Skip to main content

2018 | OriginalPaper | Buchkapitel

Small Rhodium Clusters: A HF and DFT Study–III

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Small neutral and ionic Rhodium clusters Rhn (n = 6, 8, 13) are investigated by ab initio molecular orbital calculations with full optimization at the Restricted Open Shell Hartree-Fock (ROHF) level with a LANL2DZ basis set, and with the methods based on Density Functional Theory, B3LYP/MWB, B3LYP/PBE. The clusters are found favor close-packed icosahedron structures in contrast to previous theoretical predictions that rhodium clusters should favor cubic motifs. A range of spin multiplicities are investigated for each cluster and we present the minimum energy conformation along with the vertical and adiabatic ionization potentials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett 71:923–926CrossRefPubMed Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett 71:923–926CrossRefPubMed
2.
Zurück zum Zitat Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B 4:12295–12298CrossRef Cox AJ, Louderback JG, Apsel SE, Bloomfield LA (1994) Magnetism in 4d-transition metal clusters. Phys Rev B 4:12295–12298CrossRef
3.
Zurück zum Zitat Schmid G (2004) Nanoparticles from theory to applications. Wiley-VCH. ISBN 3527305076 Schmid G (2004) Nanoparticles from theory to applications. Wiley-VCH. ISBN 3527305076
4.
Zurück zum Zitat Wei J, Iglesia E (2004) Structural requirements and reaction pathways in methane activation and chemical conversion catalized by rhodium. J Catal 225:116–127CrossRef Wei J, Iglesia E (2004) Structural requirements and reaction pathways in methane activation and chemical conversion catalized by rhodium. J Catal 225:116–127CrossRef
5.
Zurück zum Zitat Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321:1654–1658CrossRefPubMed Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321:1654–1658CrossRefPubMed
6.
Zurück zum Zitat Loferty PJ (2013) Commodity report: platinum group metals. United States Geological Survey Loferty PJ (2013) Commodity report: platinum group metals. United States Geological Survey
7.
Zurück zum Zitat Heldings FM, Capka M (2003) Rhodium complexes as catalyst for hydrosilylation crosslinking of silicone ruber. J Appl Polymer Sci 30(5):1837 Heldings FM, Capka M (2003) Rhodium complexes as catalyst for hydrosilylation crosslinking of silicone ruber. J Appl Polymer Sci 30(5):1837
8.
Zurück zum Zitat Halligudi SB et al (1992) Hydrogenation of bencene to cycloexene catalized by Rhodium(I) complex supported on montmorillonite clay. React Kinet Catal Lett 48(2):547–552CrossRef Halligudi SB et al (1992) Hydrogenation of bencene to cycloexene catalized by Rhodium(I) complex supported on montmorillonite clay. React Kinet Catal Lett 48(2):547–552CrossRef
9.
Zurück zum Zitat Cramer Stepen S Jr, Covino, Bernard (1990) ASM handbook materials park OH: ASM international report pp 393–396 Cramer Stepen S Jr, Covino, Bernard (1990) ASM handbook materials park OH: ASM international report pp 393–396
10.
Zurück zum Zitat Harding DJ, Gruene P, Haertelt M, Meijer G, Fielicke A, Hamilton SM, Hopkins WS, Mackenzie RS, Neville SP, Walsh TR (2010) Probing the structures of gas-phase rhodium cluster cation by far-infrared spectroscopy. J Chem Phys 133:214304–214313CrossRefPubMed Harding DJ, Gruene P, Haertelt M, Meijer G, Fielicke A, Hamilton SM, Hopkins WS, Mackenzie RS, Neville SP, Walsh TR (2010) Probing the structures of gas-phase rhodium cluster cation by far-infrared spectroscopy. J Chem Phys 133:214304–214313CrossRefPubMed
11.
