Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2021

08.05.2021

Smart Composite Structures with Embedded Sensors for Load and Damage Monitoring – A Review

verfasst von: R. Janeliukstis, D. Mironovs

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fibre-reinforced polymer (FRP) composite materials are widely used in different branches of industry, especially in aerospace, owing to their low mass, high strength and stiffness, and good fatigue and corrosion resistance. However, these materials are prone to the impact damage. Especially dangerous are barely visible impact faults, since it is difficult to detect them. If left unrepaired, they can lead to collapse of the whole structure. Hence, a continuous monitoring for loads and possible impact faults in these structures is crucial. Traditionally, this is realized via surface-mounted sensor technologies. However, smart structures with internally embedded sensors offer several advantages — sensor protection from the environment, better coupling to the structure, and no disruption of surface geometry, which is essential for aerodynamic elements, also allowing monitoring in the real time without stopping their operations. The most popular existing smart structural solutions — piezoelectric sensor networks and fibre optics, are reviewed along with other, less common sensor choices. This review also covers the limitations associated with sensor embedment, whose addressing would bring the society to a more reliable, cheaper, and efficient maintenance of transportation and infrastructure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. P. Qing, S. J. Beard, A. Kumar, T. K. Ooi, and F.-K. Chang, “Built-in sensor network for structural health monitoring of composite structure,” J. Intel. Mat. Syst. Str., 18, 39-49 (2017).CrossRef X. P. Qing, S. J. Beard, A. Kumar, T. K. Ooi, and F.-K. Chang, “Built-in sensor network for structural health monitoring of composite structure,” J. Intel. Mat. Syst. Str., 18, 39-49 (2017).CrossRef
2.
Zurück zum Zitat L. C. Heaton, M. Kranz, and J. Williams, “Embedded fiber optics for structural health monitoring of composite motor cases,” Proc. SPIE 5393, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites III, NDE for Health Monitoring and Diagnostics, San Diego, CA, USA (2004). L. C. Heaton, M. Kranz, and J. Williams, “Embedded fiber optics for structural health monitoring of composite motor cases,” Proc. SPIE 5393, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites III, NDE for Health Monitoring and Diagnostics, San Diego, CA, USA (2004).
4.
Zurück zum Zitat G. Marsh, “Airbus A350 XWB update,” Reinf. Plast., 54, No. 6, 20-24 (2010).CrossRef G. Marsh, “Airbus A350 XWB update,” Reinf. Plast., 54, No. 6, 20-24 (2010).CrossRef
5.
Zurück zum Zitat H. Zhang, E. Bilotti, and T. Peijs, “The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review,” J. Nanocomposites, 1, No. 4, 167-184 (2015).CrossRef H. Zhang, E. Bilotti, and T. Peijs, “The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review,” J. Nanocomposites, 1, No. 4, 167-184 (2015).CrossRef
6.
Zurück zum Zitat L. Qiu, X. Lin, Y. Wang, S. Yuan, and W. Shi, “A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption,” Mech. Syst. Signal Pr., 144, 106829 (2020).CrossRef L. Qiu, X. Lin, Y. Wang, S. Yuan, and W. Shi, “A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption,” Mech. Syst. Signal Pr., 144, 106829 (2020).CrossRef
7.
Zurück zum Zitat P. D. Foote, “Integration of structural health monitoring sensors with aerospace,” Adv. Mater. Res-Switz., 46, No. 2, 197-203 (2015). P. D. Foote, “Integration of structural health monitoring sensors with aerospace,” Adv. Mater. Res-Switz., 46, No. 2, 197-203 (2015).
8.
Zurück zum Zitat M. Lin and F.-K. Chang, “The manufacture of composite structures with a built-in network of piezoceramics,” Compos. Sci. Technol., 62, 919-939 (2002).CrossRef M. Lin and F.-K. Chang, “The manufacture of composite structures with a built-in network of piezoceramics,” Compos. Sci. Technol., 62, 919-939 (2002).CrossRef
9.
Zurück zum Zitat W. J. Staszewski, S. Mahzan, and R. Traynor, “Health monitoring of aerospace composite structures — Active and passive approach,” Compos. Sci. Technol., 69, 1678-1685 (2009).CrossRef W. J. Staszewski, S. Mahzan, and R. Traynor, “Health monitoring of aerospace composite structures — Active and passive approach,” Compos. Sci. Technol., 69, 1678-1685 (2009).CrossRef
10.
Zurück zum Zitat F. J. Yang and W. J. Cantwell, “Impact damage initiation in composite materials,” Compos. Sci. Technol., 70, 336-342 (2010).CrossRef F. J. Yang and W. J. Cantwell, “Impact damage initiation in composite materials,” Compos. Sci. Technol., 70, 336-342 (2010).CrossRef
11.
