Skip to main content
Erschienen in:

27.05.2024

Small target disease detection based on YOLOv5 framework for intelligent bridges

verfasst von: Tingping Zhang, Yuanjun Xiong, Shixin Jiang, Pingxi Dan, Guan Gui

Erschienen in: Peer-to-Peer Networking and Applications | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel diskutiert die entscheidende Rolle von Brücken für die Verkehrssicherheit und die Notwendigkeit zeitnaher Gesundheitsbewertungen aufgrund des zunehmenden Verkehrs und der alternden Infrastruktur. Er führt das YOLOv5-Rahmenwerk zur Erkennung von Krankheiten ein, hebt die Herausforderungen der Erkennung kleiner Ziele hervor und schlägt ein verbessertes YOLOv5-Modell mit einer kleinen Erkennungsschicht und einem ECA-Aufmerksamkeitsmechanismus vor. Das verbesserte Modell zeigt verbesserte Genauigkeit und Robustheit bei der Erkennung verschiedener Brückenkrankheiten wie Korrosion, Bewehrung, Flecken, Löcher und Späne unter komplexen Bedingungen. Der Artikel vergleicht das verbesserte Modell auch mit anderen Algorithmen zur Objekterkennung und zeigt seine überlegene Leistung bei der Erkennung von Brückenkrankheiten.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yin F, Mei S (2022) The ministry of transport issued the 2021 statistical bulletin of transport industry development. Waterway Port 43(2):346 Yin F, Mei S (2022) The ministry of transport issued the 2021 statistical bulletin of transport industry development. Waterway Port 43(2):346
2.
Zurück zum Zitat Xie H (2022) Highway bridge diseases cause analysis and repair processing measures. Transportation World 624(30):31–33 Xie H (2022) Highway bridge diseases cause analysis and repair processing measures. Transportation World 624(30):31–33
3.
Zurück zum Zitat Si X, Liu D, Zhang P, Zhang Z, Huang Q (2021) Research on automatic recognition method of apparent diseases of bridge steel structure based on YOLOv4. International Conference on Computer Vision, Image and Deep Learning (CVIDL), pp. 1–5 Si X, Liu D, Zhang P, Zhang Z, Huang Q (2021) Research on automatic recognition method of apparent diseases of bridge steel structure based on YOLOv4. International Conference on Computer Vision, Image and Deep Learning (CVIDL), pp. 1–5
4.
Zurück zum Zitat Zou J, Yang J, Li H, Shuai C, Huang D, Jiang S (2021) Bridge apparent disease recognition based on improved YOLO v3 algorithm under complex background. Journal of Railway Science and Engineering 18(12):3257–3266 Zou J, Yang J, Li H, Shuai C, Huang D, Jiang S (2021) Bridge apparent disease recognition based on improved YOLO v3 algorithm under complex background. Journal of Railway Science and Engineering 18(12):3257–3266
5.
Zurück zum Zitat Huang Y, Xu X, He Z, Wang Y, Lu Z, Shi F, Wan H, Gui G (2023) A lightweight road crack and damage detection method using Yolov5s for IoT applications. 2023 IEEE/CIC International Conference on Communications in China (ICCC), pp 1–5 Huang Y, Xu X, He Z, Wang Y, Lu Z, Shi F, Wan H, Gui G (2023) A lightweight road crack and damage detection method using Yolov5s for IoT applications. 2023 IEEE/CIC International Conference on Communications in China (ICCC), pp 1–5
6.
Zurück zum Zitat Lin Y, Tu Y, Dou Z, Chen L, Mao S (2021) Contour Stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 7(1):34–46CrossRef Lin Y, Tu Y, Dou Z, Chen L, Mao S (2021) Contour Stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 7(1):34–46CrossRef
9.
Zurück zum Zitat Yao Z, Fu X, Guo L, Wang Y, Lin Y, Shi S, Gui G (2023) Few-shot specific emitter identification using asymmetric masked auto-encoder. IEEE Commun Lett 27(10):2657–2661CrossRef Yao Z, Fu X, Guo L, Wang Y, Lin Y, Shi S, Gui G (2023) Few-shot specific emitter identification using asymmetric masked auto-encoder. IEEE Commun Lett 27(10):2657–2661CrossRef
12.
Zurück zum Zitat Yin J, Zhang C, Xie W, Liang G, Zhang L, Gui G (2023) Anomaly traffic detection based on feature fluctuation for secure industrial internet of things. Peer Peer Netw Appl 16(4):1680–1695CrossRef Yin J, Zhang C, Xie W, Liang G, Zhang L, Gui G (2023) Anomaly traffic detection based on feature fluctuation for secure industrial internet of things. Peer Peer Netw Appl 16(4):1680–1695CrossRef
13.
Zurück zum Zitat Li R, Yu J, Li F et al (2023) Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Constr Build Mater 362:129659CrossRef Li R, Yu J, Li F et al (2023) Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Constr Build Mater 362:129659CrossRef
14.
Zurück zum Zitat Nguyen DH, Wahab MA (2023) Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN. Adv Eng Softw 176:103371CrossRef Nguyen DH, Wahab MA (2023) Damage detection in slab structures based on two-dimensional curvature mode shape method and Faster R-CNN. Adv Eng Softw 176:103371CrossRef
15.
Zurück zum Zitat Yu L, He S, Liu X et al (2022) Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster region-based convolutional neural network. Multimed Tools Appl 81(13):18279–18304CrossRef Yu L, He S, Liu X et al (2022) Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster region-based convolutional neural network. Multimed Tools Appl 81(13):18279–18304CrossRef
16.
Zurück zum Zitat Pazhani A, Vasanthanayaki C (2022) Object detection in satellite images by faster R-CNN incorporated with enhanced ROI pooling (FrRNet-ERoI) framework. Earth Sci Inf 15(1):553–561CrossRef Pazhani A, Vasanthanayaki C (2022) Object detection in satellite images by faster R-CNN incorporated with enhanced ROI pooling (FrRNet-ERoI) framework. Earth Sci Inf 15(1):553–561CrossRef