Zurück zum Zitat Harding DJ, Walsh TR, Hamilton SM, Hopkins WS, Mackenzie SR, Gruene P, Haertelt M, Maijer G, Fielicke F (2010) Comunications: the structure of Rh 8 + in the gas phase. J Chem Phys 132:011101–011104CrossRefPubMed Harding DJ, Walsh TR, Hamilton SM, Hopkins WS, Mackenzie SR, Gruene P, Haertelt M, Maijer G, Fielicke F (2010) Comunications: the structure of Rh 8 + in the gas phase. J Chem Phys 132:011101–011104CrossRefPubMed
12.
Zurück zum Zitat Knickelbin MB (2005) Phys Rev B 71:18444 Knickelbin MB (2005) Phys Rev B 71:18444
13.
Zurück zum Zitat Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Surface-enhanced magnetism in nickel clusters. Phys Rev Lett 76:1441CrossRefPubMed Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Surface-enhanced magnetism in nickel clusters. Phys Rev Lett 76:1441CrossRefPubMed
14.
Zurück zum Zitat Douglas DC, Bucher JP, Bloomfield LA (1992) Magnetic studies of free ferromagnetic clusters. Phys Rev B 45:6341–6344CrossRef Douglas DC, Bucher JP, Bloomfield LA (1992) Magnetic studies of free ferromagnetic clusters. Phys Rev B 45:6341–6344CrossRef
15.
Zurück zum Zitat Knickelbein MB (2001) Experimental observation of superparamagnetism in manganese clusters. Phys Rev Lett 86:5255–5257CrossRefPubMed Knickelbein MB (2001) Experimental observation of superparamagnetism in manganese clusters. Phys Rev Lett 86:5255–5257CrossRefPubMed
16.
Zurück zum Zitat Knickelbein MB (2004) Magnetic ordering in manganese clusters. Phys Rev B 70:014424CrossRef Knickelbein MB (2004) Magnetic ordering in manganese clusters. Phys Rev B 70:014424CrossRef
17.
Zurück zum Zitat Xu X, Yin S, Moro R, de Herr WA (2005) Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys Rev Lett 95:237209CrossRefPubMed Xu X, Yin S, Moro R, de Herr WA (2005) Magnetic moments and adiabatic magnetization of free cobalt clusters. Phys Rev Lett 95:237209CrossRefPubMed
18.
Zurück zum Zitat Reddy BV, Khanna SN, Dunlap BI (1993) Giant magnetic moments of 4d clusters. Phys Rev Lett 70:3323–3326CrossRefPubMed Reddy BV, Khanna SN, Dunlap BI (1993) Giant magnetic moments of 4d clusters. Phys Rev Lett 70:3323–3326CrossRefPubMed
19.
Zurück zum Zitat Bae YC, Kumar V, Osanai H, Kawazoe Y (2005) Cubic magic clusters of rhodium stabilized with eight-center bonding: magnetism and growth. Phys Rev B 72:115427–115432CrossRef Bae YC, Kumar V, Osanai H, Kawazoe Y (2005) Cubic magic clusters of rhodium stabilized with eight-center bonding: magnetism and growth. Phys Rev B 72:115427–115432CrossRef
20.
Zurück zum Zitat Chang CM, Chou MY (2004) Alternative low-symmetry structure for 13-atoms metal clusters. Phys Rev Lett 93:133401–133404CrossRefPubMed Chang CM, Chou MY (2004) Alternative low-symmetry structure for 13-atoms metal clusters. Phys Rev Lett 93:133401–133404CrossRefPubMed
21.
Zurück zum Zitat Aguilera-Granja F, Rodríguez-López JL, Michaelian K, Berlanga-Ramírez EO, Vega A (2002) structure and magnetism of small rhodium clusters. Phys Rev B 66:224410–224419CrossRef Aguilera-Granja F, Rodríguez-López JL, Michaelian K, Berlanga-Ramírez EO, Vega A (2002) structure and magnetism of small rhodium clusters. Phys Rev B 66:224410–224419CrossRef
22.
Zurück zum Zitat Wang LL, Johnson DD (2007) Density functional study of structural trends for late-transition-metal 13-atoms clusters. Phys Rev B 75:235405–235409CrossRef Wang LL, Johnson DD (2007) Density functional study of structural trends for late-transition-metal 13-atoms clusters. Phys Rev B 75:235405–235409CrossRef
23.
