zitat J.W. Kysar, C.L. Briant, Crack tip deformation fields in ductile single crystals. Acta Mater. 50, 2367–2380 (2002)CrossRef J.W. Kysar, C.L. Briant, Crack tip deformation fields in ductile single crystals. Acta Mater. 50, 2367–2380 (2002)CrossRef
Zurück zum Zitat J.W. Kysar, Y.X. Gan, T.L. Morse, X. Chen, M.E. Jones, High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: geometrically necessary dislocation densities. J. Mech. Phys. Solids 55, 1554–1573 (2007)CrossRef J.W. Kysar, Y.X. Gan, T.L. Morse, X. Chen, M.E. Jones, High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: geometrically necessary dislocation densities. J. Mech. Phys. Solids 55, 1554–1573 (2007)CrossRef
Zurück zum Zitat Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, Atomistic simulations of incipient plasticity under Al (111) nanoindentation. Mech. Mater. 37, 1035–1048 (2005)CrossRef Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, Atomistic simulations of incipient plasticity under Al (111) nanoindentation. Mech. Mater. 37, 1035–1048 (2005)CrossRef
Zurück zum Zitat J. Li, K.J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002)CrossRef J. Li, K.J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002)CrossRef
Zurück zum Zitat S.N. Medyanik, S. Shao, Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput. Mater. Sci. 45, 1129–1133 (2009)CrossRef S.N. Medyanik, S. Shao, Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput. Mater. Sci. 45, 1129–1133 (2009)CrossRef
Zurück zum Zitat M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)CrossRef M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)CrossRef
Zurück zum Zitat Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)CrossRef Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999)CrossRef
Zurück zum Zitat A.K. Nair, E. Parker, P. Gaudreau, D. Farkas, R.D. Kriz, Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int. J. Plast. 24, 2016–2031 (2008)CrossRef A.K. Nair, E. Parker, P. Gaudreau, D. Farkas, R.D. Kriz, Size effects in indentation response of thin films at the nanoscale: a molecular dynamics study. Int. J. Plast. 24, 2016–2031 (2008)CrossRef
Zurück zum Zitat W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRef W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRef
Zurück zum Zitat D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, M.J. Mills, Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988–3001 (2008)CrossRef D.M. Norfleet, D.M. Dimiduk, S.J. Polasik, M.D. Uchic, M.J. Mills, Dislocation structures and their relationship to strength in deformed nickel microcrystals. Acta Mater. 56, 2988–3001 (2008)CrossRef
Zurück zum Zitat T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313–316 (2007)CrossRef T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, D.R. Trinkle, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313–316 (2007)CrossRef
Zurück zum Zitat P. Peng, G. Liao, T. Shi, Z. Tang, Y. Gao, Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 256, 6284–6290 (2010)CrossRef P. Peng, G. Liao, T. Shi, Z. Tang, Y. Gao, Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 256, 6284–6290 (2010)CrossRef
Zurück zum Zitat S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef
Zurück zum Zitat N.M. Pugno, A general shape/size-effect law for nanoindentation. Acta Mater. 55, 1947–1953 (2007)CrossRef N.M. Pugno, A general shape/size-effect law for nanoindentation. Acta Mater. 55, 1947–1953 (2007)CrossRef
Zurück zum Zitat S.I. Rao, D.M. Dimiduk, M. Tang, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777–4794 (2007)CrossRef S.I. Rao, D.M. Dimiduk, M. Tang, T.A. Parthasarathy, M.D. Uchic, C. Woodward, Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777–4794 (2007)CrossRef
Zurück zum Zitat S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, C. Woodward, Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245–3259 (2008)CrossRef S.I. Rao, D.M. Dimiduk, T.A. Parthasarathy, M.D. Uchic, M. Tang, C. Woodward, Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. Acta Mater. 56, 3245–3259 (2008)CrossRef
Zurück zum Zitat M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283–296 (2011)CrossRef M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Energy of slip transmission and nucleation at grain boundaries. Acta Mater. 59, 283–296 (2011)CrossRef
Zurück zum Zitat S. Shao, S.N. Medyanik, Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315–319 (2010)CrossRef S. Shao, S.N. Medyanik, Dislocation–interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315–319 (2010)CrossRef
Zurück zum Zitat W.A. Soer, J.T.M. De Hosson, Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 59, 3192–3195 (2005)CrossRef W.A. Soer, J.T.M. De Hosson, Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 59, 3192–3195 (2005)CrossRef
Zurück zum Zitat A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRef A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRef
Zurück zum Zitat A. Stukowski, Computational analysis methods in atomistic modeling of crystals. JOM 66, 399–407 (2014)CrossRef A. Stukowski, Computational analysis methods in atomistic modeling of crystals. JOM 66, 399–407 (2014)CrossRef