Zurück zum Zitat J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, A. Lagounov, and K. Lafdi, “Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors,” Carbon, 66, 191-200 (2014).CrossRef J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, A. Lagounov, and K. Lafdi, “Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors,” Carbon, 66, 191-200 (2014).CrossRef
12.
Zurück zum Zitat Y. Lin, Le Tu, H. Liu, and Wei Li, “Fault analysis of wind turbines in China,” Renew. Sust. Energ. Rev., 55, 482-490 (2016). Y. Lin, Le Tu, H. Liu, and Wei Li, “Fault analysis of wind turbines in China,” Renew. Sust. Energ. Rev., 55, 482-490 (2016).
13.
Zurück zum Zitat H. F. Zhou, H. Y. Dou, L. Z. Qin, Y. Chen, Y. Q. Ni, and J. M. Ko, “A review of full-scale structural testing of wind turbine blades,” Renew. Sust. Energ. Rev., 33, 177-187 (2014).CrossRef H. F. Zhou, H. Y. Dou, L. Z. Qin, Y. Chen, Y. Q. Ni, and J. M. Ko, “A review of full-scale structural testing of wind turbine blades,” Renew. Sust. Energ. Rev., 33, 177-187 (2014).CrossRef
14.
Zurück zum Zitat B. Chen, S. You, Y. Yu, and Y. Zhou, “Acoustical damage detection of wind turbine blade using the improved incremental support vector data description,” Renew. Energ., 156, 548-557 (2020).CrossRef B. Chen, S. You, Y. Yu, and Y. Zhou, “Acoustical damage detection of wind turbine blade using the improved incremental support vector data description,” Renew. Energ., 156, 548-557 (2020).CrossRef
15.
Zurück zum Zitat R. Yang, Y. He, and H. Zhang, “Progress and trends in nondestructive testing and evaluation for wind turbine composite blade,” Renew. Sust. Energ. Rev., 60, 1225-1250 (2016).CrossRef R. Yang, Y. He, and H. Zhang, “Progress and trends in nondestructive testing and evaluation for wind turbine composite blade,” Renew. Sust. Energ. Rev., 60, 1225-1250 (2016).CrossRef
16.
Zurück zum Zitat A. Ghoshal, M. J. Sundaresan, M. J. Schulz, and P. F. Pai, “Structural health monitoring techniques for wind turbine blades,” J. Wind Eng. Ind. Aerod., 85, 309-324 (2000).CrossRef A. Ghoshal, M. J. Sundaresan, M. J. Schulz, and P. F. Pai, “Structural health monitoring techniques for wind turbine blades,” J. Wind Eng. Ind. Aerod., 85, 309-324 (2000).CrossRef
17.
Zurück zum Zitat Z. Su, X. Wang, Z. Chen, L. Ye, and D. Wang, “A built-in active sensor network for health monitoring of composite structures,” Smart Mater. Struct., 15, 1939-1949 (2006).CrossRef Z. Su, X. Wang, Z. Chen, L. Ye, and D. Wang, “A built-in active sensor network for health monitoring of composite structures,” Smart Mater. Struct., 15, 1939-1949 (2006).CrossRef
18.
Zurück zum Zitat V. K. Varadan and V. V. Varadan, “Conformal and embedded IDT microsensors for health monitoring of structures,” Proc. SPIE 3990, Smart Structures and Materials 2000: Smart Electronics and MEMS, SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA (2000). V. K. Varadan and V. V. Varadan, “Conformal and embedded IDT microsensors for health monitoring of structures,” Proc. SPIE 3990, Smart Structures and Materials 2000: Smart Electronics and MEMS, SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA (2000).
19.
Zurück zum Zitat A. Tayebi and M. M. Ul Hoque, “Design of experiments optimization of embedded MEMS sensors in composites for structural health monitoring,” Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Smart Structures and Materials, San Diego, California, USA (2003). A. Tayebi and M. M. Ul Hoque, “Design of experiments optimization of embedded MEMS sensors in composites for structural health monitoring,” Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Smart Structures and Materials, San Diego, California, USA (2003).
20.
Zurück zum Zitat L. Lampani, F. Sarasini, J. Tirillò, and P. Gaudenzi, “Analysis of damage in composite laminates with embedded piezoelectric patches subjected to bending action,” Compos. Struct., 202, 935-942 (2018).CrossRef L. Lampani, F. Sarasini, J. Tirillò, and P. Gaudenzi, “Analysis of damage in composite laminates with embedded piezoelectric patches subjected to bending action,” Compos. Struct., 202, 935-942 (2018).CrossRef
21.