Zurück zum Zitat Sun Y, Zhang M, Fournier R (2008) Periodic trends in the geometric structures of 13-atoms metal clusters. Phys Rev B 77:0754435 Sun Y, Zhang M, Fournier R (2008) Periodic trends in the geometric structures of 13-atoms metal clusters. Phys Rev B 77:0754435
24.
Zurück zum Zitat Jinlong Y, Toigo F, Kelin W (1994) Structural electronic, and magnetic properties of small rhodium clusters. Phys Rev B 50:7915–7924CrossRef Jinlong Y, Toigo F, Kelin W (1994) Structural electronic, and magnetic properties of small rhodium clusters. Phys Rev B 50:7915–7924CrossRef
25.
Zurück zum Zitat Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rhn (n = 2-13) clusters. Phys Rev B 59:5214–5222CrossRef Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rhn (n = 2-13) clusters. Phys Rev B 59:5214–5222CrossRef
26.
Zurück zum Zitat Guirado-López R, Villaseñor-González P, Dorantes-Dávila J, Pastor GM (2000) Magnetism of Rhn clusters. J Appl Phys 87:4906CrossRef Guirado-López R, Villaseñor-González P, Dorantes-Dávila J, Pastor GM (2000) Magnetism of Rhn clusters. J Appl Phys 87:4906CrossRef
27.
Zurück zum Zitat Aguilera-Granja F, Montejano-Carrizales JM, Guirado-López RA (2006) Magnetic properties of small 3d and 4d transition metal clusters: the role of a noncompact growth. Phys Rev B 73:115422CrossRef Aguilera-Granja F, Montejano-Carrizales JM, Guirado-López RA (2006) Magnetic properties of small 3d and 4d transition metal clusters: the role of a noncompact growth. Phys Rev B 73:115422CrossRef
28.
Zurück zum Zitat Bae YC, Osansi H, Kumar V, Kawazone Y (2004) Nonicosahedral growth and magnetism behavior of rhodium clusters. Phys Rev B 70:195413–195419CrossRef Bae YC, Osansi H, Kumar V, Kawazone Y (2004) Nonicosahedral growth and magnetism behavior of rhodium clusters. Phys Rev B 70:195413–195419CrossRef
29.
Zurück zum Zitat Rogan J, García G, Loyola C, Orellana W, Ramírez R, Kiwi M (2006) Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium, and silver. J Chem Phys 125:214708–214712CrossRefPubMed Rogan J, García G, Loyola C, Orellana W, Ramírez R, Kiwi M (2006) Alternative search strategy for minimal energy nanocluster structures: the case of rhodium, palladium, and silver. J Chem Phys 125:214708–214712CrossRefPubMed
30.
Zurück zum Zitat Joswig JO, Springborg M (2003) Generic algorithms search for global minima of aluminium clusters using Sutton-Chen potential. Phys Rev B 68:085408CrossRef Joswig JO, Springborg M (2003) Generic algorithms search for global minima of aluminium clusters using Sutton-Chen potential. Phys Rev B 68:085408CrossRef
31.
Zurück zum Zitat Zhan L, Chen JZY, Montejano-Carrizalez JM, Guirado-López RA (2006) Phys Rev B 73:115422CrossRef Zhan L, Chen JZY, Montejano-Carrizalez JM, Guirado-López RA (2006) Phys Rev B 73:115422CrossRef
32.
Zurück zum Zitat Aprá E, Ferrando R, Fontunelli A (2006) Density-functional global optimization of gold clusters. Phys Rev B 73:205414CrossRef Aprá E, Ferrando R, Fontunelli A (2006) Density-functional global optimization of gold clusters. Phys Rev B 73:205414CrossRef
33.
Zurück zum Zitat Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116CrossRef Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101:5111–5116CrossRef
34.
Zurück zum Zitat Kim HG, Choi SK, Lee HM (2008) New algorithm in the basin-hopping Monte Carlo to find the global minimum structure of unary and binary metallic nano clusters. J Chem Phys 128:144702CrossRefPubMed Kim HG, Choi SK, Lee HM (2008) New algorithm in the basin-hopping Monte Carlo to find the global minimum structure of unary and binary metallic nano clusters. J Chem Phys 128:144702CrossRefPubMed
35.
