Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2017

12.04.2017

Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water

verfasst von: M. P. LaCoursiere, D. K. Aidun, D. J. Morrison

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrogen embrittlement susceptibility of near-peak-aged UNS N07718 (Alloy 718) was evaluated by performing slow strain rate tests at room temperature in air and substitute ocean water. Tests in substitute ocean water were accomplished in an environmental cell that enabled in situ cathodic charging under an applied potential of −1.1 V versus SCE. Some specimens were cathodically precharged for 4 or 16 weeks at the same potential in a 3.5 wt.% NaCl-distilled water solution at 50 °C. Unprecharged specimens tested in substitute ocean water exhibited only moderate embrittlement with plastic strain to failure decreasing by about 20% compared to unprecharged specimens tested in air. However, precharged specimens exhibited significant embrittlement with plastic strain to failure decreasing by about 70%. Test environment (air or substitute ocean water with in situ charging) and precharge time (4 or 16 weeks) had little effect on the results of the precharged specimens. Fracture surfaces of precharged specimens were typical of hydrogen embrittlement and consisted of an outer brittle ring related to the region in which hydrogen infused during precharging, a finely dimpled transition zone probably related to the region where hydrogen was drawn in by dislocation transport, and a central highly dimpled ductile region. Fracture surfaces of unprecharged specimens tested in substitute ocean water consisted of a finely dimpled outer ring and heavily dimpled central region typical of ductile fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.L. Kennedy, W. Cao, and W.M. Thomas, Stress Rupture Strength of Alloy 718, Adv. Mater. Process., 1996, 149(3), p 33–35 R.L. Kennedy, W. Cao, and W.M. Thomas, Stress Rupture Strength of Alloy 718, Adv. Mater. Process., 1996, 149(3), p 33–35
2.
Zurück zum Zitat D.F. Paulonis, J.M. Oblak, and D.S. Duvall, Precipitation in Nickel-Base Alloy 718, Trans. ASM, 1969, 62, p 611–622 D.F. Paulonis, J.M. Oblak, and D.S. Duvall, Precipitation in Nickel-Base Alloy 718, Trans. ASM, 1969, 62, p 611–622
3.
Zurück zum Zitat Y. Rong, S. Chen, G. Hu, M. Gao, and R.P. Wei, Prediction and Characterization of Variant Electron Diffraction Patterns for γ″ and δ Precipitates in an Inconel 718 Alloy, Metall. Mater. Trans. A, 1999, 30A, p 2297–2303CrossRef Y. Rong, S. Chen, G. Hu, M. Gao, and R.P. Wei, Prediction and Characterization of Variant Electron Diffraction Patterns for γ″ and δ Precipitates in an Inconel 718 Alloy, Metall. Mater. Trans. A, 1999, 30A, p 2297–2303CrossRef
4.
Zurück zum Zitat O.A. Onyewuenyi, Alloy 718—Alloy Optimization for Applications in Oil and Gas, Superalloy 718—Metallurgy and Applications, E.A. Loria, Ed., The Minerals, Metals, & Materials Society, 1989, p 345–362 O.A. Onyewuenyi, Alloy 718—Alloy Optimization for Applications in Oil and Gas, Superalloy 718—Metallurgy and Applications, E.A. Loria, Ed., The Minerals, Metals, & Materials Society, 1989, p 345–362
5.
Zurück zum Zitat J.J. Debarbadillo and S.K. Mannan, Alloy 718 for Oilfield Applications, JOM, 2012, 64(2), p 265–270CrossRef J.J. Debarbadillo and S.K. Mannan, Alloy 718 for Oilfield Applications, JOM, 2012, 64(2), p 265–270CrossRef
6.
Zurück zum Zitat F. Pires, R. Clements, F. Santos, J. Clevelario, and T. Sheldrake, Evaluation of the Performance of Inconel 718 Fasteners Subjected to Cathodic Protection Systems in Offshore and Subsea Applications—OMAE2011-49242, Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore, and Arctic Engineering, vol. 3, June 19–24, 2011, ASME, 2011, p 165–172 F. Pires, R. Clements, F. Santos, J. Clevelario, and T. Sheldrake, Evaluation of the Performance of Inconel 718 Fasteners Subjected to Cathodic Protection Systems in Offshore and Subsea Applications—OMAE2011-49242, Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore, and Arctic Engineering, vol. 3, June 19–24, 2011, ASME, 2011, p 165–172
7.