Zurück zum Zitat P. Wierach, Nano-Micro-Macro. In: M. Wiedemann, M. Sinapius (eds). Adaptive, tolerant and efficient composite structures, research topics in aerospace. Berlin Heidelberg: Springer-Verlag; (2013). P. Wierach, Nano-Micro-Macro. In: M. Wiedemann, M. Sinapius (eds). Adaptive, tolerant and efficient composite structures, research topics in aerospace. Berlin Heidelberg: Springer-Verlag; (2013).
22.
Zurück zum Zitat C. A. Paget, K. Levin, and C. Delebarre, “Actuation performance of embedded piezoceramic transducer in mechanically loaded composites,” Smart Mater. Struct., 11, No. 6, 2002. C. A. Paget, K. Levin, and C. Delebarre, “Actuation performance of embedded piezoceramic transducer in mechanically loaded composites,” Smart Mater. Struct., 11, No. 6, 2002.
23.
Zurück zum Zitat N. D. Alexopoulos, C. Bartholome, P. Poulin, and Z. Marioli-Riga, “Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers,” Compos. Sci. Technol., 70, 260-271 (2010).CrossRef N. D. Alexopoulos, C. Bartholome, P. Poulin, and Z. Marioli-Riga, “Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers,” Compos. Sci. Technol., 70, 260-271 (2010).CrossRef
24.
Zurück zum Zitat Y. J. Yan and L. H. Yam, “Online detection of crack damage in composite plates using embedded piezoelectric actuators/ sensors and wavelet analysis,” Compos. Struct., 58, 29-38 (2002).CrossRef Y. J. Yan and L. H. Yam, “Online detection of crack damage in composite plates using embedded piezoelectric actuators/ sensors and wavelet analysis,” Compos. Struct., 58, 29-38 (2002).CrossRef
25.
Zurück zum Zitat C. C. Bowland, Y. Wang, and A. K. Naskar, “Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites,” Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, Oregon, USA (2017). C. C. Bowland, Y. Wang, and A. K. Naskar, “Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites,” Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, Oregon, USA (2017).
26.
Zurück zum Zitat S. Bhalla and C. K. Soh, “Structural health monitoring by piezo-impedance transducers. I: Modeling,” J. Aerospace Eng., 17, No. 4, 154-165 (2004).CrossRef S. Bhalla and C. K. Soh, “Structural health monitoring by piezo-impedance transducers. I: Modeling,” J. Aerospace Eng., 17, No. 4, 154-165 (2004).CrossRef
27.
Zurück zum Zitat J. H. Nienwenhui, J. J. Neumann, D. W. Greve, and I. J. Oppenheim, “Generation and detection of guided waves using PZT wafer transducers,” IEEE T Ultrason. Ferr., 52, No. 11, 2103-2111 (2005).CrossRef J. H. Nienwenhui, J. J. Neumann, D. W. Greve, and I. J. Oppenheim, “Generation and detection of guided waves using PZT wafer transducers,” IEEE T Ultrason. Ferr., 52, No. 11, 2103-2111 (2005).CrossRef
28.
Zurück zum Zitat L. Qiu, X. Deng, S. Yuan, Y. Huang, and Y. Ren, “Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences,” Sensors, 18, 2218 (2018).CrossRef L. Qiu, X. Deng, S. Yuan, Y. Huang, and Y. Ren, “Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences,” Sensors, 18, 2218 (2018).CrossRef
29.
Zurück zum Zitat B. Lin and V. Giurgiutiu, “Modeling and testing of PZT and PVDF piezoelectric wafer active sensors,” Smart Mater Struct., 15, 1085-109 (2006).CrossRef B. Lin and V. Giurgiutiu, “Modeling and testing of PZT and PVDF piezoelectric wafer active sensors,” Smart Mater Struct., 15, 1085-109 (2006).CrossRef
30.
Zurück zum Zitat M. Lin, A. Kumar, S. Beard, and X. Qing, “Built-in structural diagnostic with the SMART layer and SMART suitcase,” Smart Materials Bulletin, 2001, No. 4, 7-11 (2001). M. Lin, A. Kumar, S. Beard, and X. Qing, “Built-in structural diagnostic with the SMART layer and SMART suitcase,” Smart Materials Bulletin, 2001, No. 4, 7-11 (2001).
31.
Zurück zum Zitat A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Compos Part B-Eng., 71, 52-62 (2015).CrossRef A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Compos Part B-Eng., 71, 52-62 (2015).CrossRef
32.