Zurück zum Zitat Erkoc S, Saltaf R (1999) Monte Carlo computer simulations of copper clusters. Phys Rev A 60:3053CrossRef Erkoc S, Saltaf R (1999) Monte Carlo computer simulations of copper clusters. Phys Rev A 60:3053CrossRef
36.
Zurück zum Zitat Cheng J, Fournier R (2004) Structural optimization of atomic clusters by Tabu search in descriptor spaces. Theor Chem Acc 112:7–15CrossRef Cheng J, Fournier R (2004) Structural optimization of atomic clusters by Tabu search in descriptor spaces. Theor Chem Acc 112:7–15CrossRef
37.
Zurück zum Zitat Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371CrossRef Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371CrossRef
38.
Zurück zum Zitat Piotrowsky MJ, Piquini P, Da Silva JLF (2010) Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys Rev B 81:155446–155459CrossRef Piotrowsky MJ, Piquini P, Da Silva JLF (2010) Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys Rev B 81:155446–155459CrossRef
39.
Zurück zum Zitat Piotrowski MJ, Piquini P, Odashima MM, DaSilva JLF (2011) Transition-metal 13-atom clusterts assessed with solid and surface-biased functionals. J Chem Phys 134:134105–134110CrossRefPubMed Piotrowski MJ, Piquini P, Odashima MM, DaSilva JLF (2011) Transition-metal 13-atom clusterts assessed with solid and surface-biased functionals. J Chem Phys 134:134105–134110CrossRefPubMed
40.
Zurück zum Zitat Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:270CrossRef Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:270CrossRef
41.
Zurück zum Zitat Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:284 Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:284
42.
Zurück zum Zitat Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299CrossRef Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299CrossRef
43.
Zurück zum Zitat Wood JH, Boring AM (1978) Improved Pauli Hamiltonian for local-potential problems. Phys Rev B 18:2701CrossRef Wood JH, Boring AM (1978) Improved Pauli Hamiltonian for local-potential problems. Phys Rev B 18:2701CrossRef
44.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) General gradient approximation made simple. Phys Rev Lett 77:3865CrossRefPubMed Perdew JP, Burke K, Ernzerhof M (1996) General gradient approximation made simple. Phys Rev Lett 77:3865CrossRefPubMed
45.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1997) General gradient approximation made simple [Phys Rev Lett 77:4884(1996)] Phys Rev Lett 78:1396 Perdew JP, Burke K, Ernzerhof M (1997) General gradient approximation made simple [Phys Rev Lett 77:4884(1996)] Phys Rev Lett 78:1396
46.
Zurück zum Zitat Peng C, Ayala PY, Schelegel HB, Frish MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49CrossRef Peng C, Ayala PY, Schelegel HB, Frish MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49CrossRef
47.
Zurück zum Zitat Peng C, Schelegel HB (1994) Combining synchronous transit and quasi-Newton methods to find transit states. Israel J Chem 33:449CrossRef Peng C, Schelegel HB (1994) Combining synchronous transit and quasi-Newton methods to find transit states. Israel J Chem 33:449CrossRef
48.
Zurück zum Zitat Beltrán MR, Buendía Zamudío F, Chanhan V, Sen P, Wang H, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1-9) clusters. Eur Phys J D 67:63–70CrossRef Beltrán MR, Buendía Zamudío F, Chanhan V, Sen P, Wang H, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1-9) clusters. Eur Phys J D 67:63–70CrossRef
49.
Zurück zum Zitat Bertin V, Lopez-Rendón R, del Angel G, Poulain E, Avilés R, Uc-Rosas V (2010) Comparative theoretical study of small Rhn nanoparticles (2 ≤ n ≤ 8) using DFT methods. Int J Quantum Chem 110:1152–1164 Bertin V, Lopez-Rendón R, del Angel G, Poulain E, Avilés R, Uc-Rosas V (2010) Comparative theoretical study of small Rhn nanoparticles (2 ≤ n ≤ 8) using DFT methods. Int J Quantum Chem 110:1152–1164
50.