Zurück zum Zitat G. Rorvik, B.O. Haaland, and F. Kirkemo, Fasteners in Subsea Applications—End User Experiences and Requirements—OMAE2014-24520, Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore, and Arctic Engineering, vol. 5, June 8–13, 2014, ASME, 2014. doi:10.1115/OMAE2014-24520 G. Rorvik, B.O. Haaland, and F. Kirkemo, Fasteners in Subsea Applications—End User Experiences and Requirements—OMAE2014-24520, Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore, and Arctic Engineering, vol. 5, June 8–13, 2014, ASME, 2014. doi:10.​1115/​OMAE2014-24520
8.
Zurück zum Zitat W.H. Johnson, On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids, Proc. R. Soc. Lond., 1875, 23, p 168–179CrossRef W.H. Johnson, On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids, Proc. R. Soc. Lond., 1875, 23, p 168–179CrossRef
9.
Zurück zum Zitat I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. B, 2015, 46, p 1085–1103CrossRef I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. B, 2015, 46, p 1085–1103CrossRef
10.
Zurück zum Zitat W.W. Gerberich, Modeling Hydrogen Induced Damage Mechanisms in Metals, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, vol. 1, R.P. Gangloff and B.P. Somerday, Eds., Woodhead Publishing, 2012, p 209–246 W.W. Gerberich, Modeling Hydrogen Induced Damage Mechanisms in Metals, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, vol. 1, R.P. Gangloff and B.P. Somerday, Eds., Woodhead Publishing, 2012, p 209–246
11.
Zurück zum Zitat M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, and P. Sofronis, Recent Advances on Hydrogen Embrittlement of Structural Materials, Int. J. Fract., 2015, 196, p 223–243CrossRef M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday, and P. Sofronis, Recent Advances on Hydrogen Embrittlement of Structural Materials, Int. J. Fract., 2015, 196, p 223–243CrossRef
12.
Zurück zum Zitat A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. ASM, 1960, 52, p 54–80 A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. ASM, 1960, 52, p 54–80
13.
Zurück zum Zitat R.A. Oriani, A Mechanistic Theory of Hydrogen Embrittlement of Steels, Ber. Bunsen-Ges., 1972, 76(8), p 848–857 R.A. Oriani, A Mechanistic Theory of Hydrogen Embrittlement of Steels, Ber. Bunsen-Ges., 1972, 76(8), p 848–857
14.
Zurück zum Zitat W.W. Gerberich and Y.T. Chen, Hydrogen Controlled Cracking—An Approach to Threshold Stress Intensity, Metall. Trans. A, 1975, 6A, p 271–278CrossRef W.W. Gerberich and Y.T. Chen, Hydrogen Controlled Cracking—An Approach to Threshold Stress Intensity, Metall. Trans. A, 1975, 6A, p 271–278CrossRef
15.
Zurück zum Zitat C.D. Beachem, A New Model For Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”), Metall. Trans., 1972, 3, p 437–451CrossRef C.D. Beachem, A New Model For Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”), Metall. Trans., 1972, 3, p 437–451CrossRef
16.
Zurück zum Zitat I.M. Robertson and H.K. Birnbaum, An HVEM Study of Hydrogen Effects on the Deformation and Fracture of Nickel, Acta Metall., 1986, 34(3), p 353–366CrossRef I.M. Robertson and H.K. Birnbaum, An HVEM Study of Hydrogen Effects on the Deformation and Fracture of Nickel, Acta Metall., 1986, 34(3), p 353–366CrossRef
17.
Zurück zum Zitat S. Wang, M.L. Martin, I.M. Robertson, and P. Sofronis, Effect of Hydrogen Environment on the Separation of Fe Grain Boundaries, Acta Mater., 2016, 107, p 279–288CrossRef S. Wang, M.L. Martin, I.M. Robertson, and P. Sofronis, Effect of Hydrogen Environment on the Separation of Fe Grain Boundaries, Acta Mater., 2016, 107, p 279–288CrossRef
18.
Zurück zum Zitat T. Matsumoto, J. Eastman, and H.K. Birnbaum, Direct Observations of Enhanced Dislocation Mobility Due to Hydrogen, Scr. Metall., 1981, 15, p 1033–1037CrossRef T. Matsumoto, J. Eastman, and H.K. Birnbaum, Direct Observations of Enhanced Dislocation Mobility Due to Hydrogen, Scr. Metall., 1981, 15, p 1033–1037CrossRef
19.
Zurück zum Zitat H.K. Birnbaum and P. Sofronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, A176, p 191–202CrossRef H.K. Birnbaum and P. Sofronis, Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture, Mater. Sci. Eng. A, 1994, A176, p 191–202CrossRef
20.