Zurück zum Zitat M. B. Lemistre, Electric and Electromagnetic Properties Sensing, in: C. Boller, F.-K. Chang and Y. Fujino (eds.), Encyclopedia of Structural Health Monitoring, Wiley (2009). M. B. Lemistre, Electric and Electromagnetic Properties Sensing, in: C. Boller, F.-K. Chang and Y. Fujino (eds.), Encyclopedia of Structural Health Monitoring, Wiley (2009).
33.
Zurück zum Zitat M. Melnykowycz and A. J. Brunner, “The performance of integrated active fiber composites in carbon fiber laminates,” Smart Mater. Struct., 20, No. 7, 075007 (2011). M. Melnykowycz and A. J. Brunner, “The performance of integrated active fiber composites in carbon fiber laminates,” Smart Mater. Struct., 20, No. 7, 075007 (2011).
34.
Zurück zum Zitat R. Paradies and B. Schlapfer, “Finite element modeling of piezoelectric elements with complex electrode configuration,” Smart Mater. Struct., 18, 025015 (2009).CrossRef R. Paradies and B. Schlapfer, “Finite element modeling of piezoelectric elements with complex electrode configuration,” Smart Mater. Struct., 18, 025015 (2009).CrossRef
35.
Zurück zum Zitat D. N. Solovyev, S. S. Dadunashvili, A. Mironov, P. Doronkin, and D. Mironovs, “Mathematical modeling and experimental investigations of a main rotor made from layered composite materials,” Mech. Compos. Mater., 56, 103-110 (2020).CrossRef D. N. Solovyev, S. S. Dadunashvili, A. Mironov, P. Doronkin, and D. Mironovs, “Mathematical modeling and experimental investigations of a main rotor made from layered composite materials,” Mech. Compos. Mater., 56, 103-110 (2020).CrossRef
36.
Zurück zum Zitat A. Mironov, A. Priklonskiy, D. Mironovs, and P. Doronkin, “Application of deformation sensors for structural health monitoring of transport vehicles,” Lecture Notes in Networks and Systems, 117 (2020). A. Mironov, A. Priklonskiy, D. Mironovs, and P. Doronkin, “Application of deformation sensors for structural health monitoring of transport vehicles,” Lecture Notes in Networks and Systems, 117 (2020).
37.
Zurück zum Zitat J. R. Zayas, D. P. Roach, M. A. Rumsey, W. R. Allan, and D. A. Horsley, “Low-cost fiber Bragg grating interrogation system for in situ assessment of structures,” SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA (2007). J. R. Zayas, D. P. Roach, M. A. Rumsey, W. R. Allan, and D. A. Horsley, “Low-cost fiber Bragg grating interrogation system for in situ assessment of structures,” SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA (2007).
38.
Zurück zum Zitat R. De Oliveira, C. A. Ramos, and A. T. Marques, “Health monitoring of composite structures by embedded FBG and interferometric Fabry–Perot sensors,” Comput Struct., 86, No. 3, 340–346 (2008).CrossRef R. De Oliveira, C. A. Ramos, and A. T. Marques, “Health monitoring of composite structures by embedded FBG and interferometric Fabry–Perot sensors,” Comput Struct., 86, No. 3, 340–346 (2008).CrossRef
39.
Zurück zum Zitat M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring — present status and applications,” Sensor Actuat. A-Phys, 147, No. 1, 150–164 (2008).CrossRef M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring — present status and applications,” Sensor Actuat. A-Phys, 147, No. 1, 150–164 (2008).CrossRef
40.
Zurück zum Zitat M. Frövel, G. Carrión, J. M. Pintado, J. Cabezas, and F. Cabrerizo, “Health and usage monitoring of Spanish National Institute for Aerospace Technology unmanned air vehicles,” Struct. Health Monit., 16, No. 4, 486-493 (2016).CrossRef M. Frövel, G. Carrión, J. M. Pintado, J. Cabezas, and F. Cabrerizo, “Health and usage monitoring of Spanish National Institute for Aerospace Technology unmanned air vehicles,” Struct. Health Monit., 16, No. 4, 486-493 (2016).CrossRef
41.
Zurück zum Zitat J. Alvarez-Montoya, A. Carvajal-Castrillón, and J. Sierra-Pérez, “In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition,” Mech. Syst. Signal Pr., 136, 106526 (2020).CrossRef J. Alvarez-Montoya, A. Carvajal-Castrillón, and J. Sierra-Pérez, “In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition,” Mech. Syst. Signal Pr., 136, 106526 (2020).CrossRef
42.
Zurück zum Zitat T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct., 22 075027 (2013).CrossRef T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct., 22 075027 (2013).CrossRef
43.