17.
Zurück zum Zitat Lu G, He X, Wang Q et al (2022) Bridge crack detection based on improved single shot multi-box detector. Plos One 17(10) Lu G, He X, Wang Q et al (2022) Bridge crack detection based on improved single shot multi-box detector. Plos One 17(10)
18.
Zurück zum Zitat Teng S, Liu Z, Li X (2022) Improved YOLOv3-based bridge surface defect detection by combining High-and low-resolution feature images. Buildings 12(8):1225CrossRef Teng S, Liu Z, Li X (2022) Improved YOLOv3-based bridge surface defect detection by combining High-and low-resolution feature images. Buildings 12(8):1225CrossRef
19.
Zurück zum Zitat Wu P, Liu A, Fu J et al (2022) Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Eng Struct 272:114962CrossRef Wu P, Liu A, Fu J et al (2022) Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Eng Struct 272:114962CrossRef
21.
Zurück zum Zitat Gong H, Mu T, Li Q et al (2022) Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sensing 14(12):2861CrossRef Gong H, Mu T, Li Q et al (2022) Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sensing 14(12):2861CrossRef
23.
Zurück zum Zitat Jang K, Jung H, An YK (2022) Automated bridge crack evaluation through deep super resolution network-based hybrid image matching. Autom Constr 137:104229CrossRef Jang K, Jung H, An YK (2022) Automated bridge crack evaluation through deep super resolution network-based hybrid image matching. Autom Constr 137:104229CrossRef
24.
Zurück zum Zitat Zhang C, Chang C, Jamshidi M (2020) Concrete bridge surface damage detection using a single-stage detector. Comput Aided Civ Inf Eng 35(4):389–409CrossRef Zhang C, Chang C, Jamshidi M (2020) Concrete bridge surface damage detection using a single-stage detector. Comput Aided Civ Inf Eng 35(4):389–409CrossRef
25.
Zurück zum Zitat Yu L, He S, Liu X et al (2022) Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster region-based convolutional neural network. Multimed Tools Appl 81(13):18279–18304CrossRef Yu L, He S, Liu X et al (2022) Engineering-oriented bridge multiple-damage detection with damage integrity using modified faster region-based convolutional neural network. Multimed Tools Appl 81(13):18279–18304CrossRef
26.
Zurück zum Zitat Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790 Tan M, Pang R, Le QV (2020) Efficientdet: scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 10781–10790
27.
Zurück zum Zitat Liu Z, Gao G, Sun L et al (2020) IPG-net: image pyramid guidance network for small object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 1026–1027 Liu Z, Gao G, Sun L et al (2020) IPG-net: image pyramid guidance network for small object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp 1026–1027
28.
Zurück zum Zitat Liu G, Han J, Rong W (2021) Feedback-driven loss function for small object detection. Image Vis Comput 111:104197CrossRef Liu G, Han J, Rong W (2021) Feedback-driven loss function for small object detection. Image Vis Comput 111:104197CrossRef
29.
Zurück zum Zitat Zhao L, Liu S (2023) Small object detection algorithm based on adaptive fusion of global and local image features. [Online] Control and Decision Making. pp 1–9 Zhao L, Liu S (2023) Small object detection algorithm based on adaptive fusion of global and local image features. [Online] Control and Decision Making. pp 1–9
30.
Zurück zum Zitat Bosquet B, Mucientes M, Brea VM (2021) STDnet-ST: Spatio-temporal ConvNet for small object detection. Pattern Recogn 116:107929CrossRef Bosquet B, Mucientes M, Brea VM (2021) STDnet-ST: Spatio-temporal ConvNet for small object detection. Pattern Recogn 116:107929CrossRef
31.
Zurück zum Zitat Benjumea A, Teeti I, Cuzzolin F et al (2021) YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. International Conference on Computer Vision (ICCV 2021): The ROAD Challenge Workshop 1-11. https://arxiv.org/abs/2112.11798 Benjumea A, Teeti I, Cuzzolin F et al (2021) YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. International Conference on Computer Vision (ICCV 2021): The ROAD Challenge Workshop 1-11. https://​arxiv.​org/​abs/​2112.​11798
32.
Zurück zum Zitat Lin TY, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp 2117–2125 Lin TY, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp 2117–2125
34.
Zurück zum Zitat Ren S, He K, Girshick R et al (2015) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst 28:1–9 Ren S, He K, Girshick R et al (2015) Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Proces Syst 28:1–9
35.
Zurück zum Zitat Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. 14th European Conference on Computer Vision (ECCV), pp 21–37 Liu W, Anguelov D, Erhan D et al (2016) SSD: single shot multibox detector. 14th European Conference on Computer Vision (ECCV), pp 21–37
36.
Zurück zum Zitat Du D, Zhu P, Wen L et al (2019) VisDrone-DET2019: the vision meets drone object detection in image challenge results. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp 213–226 Du D, Zhu P, Wen L et al (2019) VisDrone-DET2019: the vision meets drone object detection in image challenge results. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp 213–226
Metadaten
Titel
Small target disease detection based on YOLOv5 framework for intelligent bridges
verfasst von
Tingping Zhang
Yuanjun Xiong
Shixin Jiang
Pingxi Dan
Guan Gui
Publikationsdatum
27.05.2024
Verlag
Springer US
Erschienen in
Peer-to-Peer Networking and Applications / Ausgabe 5/2024
Print ISSN: 1936-6442
Elektronische ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-024-01731-w