Zurück zum Zitat T. Tabata and H.K. Birnbaum, Direct Observations of the Effect of Hydrogen on the Behavior of Dislocations in Iron, Scr. Metall., 1983, 17, p 947–950CrossRef T. Tabata and H.K. Birnbaum, Direct Observations of the Effect of Hydrogen on the Behavior of Dislocations in Iron, Scr. Metall., 1983, 17, p 947–950CrossRef
21.
Zurück zum Zitat D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Hydrogen Embrittlement of α Titanium, In Situ TEM Stud. Acta Metall., 1988, 33, p 111–124 D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Hydrogen Embrittlement of α Titanium, In Situ TEM Stud. Acta Metall., 1988, 33, p 111–124
22.
Zurück zum Zitat H. Hanninen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, In-Situ Observations on Effects of Hydrogen on Deformation and Fracture of A533B Pressure-Vessel Steel, J. Mater. Eng. Perform., 1993, 2(6), p 807–817CrossRef H. Hanninen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, In-Situ Observations on Effects of Hydrogen on Deformation and Fracture of A533B Pressure-Vessel Steel, J. Mater. Eng. Perform., 1993, 2(6), p 807–817CrossRef
23.
Zurück zum Zitat Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, ASTM G129 (2013), ASTM International Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, ASTM G129 (2013), ASTM International
24.
Zurück zum Zitat Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys for Stress Corrosion Cracking in Sour Oilfield Service, NACE TM0198 (2011), NACE International Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys for Stress Corrosion Cracking in Sour Oilfield Service, NACE TM0198 (2011), NACE International
25.
Zurück zum Zitat L. Fournier, D. Delafosse, and T. Magnin, Cathodic Hydrogen Embrittlement in Alloy 718, Mater. Sci. Eng., A, 1999, A269, p 111–119CrossRef L. Fournier, D. Delafosse, and T. Magnin, Cathodic Hydrogen Embrittlement in Alloy 718, Mater. Sci. Eng., A, 1999, A269, p 111–119CrossRef
26.
Zurück zum Zitat S.A. McCoy, S.K. Mannan, and C.S. Tassen, The Effect of Hydrogen on Precipitation Hardenable Nickel Alloys for Downhole Applications, SPE International Oilfield Corrosion Conference and Exhibition, 9–10 May, Aberdeen, Scotland, UK, 2016, SPE-179917 S.A. McCoy, S.K. Mannan, and C.S. Tassen, The Effect of Hydrogen on Precipitation Hardenable Nickel Alloys for Downhole Applications, SPE International Oilfield Corrosion Conference and Exhibition, 9–10 May, Aberdeen, Scotland, UK, 2016, SPE-179917
27.
Zurück zum Zitat M.C. Rezende, L.S. Araujo, S.B. Gabriel, D.S. dos Santos, and L.H. de Almeida, Hydrogen Embrittlement in Nickel-Based Superalloy 718: Relationship Between & γ′ + γ″ Precipitation and the Fracture Mode, Int. J. Hydrog. Energy, 2015, 40, p 17075–17083CrossRef M.C. Rezende, L.S. Araujo, S.B. Gabriel, D.S. dos Santos, and L.H. de Almeida, Hydrogen Embrittlement in Nickel-Based Superalloy 718: Relationship Between & γ′ + γ″ Precipitation and the Fracture Mode, Int. J. Hydrog. Energy, 2015, 40, p 17075–17083CrossRef
28.
Zurück zum Zitat Nickel Base Alloy 718 (UNS N07718) for Oil and Gas Drilling Production Equipment, API Standard 6A718, 2nd ed., 2009, American Petroleum Institute Nickel Base Alloy 718 (UNS N07718) for Oil and Gas Drilling Production Equipment, API Standard 6A718, 2nd ed., 2009, American Petroleum Institute
29.
Zurück zum Zitat Z. Tarzimoghadam, D. Ponge, J. Kloewer, and D. Raabe, Hydrogen-Assisted Failure in Nickel-Based Superalloy 718 Studied Under In Situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation, Acta Mater., 2017, 128, p 365–374CrossRef Z. Tarzimoghadam, D. Ponge, J. Kloewer, and D. Raabe, Hydrogen-Assisted Failure in Nickel-Based Superalloy 718 Studied Under In Situ Hydrogen Charging: The Role of Localized Deformation in Crack Propagation, Acta Mater., 2017, 128, p 365–374CrossRef
30.
Zurück zum Zitat B. Kagay, K. Findley, S. Coryell, and A.B. Nissan, Effects of Alloy 718 Microstructure on Hydrogen Embrittlement Susceptibility for Oil and Gas Environments, Mater. Sci. Technol., 2016. doi:10.1080/02670836.2016.1139225 B. Kagay, K. Findley, S. Coryell, and A.B. Nissan, Effects of Alloy 718 Microstructure on Hydrogen Embrittlement Susceptibility for Oil and Gas Environments, Mater. Sci. Technol., 2016. doi:10.​1080/​02670836.​2016.​1139225
31.