Zurück zum Zitat H. Cheng-Yu, Z. Yi-Fan, Z. Meng-Xi, Leung Lai Ming Gordon, and L. Li-Qiang, “Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques,” Sensor Actuat A-Phus., 244, 184-197 (2016). H. Cheng-Yu, Z. Yi-Fan, Z. Meng-Xi, Leung Lai Ming Gordon, and L. Li-Qiang, “Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques,” Sensor Actuat A-Phus., 244, 184-197 (2016).
44.
Zurück zum Zitat M. Yeager, M. Todd, W. Gregory, and C. Key, “Assessment of embedded fiber Bragg gratings for structural health monitoring of composites,” Struct. Health Monit., 16, No. 3, 262-275 (2017).CrossRef M. Yeager, M. Todd, W. Gregory, and C. Key, “Assessment of embedded fiber Bragg gratings for structural health monitoring of composites,” Struct. Health Monit., 16, No. 3, 262-275 (2017).CrossRef
45.
Zurück zum Zitat H. V. Thakur, S. M. Nalawade, Y. Saxena, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring of composite,” Sensor Actuat. A-Phys., 167, 204–212 (2011).CrossRef H. V. Thakur, S. M. Nalawade, Y. Saxena, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring of composite,” Sensor Actuat. A-Phys., 167, 204–212 (2011).CrossRef
46.
Zurück zum Zitat P. Antunes, H. Lima, N. Alberto et al., “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J., 9, No. 11, 1347-1354 (2009).CrossRef P. Antunes, H. Lima, N. Alberto et al., “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J., 9, No. 11, 1347-1354 (2009).CrossRef
47.
Zurück zum Zitat X. W. Ye, Y. H. Su, and J. P. Han, “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review,” The Scientific World Journal, 2014, Article ID 652329 (2014).CrossRef X. W. Ye, Y. H. Su, and J. P. Han, “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review,” The Scientific World Journal, 2014, Article ID 652329 (2014).CrossRef
48.
Zurück zum Zitat I. Kressel, B. Dorfman, Y. Botsev, A. Handelman, J. Balter, A. C. R. Pillai, M. H. Prasad, N. Gupta, A. M. Joseph, R. Sundaram, and M. Tur, “Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle,” Smart Mater. Struct., 24, No. 7, 075022 (2015). I. Kressel, B. Dorfman, Y. Botsev, A. Handelman, J. Balter, A. C. R. Pillai, M. H. Prasad, N. Gupta, A. M. Joseph, R. Sundaram, and M. Tur, “Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle,” Smart Mater. Struct., 24, No. 7, 075022 (2015).
49.
Zurück zum Zitat N. Gutiérrez, R. Fernández, P. Galvín, and F. Lasagni, “Fiber Bragg grating application to study an unmanned aerial system composite wing,” J. Intel. Mater. Syst. Str., 30, No. 8, 1252–1262 (2019).CrossRef N. Gutiérrez, R. Fernández, P. Galvín, and F. Lasagni, “Fiber Bragg grating application to study an unmanned aerial system composite wing,” J. Intel. Mater. Syst. Str., 30, No. 8, 1252–1262 (2019).CrossRef
50.
Zurück zum Zitat A. J. van Wyk and C. V. Robertson, “A systems engineering approach to structural health monitoring of composites using embedded optical fibre Bragg sensors for aeronautical applications,” Proc. SPIE 8066, Smart Sensors, Actuators, and MEMS V, 80660S (2011). A. J. van Wyk and C. V. Robertson, “A systems engineering approach to structural health monitoring of composites using embedded optical fibre Bragg sensors for aeronautical applications,” Proc. SPIE 8066, Smart Sensors, Actuators, and MEMS V, 80660S (2011).
51.
Zurück zum Zitat D. A. Krohn, T. W. MacDougall, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, SPIE Press monograph PM247, fourth ed., SPIE Press (2014). D. A. Krohn, T. W. MacDougall, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, SPIE Press monograph PM247, fourth ed., SPIE Press (2014).
52.
Zurück zum Zitat N. Gutiérrez, “Monitorización Estructural SHM Mediante Redes De Bragg,” Phd Thesis, University of Seville, Spain (2018). N. Gutiérrez, “Monitorización Estructural SHM Mediante Redes De Bragg,” Phd Thesis, University of Seville, Spain (2018).
53.
Zurück zum Zitat A. Carvajal-Castrillón, J. Alvarez-Montoya, J. Niño-Navia, L. Betancur-Agudelo, F. Amaya-Fernandez, and J. Sierra-Pérez, “Structural health monitoring on an unmanned aerial vehicle wing’s beam based on fiber Bragg gratings and pattern recognition techniques,” Procedia Structural Integrity, 5, 729-736 (2017).CrossRef A. Carvajal-Castrillón, J. Alvarez-Montoya, J. Niño-Navia, L. Betancur-Agudelo, F. Amaya-Fernandez, and J. Sierra-Pérez, “Structural health monitoring on an unmanned aerial vehicle wing’s beam based on fiber Bragg gratings and pattern recognition techniques,” Procedia Structural Integrity, 5, 729-736 (2017).CrossRef
58.