Zurück zum Zitat A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRef A. Stukowski, K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRef
Zurück zum Zitat A. Stukowski, K. Albe, D. Farkas, Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys. Rev. B 82, 224103 (2010)CrossRef A. Stukowski, K. Albe, D. Farkas, Nanotwinned fcc metals: strengthening versus softening mechanisms. Phys. Rev. B 82, 224103 (2010)CrossRef
Zurück zum Zitat A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRef A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRef
Zurück zum Zitat S. Suresh, T.G. Nieh, B.W. Choi, Nanoindentation of copper thin films on silicon substrates. Scr. Mater. 41, 951–957 (1999)CrossRef S. Suresh, T.G. Nieh, B.W. Choi, Nanoindentation of copper thin films on silicon substrates. Scr. Mater. 41, 951–957 (1999)CrossRef
Zurück zum Zitat J.G. Swadener, E.P. George, G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef J.G. Swadener, E.P. George, G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef
Zurück zum Zitat J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)CrossRef J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988)CrossRef
Zurück zum Zitat T. Tsuru, Y. Kaji, D. Matsunaka, Y. Shibutani, Incipient plasticity of twin and stable/unstable grain boundaries during nanoindentation in copper. Phys. Rev. B 82, 024101 (2010)CrossRef T. Tsuru, Y. Kaji, D. Matsunaka, Y. Shibutani, Incipient plasticity of twin and stable/unstable grain boundaries during nanoindentation in copper. Phys. Rev. B 82, 024101 (2010)CrossRef
Zurück zum Zitat M.D. Uchic, P.A. Shade, D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009)CrossRef M.D. Uchic, P.A. Shade, D.M. Dimiduk, Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361–386 (2009)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, R.K.A. Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005)CrossRef G.Z. Voyiadjis, R.K.A. Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42, 3998–4029 (2005)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, M. Yaghoobi, Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater. Sci. Eng. A 634, 20–31 (2015)CrossRef G.Z. Voyiadjis, M. Yaghoobi, Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater. Sci. Eng. A 634, 20–31 (2015)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, M. Yaghoobi, Role of grain boundary on the sources of size effects. Comput. Mater. Sci. 117, 315–329 (2016)CrossRef G.Z. Voyiadjis, M. Yaghoobi, Role of grain boundary on the sources of size effects. Comput. Mater. Sci. 117, 315–329 (2016)CrossRef
Zurück zum Zitat G.Z. Voyiadjis, M. Yaghoobi, Size and strain rate effects in metallic samples of confined volumes: dislocation length distribution. Scr. Mater. 130, 182–186 (2017)CrossRef G.Z. Voyiadjis, M. Yaghoobi, Size and strain rate effects in metallic samples of confined volumes: dislocation length distribution. Scr. Mater. 130, 182–186 (2017)CrossRef
Zurück zum Zitat M. Yaghoobi, G.Z. Voyiadjis, Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 95, 626–636 (2014)CrossRef M. Yaghoobi, G.Z. Voyiadjis, Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 95, 626–636 (2014)CrossRef
Zurück zum Zitat M. Yaghoobi, G.Z. Voyiadjis, Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput. Mater. Sci. 111, 64–73 (2016a)CrossRef M. Yaghoobi, G.Z. Voyiadjis, Atomistic simulation of size effects in single-crystalline metals of confined volumes during nanoindentation. Comput. Mater. Sci. 111, 64–73 (2016a)CrossRef
Zurück zum Zitat M. Yaghoobi, G.Z. Voyiadjis, Size effects in fcc crystals during the high rate compression test. Acta Mater. 121, 190–201 (2016b)CrossRef M. Yaghoobi, G.Z. Voyiadjis, Size effects in fcc crystals during the high rate compression test. Acta Mater. 121, 190–201 (2016b)CrossRef
Zurück zum Zitat M. Yaghoobi, G.Z. Voyiadjis, Microstructural investigation of the hardening mechanism in fcc crystals during high rate deformations. Comp. Mater. Sci. 138, 10–15 (2017)CrossRef M. Yaghoobi, G.Z. Voyiadjis, Microstructural investigation of the hardening mechanism in fcc crystals during high rate deformations. Comp. Mater. Sci. 138, 10–15 (2017)CrossRef
Zurück zum Zitat N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 56, 31–42 (2008)CrossRef N. Zaafarani, D. Raabe, F. Roters, S. Zaefferer, On the origin of deformation-induced rotation patterns below nanoindents. Acta Mater. 56, 31–42 (2008)CrossRef
Zurück zum Zitat T.T. Zhu, A.J. Bushby, D.J. Dunstan, Materials mechanical size effects: a review. Mater. Technol. 23, 193–209 (2008)CrossRef T.T. Zhu, A.J. Bushby, D.J. Dunstan, Materials mechanical size effects: a review. Mater. Technol. 23, 193–209 (2008)CrossRef
Zurück zum Zitat J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, S.M. Foiles, Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001)CrossRef J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, S.M. Foiles, Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001)CrossRef
Metadaten
Titel
Size Effects During Nanoindentation: Molecular Dynamics Simulation
verfasst von
George Z. Voyiadjis
Mohammadreza Yaghoobi
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_41

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.