Zurück zum Zitat Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment, API Standard 6ACRA, 1st ed., 2015, American Petroleum Institute Age-Hardened Nickel-Based Alloys for Oil and Gas Drilling and Production Equipment, API Standard 6ACRA, 1st ed., 2015, American Petroleum Institute
32.
Zurück zum Zitat L. Foroni and C. Malara, Hydrogen Embrittlement Susceptibility of Precipitation Hardened Ni-Alloys, NACE International Corrosion Conference and Expo, 2014, NACE Paper 3948 L. Foroni and C. Malara, Hydrogen Embrittlement Susceptibility of Precipitation Hardened Ni-Alloys, NACE International Corrosion Conference and Expo, 2014, NACE Paper 3948
33.
Zurück zum Zitat S.J. Kernion, J.H. Magee, K.A. Heck, and T.N. Werley, The Effect of Microstructure and Processing on the Hydrogen Embrittlement of Ni-base Superalloys, NACE International Corrosion Conference and Expo, 2015, NACE Paper 6053 S.J. Kernion, J.H. Magee, K.A. Heck, and T.N. Werley, The Effect of Microstructure and Processing on the Hydrogen Embrittlement of Ni-base Superalloys, NACE International Corrosion Conference and Expo, 2015, NACE Paper 6053
34.
Zurück zum Zitat Z. Zhang, G. Obasi, R. Morana, and M. Preuss, Hydrogen Assisted Crack Initiation and Propagation in a Nickel-Based Superalloy, Acta Mater., 2016, 113, p 272–283CrossRef Z. Zhang, G. Obasi, R. Morana, and M. Preuss, Hydrogen Assisted Crack Initiation and Propagation in a Nickel-Based Superalloy, Acta Mater., 2016, 113, p 272–283CrossRef
35.
Zurück zum Zitat S. Jothi, S.V. Merzlikin, T.N. Croft, J. Andersson, and S.G.R. Brown, An Investigation of Micro-Mechanisms in Hydrogen Induced Cracking in Nickel-Based Superalloy 718, J. Alloys Compd., 2016, 664, p 664–681CrossRef S. Jothi, S.V. Merzlikin, T.N. Croft, J. Andersson, and S.G.R. Brown, An Investigation of Micro-Mechanisms in Hydrogen Induced Cracking in Nickel-Based Superalloy 718, J. Alloys Compd., 2016, 664, p 664–681CrossRef
36.
Zurück zum Zitat B.C. Rollins, R. Thodla, M.T. Piza Paes, and C.J. Carlton, Development of Test Methodology to Evaluate High Strength Nickel Based Alloys Under Cathodic Protection, NACE International Corrosion Conference and Expo, 2016, NACE Paper 7828 B.C. Rollins, R. Thodla, M.T. Piza Paes, and C.J. Carlton, Development of Test Methodology to Evaluate High Strength Nickel Based Alloys Under Cathodic Protection, NACE International Corrosion Conference and Expo, 2016, NACE Paper 7828
37.
Zurück zum Zitat Standard Practice for the Preparation of Substitute Ocean Water, ASTM Standard D 1141 (2013), ASTM International Standard Practice for the Preparation of Substitute Ocean Water, ASTM Standard D 1141 (2013), ASTM International
38.
Zurück zum Zitat L. Liu, K. Tanaka, A. Hirose, and K.F. Kobayashi, Effects of Precipitation on the Hydrogen Embrittlement Sensitivity of Inconel 718, Sci. Technol. Adv. Mater., 2002, 3, p 335–344CrossRef L. Liu, K. Tanaka, A. Hirose, and K.F. Kobayashi, Effects of Precipitation on the Hydrogen Embrittlement Sensitivity of Inconel 718, Sci. Technol. Adv. Mater., 2002, 3, p 335–344CrossRef
39.
Zurück zum Zitat J.J.M. Jebaraj, D.J. Morrison, and I.I. Suni, Hydrogen Diffusion Coefficients Through Inconel 718 in Different Metallurgical Conditions, Corros. Sci., 2014, 80, p 517–522CrossRef J.J.M. Jebaraj, D.J. Morrison, and I.I. Suni, Hydrogen Diffusion Coefficients Through Inconel 718 in Different Metallurgical Conditions, Corros. Sci., 2014, 80, p 517–522CrossRef
40.