Zurück zum Zitat W. Baker, I. McKenzie, and R. Jones, “Development of life extension strategies for Australian military aircraft, using structural health monitoring of composite repairs and joints,” Compos. Struct., 66, 133–143 (2004).CrossRef W. Baker, I. McKenzie, and R. Jones, “Development of life extension strategies for Australian military aircraft, using structural health monitoring of composite repairs and joints,” Compos. Struct., 66, 133–143 (2004).CrossRef
59.
Zurück zum Zitat S.-W. Kim, W.-R. Kang, M.-S. Jeong, I. Lee, and I.-B. Kwon, “Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line,” Smart Mater. Struct., 22, 125004 (2013).CrossRef S.-W. Kim, W.-R. Kang, M.-S. Jeong, I. Lee, and I.-B. Kwon, “Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line,” Smart Mater. Struct., 22, 125004 (2013).CrossRef
60.
Zurück zum Zitat H.-I. Kim, J.-H. Han, and H.-J. Bang, “Real-time deformed shape estimation of a wind turbine blade using distributed fiber Bragg grating sensors,” Wind Energ., 17, 1455-1467 (2014). H.-I. Kim, J.-H. Han, and H.-J. Bang, “Real-time deformed shape estimation of a wind turbine blade using distributed fiber Bragg grating sensors,” Wind Energ., 17, 1455-1467 (2014).
61.
Zurück zum Zitat S. Park, T. Park and K. Han, “Real-time monitoring of composite wind turbine blades using fiber Bragg grating sensors,” Adv. Compos. Mater., 20, No. 1, 39-51 (2011).CrossRef S. Park, T. Park and K. Han, “Real-time monitoring of composite wind turbine blades using fiber Bragg grating sensors,” Adv. Compos. Mater., 20, No. 1, 39-51 (2011).CrossRef
62.
Zurück zum Zitat A. Downey, F. Ubertini, and S. Laflamme, “Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion,” J. Wind Eng. Ind. Aerod., 168, 288–296 (2017).CrossRef A. Downey, F. Ubertini, and S. Laflamme, “Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion,” J. Wind Eng. Ind. Aerod., 168, 288–296 (2017).CrossRef
63.
Zurück zum Zitat Z. Racz, E. M. Hackney, and D. Wood, “Soft elastomeric capacitive sensor for structural health monitoring,” Procedia Eng., 168, 721-724 (2016).CrossRef Z. Racz, E. M. Hackney, and D. Wood, “Soft elastomeric capacitive sensor for structural health monitoring,” Procedia Eng., 168, 721-724 (2016).CrossRef
64.
Zurück zum Zitat Y. Suzuki, T. Suzuki, A. Todoroki, and Y. Mizutani, “Smart lightning protection skin for real-time load monitoring of composite aircraft structures under multiple impacts,” Compos. Part A-Appl. S., 67, 44–54 (2014).CrossRef Y. Suzuki, T. Suzuki, A. Todoroki, and Y. Mizutani, “Smart lightning protection skin for real-time load monitoring of composite aircraft structures under multiple impacts,” Compos. Part A-Appl. S., 67, 44–54 (2014).CrossRef
65.
Zurück zum Zitat Dexmet Corporation. Lightning Strike Protection for Carbon Fiber Airplane. In: Advancement of Materials Process Engineering (SAMPE) Conference (2007). Dexmet Corporation. Lightning Strike Protection for Carbon Fiber Airplane. In: Advancement of Materials Process Engineering (SAMPE) Conference (2007).
66.
Zurück zum Zitat C. Cherif, E. Haentzsche, R. Mueller, A. Nocke, M. Huebner, and M. M. B. Hasan, in: V. Koncar (eds.), Carbon fibre sensors embedded in glass fibre-based composites for windmill blades, Ch. 15, Woodhead Publishing, pp. 329-352 (2016). C. Cherif, E. Haentzsche, R. Mueller, A. Nocke, M. Huebner, and M. M. B. Hasan, in: V. Koncar (eds.), Carbon fibre sensors embedded in glass fibre-based composites for windmill blades, Ch. 15, Woodhead Publishing, pp. 329-352 (2016).
67.
