Skip to main content
Erschienen in: Cellulose 2/2014

01.04.2014 | Original Paper

Size, shape, and arrangement of native cellulose fibrils in maize cell walls

verfasst von: Shi-You Ding, Shuai Zhao, Yining Zeng

Erschienen in: Cellulose | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Higher plant cell walls are the major source of the cellulose used in a variety of industries. Cellulose in plant forms nanoscale fibrils that are embedded in non-cellulosic matrix polymers in the cell walls. The morphological features of plant cellulose fibrils such as the size, shape, and arrangement, are still poorly understood due to its inhomogeneous nature and the limited resolution of the characterization techniques used. Here, we sketch out a proposed model of plant cellulose fibril and its arrangement that is based primarily on review of direct visualizations of different types of cell walls in maize using atomic force microscopy at sub-nanometer scale, and is also inspired by recent advances in understanding of cellulose biosynthesis and biodegradation. We propose that the principal unit of plant cellulose fibril is a 36-chain cellulose elementary fibril (CEF), which is hexagonally shaped and 3.2 × 5.3 nm in cross-section. Macrofibrils are ribbon-like bundles containing variable numbers of CEFs associated through their hydrophilic faces. As the cell expands and/or elongates, large macrofibril may split to become smaller bundles or individual CEFs, which are simultaneously coated with hemicelluloses to form microfibrils of variable sizes during biosynthesis. The microfibrils that contain one CEF are arranged nearly parallel, and the hydrophobic faces of the CEF are perpendicular to the cell wall surface. Structural disordering of the CEF may occur during plant development while cells expand, elongate, dehydrate, and die, as well as during the processing to prepare cellulose materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley: quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134(1):224–236. doi:10.1104/pp.103.032904 CrossRef Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley: quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134(1):224–236. doi:10.​1104/​pp.​103.​032904 CrossRef
Zurück zum Zitat Castro MA (1991) Ultrastructure of vestures on the vessel wall in some species of Prosopis (Leguminosae–Mimosoideae). IAWA Bull 12(4):425–430CrossRef Castro MA (1991) Ultrastructure of vestures on the vessel wall in some species of Prosopis (Leguminosae–Mimosoideae). IAWA Bull 12(4):425–430CrossRef
Zurück zum Zitat Dagel DJ, Liu YS, Zhong LL, Luo YH, Himmel ME, Xu Q, Zeng YN, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi:10.1021/Jp109798p CrossRef Dagel DJ, Liu YS, Zhong LL, Luo YH, Himmel ME, Xu Q, Zeng YN, Ding SY, Smith S (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115(4):635–641. doi:10.​1021/​Jp109798p CrossRef
Zurück zum Zitat Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi:10.1021/jf051851z CrossRef Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi:10.​1021/​jf051851z CrossRef
Zurück zum Zitat Ding SY, Liu YS, Zeng YN, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. doi:10.1126/science.1227491 CrossRef Ding SY, Liu YS, Zeng YN, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. doi:10.​1126/​science.​1227491 CrossRef
Zurück zum Zitat Esau K (1977) Anatomy of Seed Plants. Wiley, New York Esau K (1977) Anatomy of Seed Plants. Wiley, New York
Zurück zum Zitat Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi:10.1073/pnas.1108942108 CrossRef Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203. doi:10.​1073/​pnas.​1108942108 CrossRef
Zurück zum Zitat Gritsch CS, Murphy RJ (2005) Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann Bot 95(4):619–629. doi:10.1093/Aob/Mic068 CrossRef Gritsch CS, Murphy RJ (2005) Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann Bot 95(4):619–629. doi:10.​1093/​Aob/​Mic068 CrossRef
Zurück zum Zitat Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11(11):2075–2085. doi:10.2307/3871010 CrossRef Kimura S, Laosinchai W, Itoh T, Cui XJ, Linder CR, Brown RM (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11(11):2075–2085. doi:10.​2307/​3871010 CrossRef
Zurück zum Zitat Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A (1996) Visualization of plant cell walls by atomic force microscopy. Biophys J 70(3):1138–1143CrossRef Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A (1996) Visualization of plant cell walls by atomic force microscopy. Biophys J 70(3):1138–1143CrossRef
Zurück zum Zitat Li SD, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109(1):185–190. doi:10.1073/pnas.1118560109 CrossRef Li SD, Lei L, Somerville CR, Gu Y (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc Natl Acad Sci USA 109(1):185–190. doi:10.​1073/​pnas.​1118560109 CrossRef
Zurück zum Zitat Macadam JW, Nelson CJ (2002) Secondary cell wall deposition causes radial growth of fibre cells in the maturation zone of elongating tall fescue leaf blades. Ann Bot 89(1):89–96. doi:10.1093/aob.2002.mcf010 CrossRef Macadam JW, Nelson CJ (2002) Secondary cell wall deposition causes radial growth of fibre cells in the maturation zone of elongating tall fescue leaf blades. Ann Bot 89(1):89–96. doi:10.​1093/​aob.​2002.​mcf010 CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/Ja037055w CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα, from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.​1021/​Ja037055w CrossRef
Zurück zum Zitat Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162(2):675–688. doi:10.1104/pp.113.215277 CrossRef Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lindeboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162(2):675–688. doi:10.​1104/​pp.​113.​215277 CrossRef
Zurück zum Zitat Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. doi:10.1104/pp.112.206359 CrossRef Thomas LH, Forsyth VT, Sturcova A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161(1):465–476. doi:10.​1104/​pp.​112.​206359 CrossRef
Zurück zum Zitat Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20(2):633–643. doi:10.1007/s10570-012-9853-7 CrossRef Toba K, Yamamoto H, Yoshida M (2013) Crystallization of cellulose microfibrils in wood cell wall by repeated dry-and-wet treatment, using X-ray diffraction technique. Cellulose 20(2):633–643. doi:10.​1007/​s10570-012-9853-7 CrossRef
Metadaten
Titel
Size, shape, and arrangement of native cellulose fibrils in maize cell walls
verfasst von
Shi-You Ding
Shuai Zhao
Yining Zeng
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0147-5

Weitere Artikel der Ausgabe 2/2014

Cellulose 2/2014 Zur Ausgabe