Zurück zum Zitat P.D. Hicks and C.J. Altstetter, Internal Hydrogen Effects on Tensile Properties of Iron- and Nickel-Base Superalloys, Metall. Trans. A, 1990, 21A, p 365–372CrossRef P.D. Hicks and C.J. Altstetter, Internal Hydrogen Effects on Tensile Properties of Iron- and Nickel-Base Superalloys, Metall. Trans. A, 1990, 21A, p 365–372CrossRef
41.
Zurück zum Zitat F. Galliano, E. Andrieu, C. Blanc, J.M. Cloue, D. Connetable, and G. Odemer, Effect of Trapping and Temperature on the Hydrogen Embrittlement Susceptibility of Alloy 718, Mater. Sci. Eng. A, 2014, 611, p 370–382CrossRef F. Galliano, E. Andrieu, C. Blanc, J.M. Cloue, D. Connetable, and G. Odemer, Effect of Trapping and Temperature on the Hydrogen Embrittlement Susceptibility of Alloy 718, Mater. Sci. Eng. A, 2014, 611, p 370–382CrossRef
42.
Zurück zum Zitat R.P. Jewett, R.J. Walter, W.T. Chandler and R.P. Frohmberg, Hydrogen Environment Embrittlement of Metals, NASA CR-2163, 1973 R.P. Jewett, R.J. Walter, W.T. Chandler and R.P. Frohmberg, Hydrogen Environment Embrittlement of Metals, NASA CR-2163, 1973
43.
Zurück zum Zitat P.D. Hicks and C.J. Altstetter, Hydrogen-Enhanced Cracking of Superalloys, Metall. Trans. A, 1992, 23A, p 237–248CrossRef P.D. Hicks and C.J. Altstetter, Hydrogen-Enhanced Cracking of Superalloys, Metall. Trans. A, 1992, 23A, p 237–248CrossRef
44.
Zurück zum Zitat J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards, Hydrogen Transport by Dislocations, Metall. Trans. A, 1976, 7A, p 821–829CrossRef J.K. Tien, A.W. Thompson, I.M. Bernstein, and R.J. Richards, Hydrogen Transport by Dislocations, Metall. Trans. A, 1976, 7A, p 821–829CrossRef
45.
Zurück zum Zitat P. Bastien and P. Azou, Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension, Proceedings World Metallurgical Congress, American Society for Metals, 1951, p 535–552 P. Bastien and P. Azou, Effect of Hydrogen on the Deformation and Fracture of Iron and Steel in Simple Tension, Proceedings World Metallurgical Congress, American Society for Metals, 1951, p 535–552
46.
Zurück zum Zitat M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, and I.M. Robertson, Modeling Hydrogen Transport by Dislocations, J. Mech. Phys. Solids, 2015, 78, p 511–525CrossRef M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, and I.M. Robertson, Modeling Hydrogen Transport by Dislocations, J. Mech. Phys. Solids, 2015, 78, p 511–525CrossRef
47.
Zurück zum Zitat N. Ehrlin, C. Bjerken, and M. Fisk, Cathodic Hydrogen Charging of Inconel 718, AIMS Mater. Sci., 2016, 3, p 1350–1364CrossRef N. Ehrlin, C. Bjerken, and M. Fisk, Cathodic Hydrogen Charging of Inconel 718, AIMS Mater. Sci., 2016, 3, p 1350–1364CrossRef
48.
Zurück zum Zitat D. Delafosse and T. Magnin, Hydrogen Induced Plasticity in Stress Corrosion Cracking of Engineering Systems, Eng. Fract. Mech., 2001, 68, p 693–729CrossRef D. Delafosse and T. Magnin, Hydrogen Induced Plasticity in Stress Corrosion Cracking of Engineering Systems, Eng. Fract. Mech., 2001, 68, p 693–729CrossRef
49.
Zurück zum Zitat J. Xu, X.K. Sun, Q.Q. Liu, and W.X. Chen, Hydrogen Permeation Behavior in IN718 and GH761 Superalloys, Metall. Mater. Trans. A, 1994, 25A, p 539–544CrossRef J. Xu, X.K. Sun, Q.Q. Liu, and W.X. Chen, Hydrogen Permeation Behavior in IN718 and GH761 Superalloys, Metall. Mater. Trans. A, 1994, 25A, p 539–544CrossRef
Metadaten
Titel
Slow Strain Rate Testing for Hydrogen Embrittlement Susceptibility of Alloy 718 in Substitute Ocean Water
verfasst von
M. P. LaCoursiere
D. K. Aidun
D. J. Morrison
Publikationsdatum
12.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2675-x

Weitere Artikel der Ausgabe 5/2017

Journal of Materials Engineering and Performance 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.