Zurück zum Zitat S. Butler, M. Gurvich, A. Ghoshal, G. Welsh, P. Attridge, H. Winston, M. Urban, and N. Bordick, “Effect of embedded sensors on interlaminar damage in composite structures,” J. Intel. Mat. Syst. Str., 22, No. 16, 1857-1868 (2011).CrossRef S. Butler, M. Gurvich, A. Ghoshal, G. Welsh, P. Attridge, H. Winston, M. Urban, and N. Bordick, “Effect of embedded sensors on interlaminar damage in composite structures,” J. Intel. Mat. Syst. Str., 22, No. 16, 1857-1868 (2011).CrossRef
68.
Zurück zum Zitat K. Saton, K. Fukuchi, Y. Kurosawa, A. Hongo, and N. Takeda, “Polyimide-Coate Small-Diameter Optical Fiber Sensors for Embedding in Composite Laminate Structures,” SPIE: Newport Beach, CA, USA, 285-294 (2001). K. Saton, K. Fukuchi, Y. Kurosawa, A. Hongo, and N. Takeda, “Polyimide-Coate Small-Diameter Optical Fiber Sensors for Embedding in Composite Laminate Structures,” SPIE: Newport Beach, CA, USA, 285-294 (2001).
69.
Zurück zum Zitat N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with smalldiameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Tech., 65, 2575-2587 (2005).CrossRef N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with smalldiameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Tech., 65, 2575-2587 (2005).CrossRef
70.
Zurück zum Zitat G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “strain measurements of composite laminates with embedded fiber Bragg gratings: Criticism and opportunities for research,” Sensors, 11, No. 1, 384-408 (2011).CrossRef G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “strain measurements of composite laminates with embedded fiber Bragg gratings: Criticism and opportunities for research,” Sensors, 11, No. 1, 384-408 (2011).CrossRef
71.
Zurück zum Zitat G. Pereira, C. Frias, H. Faria, O. Frazão, and A. Marques, “Study of strain-transfer of FBG sensors embedded in unidirectional composites,” Polym Test., 32, No. 6, 1006–1010 (2013).CrossRef G. Pereira, C. Frias, H. Faria, O. Frazão, and A. Marques, “Study of strain-transfer of FBG sensors embedded in unidirectional composites,” Polym Test., 32, No. 6, 1006–1010 (2013).CrossRef
72.
Zurück zum Zitat B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for structural health monitoring,” Eng. Struct., 33, No. 2, 539-548 (2011).CrossRef B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for structural health monitoring,” Eng. Struct., 33, No. 2, 539-548 (2011).CrossRef
73.
Zurück zum Zitat G. Pereira, C. Frias, H. Faria, O. Frazão, and A. T. Marques, “On the improvement of strain measurements with FBG sensors embedded in unidirectional composites,” Polym Test., 32, 99–105 (2013).CrossRef G. Pereira, C. Frias, H. Faria, O. Frazão, and A. T. Marques, “On the improvement of strain measurements with FBG sensors embedded in unidirectional composites,” Polym Test., 32, 99–105 (2013).CrossRef
74.
Zurück zum Zitat G. Luyckx, E. Voet, W. Waele, and J. Degrieck, “Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study,” Smart Mater. Struct., 19, No. 10, 105017 (2010). G. Luyckx, E. Voet, W. Waele, and J. Degrieck, “Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study,” Smart Mater. Struct., 19, No. 10, 105017 (2010).
75.
Zurück zum Zitat A. Hehr, Y. Song, B. Suberu, J. Sullivan, V. Shanov and M. Schulz, in: M. J. Schulz, V. N. Shanov and Z. Yin (eds), Embedded Carbon Nanotube Sensor Thread for Structural Health Monitoring and Strain Sensing of Composite Materials, Ch. 24, Nanotube Superfiber Materials, Changing Engineering Design, Elsevier, pp. 671-712 (2014). A. Hehr, Y. Song, B. Suberu, J. Sullivan, V. Shanov and M. Schulz, in: M. J. Schulz, V. N. Shanov and Z. Yin (eds), Embedded Carbon Nanotube Sensor Thread for Structural Health Monitoring and Strain Sensing of Composite Materials, Ch. 24, Nanotube Superfiber Materials, Changing Engineering Design, Elsevier, pp. 671-712 (2014).
76.
Zurück zum Zitat H. Herranen, J. Majak, P. Tsukrejev, K. Karjust, and O. Märtens, “Design and manufacturing of composite laminates with structural health monitoring capabilities,” Procedia CIRP, 72, 647-652 (2018).CrossRef H. Herranen, J. Majak, P. Tsukrejev, K. Karjust, and O. Märtens, “Design and manufacturing of composite laminates with structural health monitoring capabilities,” Procedia CIRP, 72, 647-652 (2018).CrossRef
77.