Zurück zum Zitat Harding DJ, Davies RDL, Mackenzie SR, Walsh TR (2008) Oxides of small rhodium clusters: theoretical investigation of experimental reactivities. J Chem Phys 129:124304–124310CrossRefPubMed Harding DJ, Davies RDL, Mackenzie SR, Walsh TR (2008) Oxides of small rhodium clusters: theoretical investigation of experimental reactivities. J Chem Phys 129:124304–124310CrossRefPubMed
51.
Zurück zum Zitat Mora MA, Mora-Ramírez MA, Rubio-Arroyo Manuel F (2010) Structural and electronic study of neutral, positive and negative small rhodium clusters [Rhn, Rh n + , Rh n - ]. Int J Quantum Chem 110:2541–2547 Mora MA, Mora-Ramírez MA, Rubio-Arroyo Manuel F (2010) Structural and electronic study of neutral, positive and negative small rhodium clusters [Rhn, Rh n + , Rh n - ]. Int J Quantum Chem 110:2541–2547
52.
Zurück zum Zitat Li ZQ, Yu JZ, Ohno K, Kawazoe Y (1999) Calculations on the magnetic properties of rhodium clusters. J Phys Condens Matter 7:47–53CrossRef Li ZQ, Yu JZ, Ohno K, Kawazoe Y (1999) Calculations on the magnetic properties of rhodium clusters. J Phys Condens Matter 7:47–53CrossRef
53.
Zurück zum Zitat Hang TD, Hung HM, Thiem LN, Nguyen HMT (2015) Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2-13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe Co, Ni; m = 1-6). Comput Theor Chem 1068:30–41CrossRef Hang TD, Hung HM, Thiem LN, Nguyen HMT (2015) Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2-13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe Co, Ni; m = 1-6). Comput Theor Chem 1068:30–41CrossRef
54.
Zurück zum Zitat Chien CH, Blaisten-Barojas E, Pedersen MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58:2196–2202CrossRef Chien CH, Blaisten-Barojas E, Pedersen MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58:2196–2202CrossRef
55.
Zurück zum Zitat Harding D, Mackenzie SR, Walsh TR (2006) Structural isomers and reactivity for Rh6, Rh 6 + . J Phys Chem B 110:18272–18277CrossRefPubMed Harding D, Mackenzie SR, Walsh TR (2006) Structural isomers and reactivity for Rh6, Rh 6 + . J Phys Chem B 110:18272–18277CrossRefPubMed
56.
Zurück zum Zitat Da Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Phys Rev B 86:125430–125435CrossRef Da Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Phys Rev B 86:125430–125435CrossRef
57.
Zurück zum Zitat Sun Y, Fournier R, Zhang M (2009) Structural and electronic properties of 13-atom 4d transition-metal clusters. Phys Rev B 79:043202–043211CrossRef Sun Y, Fournier R, Zhang M (2009) Structural and electronic properties of 13-atom 4d transition-metal clusters. Phys Rev B 79:043202–043211CrossRef
58.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRef Lee C, Yang W, Parr RG (1988) Development Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRef
59.
Zurück zum Zitat Miehlich B, Sabin A, Stoll H, Preus H (1989) Results obtained with the correlation energy density functional of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRef Miehlich B, Sabin A, Stoll H, Preus H (1989) Results obtained with the correlation energy density functional of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206CrossRef
60.
Zurück zum Zitat Futschek T, Marsman M, Hafner J (2005) Structural and magnetic isomers of small Pd and Rh clusters: an ab initio functional study. J Phys Condens Matter 17:5927–5963CrossRef Futschek T, Marsman M, Hafner J (2005) Structural and magnetic isomers of small Pd and Rh clusters: an ab initio functional study. J Phys Condens Matter 17:5927–5963CrossRef
Metadaten
Titel
Small Rhodium Clusters: A HF and DFT Study–III
verfasst von
M. A. Mora
M. A. Mora-Ramírez
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-74582-4_12