Skip to main content

2025 | OriginalPaper | Buchkapitel

Skin Cancer Detection Using Deep Learning

verfasst von : Pranati Rakshit, Arundhati Ghosh, Chirag Chakraborty, Joydeep Paul, Dinika Das

Erschienen in: Advances in Communication, Devices and Networking

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Skin cancer is characterized by the uncontrolled proliferation of abnormal cells in the outermost skin layer, the epidermis, due to unrepaired DNA damage leading to mutations. These mutations cause rapid multiplication of skin cells, forming malignant tumors. The primary types of skin cancer include basal cell carcinoma (BCC), squamous cell carcinoma (SCC), melanoma, and Merkel cell carcinoma (MCC). Melanoma of the skin ranks as the 17th most common cancer worldwide, with more than 150,000 new cases reported in 2020. Early detection and treatment of melanoma can significantly impact patient outcomes. The present work aims to detect melanoma skin cancer in its early stages using image processing through Computer Vision and deep learning methodologies. The culmination of this effort is an Android application designed to facilitate self-diagnosis for users, offering timely alerts on when to consult a medical professional. Hospitals can also utilize the application to prioritize patient care based on their risk percentages, benefiting both patients and healthcare providers. The study delves into relevant research papers published in esteemed journals related to skin cancer diagnosis. Deep learning methods are proposed to assist dermatologists in achieving early and accurate diagnoses. While specialists can provide accurate diagnoses, the development of automated systems becomes crucial to efficiently diagnose diseases, saving lives and reducing healthcare and financial burdens. Machine learning (ML) emerges as a valuable tool in this context. The article focuses on the fundamentals of ML and its potential in aiding skin cancer diagnosis. The objective is to conduct a comparative study between the DenseNet-121, ResNet-50, and CNN-RF models. The study reveals that DenseNet-121 outperformed with a testing accuracy of 83%, surpassing ResNet- 50, which achieved 81% testing accuracy. This comparative analysis contributes to the ongoing research and development in the field of skin cancer diagnosis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Riker AI, Zea N, Trinh T (2010) The epidemiology, prevention, and detection of melanoma. Ochsner J 10(2):56–65 Riker AI, Zea N, Trinh T (2010) The epidemiology, prevention, and detection of melanoma. Ochsner J 10(2):56–65
2.
Zurück zum Zitat Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRef Lomas A, Leonardi-Bee J, Bath-Hextall F (2012) A systematic review of worldwide incidence of nonmelanoma skin cancer. Br J Dermatol 166(5):1069–1080CrossRef
3.
Zurück zum Zitat Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S (2022) Skin cancer classification with deep learning: a systematic review. Front Oncol 12:893972CrossRef Wu Y, Chen B, Zeng A, Pan D, Wang R, Zhao S (2022) Skin cancer classification with deep learning: a systematic review. Front Oncol 12:893972CrossRef
4.
Zurück zum Zitat Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR, Alsaiari SA, Saeed AHM, Alraddadi MO, Mahnashi MH (2021) Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health 18(10):5479CrossRef Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR, Alsaiari SA, Saeed AHM, Alraddadi MO, Mahnashi MH (2021) Skin cancer detection: a review using deep learning techniques. Int J Environ Res Public Health 18(10):5479CrossRef
5.
Zurück zum Zitat Ali MS, Miah MS, Haque J, Rahman MM, Islam MK (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach Learn Appl 5:100036 Ali MS, Miah MS, Haque J, Rahman MM, Islam MK (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Mach Learn Appl 5:100036
6.
Zurück zum Zitat Arshed MA, Mumtaz S, Ibrahim M, Ahmed S, Tahir M, Shafi M (2023) Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7):415CrossRef Arshed MA, Mumtaz S, Ibrahim M, Ahmed S, Tahir M, Shafi M (2023) Multi-class skin cancer classification using vision transformer networks and convolutional neural network-based pre-trained models. Information 14(7):415CrossRef
7.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, pp 770–778
8.
Zurück zum Zitat Ali K, Shaikh ZA, Khan AA, Laghari AA (2022) Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci Inf 2(4):100034 Ali K, Shaikh ZA, Khan AA, Laghari AA (2022) Multiclass skin cancer classification using EfficientNets–a first step towards preventing skin cancer. Neurosci Inf 2(4):100034
9.
Zurück zum Zitat Banasode P, Patil M, Ammanagi N (2020) A melanoma skin cancer detection using machine learning technique: support vector machine. In: IOP conference series: materials science and engineering, vol 1065 Banasode P, Patil M, Ammanagi N (2020) A melanoma skin cancer detection using machine learning technique: support vector machine. In: IOP conference series: materials science and engineering, vol 1065
10.
Zurück zum Zitat Huang G, Liu Z, van der Maaten L, Weinberger K (2016) Densely connected convolutional networks Huang G, Liu Z, van der Maaten L, Weinberger K (2016) Densely connected convolutional networks
11.
Zurück zum Zitat Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420CrossRef
12.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak AWMJ, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak AWMJ, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
13.
Zurück zum Zitat Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning
14.
Zurück zum Zitat Ertam, Aydın G (2017) Data classification with deep learning using tensorflow. In: International conference on computer science and engineering (UBMK) Antalya, Turkey, pp 755–758 Ertam, Aydın G (2017) Data classification with deep learning using tensorflow. In: International conference on computer science and engineering (UBMK) Antalya, Turkey, pp 755–758
15.
Zurück zum Zitat Ketkar N (2017) Introduction to Keras. In book: deep learning with python, pp95–109 Ketkar N (2017) Introduction to Keras. In book: deep learning with python, pp95–109
16.
Zurück zum Zitat Joseph FJJ, Nonsiri S, Monsakul A (2021) Keras and tensorflow: a hands-on experience. In book: advanced deep learning for engineers and scientists, pp85–111 Joseph FJJ, Nonsiri S, Monsakul A (2021) Keras and tensorflow: a hands-on experience. In book: advanced deep learning for engineers and scientists, pp85–111
17.
Zurück zum Zitat Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):160CrossRef Sarker IH (2021) Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2(3):160CrossRef
18.
Zurück zum Zitat Çelik Ö (2018) A research on machine learning methods and its applications. J Educ Technol Online Learn 1(3):25–40CrossRef Çelik Ö (2018) A research on machine learning methods and its applications. J Educ Technol Online Learn 1(3):25–40CrossRef
19.
Zurück zum Zitat Ramprasath M, Anand MV, Hariharan S (2018) Image classification using convolutional neural networks. Int J Pure Appl Math 119(17):1307–1319 Ramprasath M, Anand MV, Hariharan S (2018) Image classification using convolutional neural networks. Int J Pure Appl Math 119(17):1307–1319
20.
Zurück zum Zitat Sharma A, Phonsa G (2021) Image classification using CNN. In: Proceedings of the international conference on innovative computing & communication (ICICC) Sharma A, Phonsa G (2021) Image classification using CNN. In: Proceedings of the international conference on innovative computing & communication (ICICC)
Metadaten
Titel
Skin Cancer Detection Using Deep Learning
verfasst von
Pranati Rakshit
Arundhati Ghosh
Chirag Chakraborty
Joydeep Paul
Dinika Das
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6465-5_29