Zurück zum Zitat L. Qiu and S. Yuan, “On development of a multi-channel PZT array scanning system and it’s evaluating application on UAV wing box,” Sensor Actuat. A-Phys., 151, 220-230 (2009).CrossRef L. Qiu and S. Yuan, “On development of a multi-channel PZT array scanning system and it’s evaluating application on UAV wing box,” Sensor Actuat. A-Phys., 151, 220-230 (2009).CrossRef
78.
Zurück zum Zitat Q. Wang, M. Hong, and Z. Su, “An in situ structural health diagnosis technique and its realization via a modularized system,” IEEE Trans. Instrum. Meas., 64, 873-887 (2015).CrossRef Q. Wang, M. Hong, and Z. Su, “An in situ structural health diagnosis technique and its realization via a modularized system,” IEEE Trans. Instrum. Meas., 64, 873-887 (2015).CrossRef
80.
Zurück zum Zitat B. A. Sjogren, “Static strength of CFRP laminates with embedded fiber-optic edge connectors,” Compos. Part A-Appl. S., 32, 189-196 (2001).CrossRef B. A. Sjogren, “Static strength of CFRP laminates with embedded fiber-optic edge connectors,” Compos. Part A-Appl. S., 32, 189-196 (2001).CrossRef
81.
Zurück zum Zitat A. K. Green, M. Zaidman, E. Shafir, M. Tur, and S. Gali, “Infrastructure development for incorporating fiber-optic sensors in composite materials,” Smart Mater. Struct., 9, 316-321 (2000).CrossRef A. K. Green, M. Zaidman, E. Shafir, M. Tur, and S. Gali, “Infrastructure development for incorporating fiber-optic sensors in composite materials,” Smart Mater. Struct., 9, 316-321 (2000).CrossRef
82.
Zurück zum Zitat M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, and C. Marlière, “Dynamic condensation of water at crack tips in fused silica glass,” J. Non-Cryst. Solids, 354, 564-568 (2008).CrossRef M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, and C. Marlière, “Dynamic condensation of water at crack tips in fused silica glass,” J. Non-Cryst. Solids, 354, 564-568 (2008).CrossRef
83.
Zurück zum Zitat A. Saghafi A. R. Mirhabibi, and G. H. Yari, “Improved linear regression method for estimating Weibull parameters,” Theor. Appl. Fract. Mec., 52, 180-182 (2009).CrossRef A. Saghafi A. R. Mirhabibi, and G. H. Yari, “Improved linear regression method for estimating Weibull parameters,” Theor. Appl. Fract. Mec., 52, 180-182 (2009).CrossRef
84.
Zurück zum Zitat M. Wang, N. Li, G. D. Wang, S. W. Lu, Q. D. Zhao, and X. L. Liu, “High-sensitive flexural sensors for health monitoring of composite materials using embedded carbon nanotube (CNT) buckypaper,” Compos. Struct., 113280 (2020). M. Wang, N. Li, G. D. Wang, S. W. Lu, Q. D. Zhao, and X. L. Liu, “High-sensitive flexural sensors for health monitoring of composite materials using embedded carbon nanotube (CNT) buckypaper,” Compos. Struct., 113280 (2020).
85.
Zurück zum Zitat K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, and P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol., 61, 1379–1387 (2001).CrossRef K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, and P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol., 61, 1379–1387 (2001).CrossRef
86.
Zurück zum Zitat G. C. Kahandawa, J. Epaarachchi, H. Wang, J. Canning, and K. T. Lau, “Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network,” Measurement, 46, 4045- 4051 (2013).CrossRef G. C. Kahandawa, J. Epaarachchi, H. Wang, J. Canning, and K. T. Lau, “Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network,” Measurement, 46, 4045- 4051 (2013).CrossRef
87.
Zurück zum Zitat A. Vieira, R. de Oliveira, O. Frazão, J. M. Baptista, and A. T. Marques, “Effect of the recoating and the length on fiber Bragg grating sensors embedded in polymer composites,” Materials & Design, 30, 1818–1821 (2009).CrossRef A. Vieira, R. de Oliveira, O. Frazão, J. M. Baptista, and A. T. Marques, “Effect of the recoating and the length on fiber Bragg grating sensors embedded in polymer composites,” Materials & Design, 30, 1818–1821 (2009).CrossRef
Metadaten
Titel
Smart Composite Structures with Embedded Sensors for Load and Damage Monitoring – A Review
verfasst von
R. Janeliukstis
D. Mironovs
Publikationsdatum
08.05.2021
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2021
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09941-6

Weitere Artikel der Ausgabe 2/2021

Mechanics of Composite Materials 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.