Skip to main content

2023 | OriginalPaper | Buchkapitel

22. Smart Farming Technologies for Sustainable Agriculture: From Food to Energy

verfasst von : Bihter Güven, İpek Baz, Beyza Kocaoğlu, Elif Toprak, Duygun Erol Barkana, Bahar Soğutmaz Özdemir

Erschienen in: A Sustainable Green Future

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sustainable agriculture covers environmentally friendly farming methods that preserve an ecological balance by avoiding depletion of natural resources. From the environmental point of view, sustainable agriculture promotes farming practices that manage and conserve natural resources by building and maintaining healthy soil, managing water wisely, using renewable energy, improving air quality, and promoting biodiversity. However, agricultural sustainability is a complex concept that aims for economic profitability and social/economic equity besides environmental health. Smart farming is the most recent agricultural revolution that is based on the use of information and communication technologies. It connects smart machines and sensors on farms by IoT (Internet of Things) and makes sustainable agricultural practices data-driven. The key point of smart farming is “optimization”; it aims to optimize each variable and input during the production stage. The use of information technology increases the quantity and quality of agricultural products by preserving natural resources. The agricultural industry needs to learn to do more with less by implementing more efficient and sustainable production methods; thus, robotics and AI (artificial intelligence) could pave the way to a better future. In this book chapter, sustainable agricultural practices and their benefits will be discussed in the view of smart farming technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat G. Adamides, N. Kalatzis, A. Stylianou, et al., Smart farming techniques for climate change adaptation is Cyprus. Atmosphere 11, 557 (2020)CrossRef G. Adamides, N. Kalatzis, A. Stylianou, et al., Smart farming techniques for climate change adaptation is Cyprus. Atmosphere 11, 557 (2020)CrossRef
4.
Zurück zum Zitat T. Adão, J. Hruška, L. Pádua, et al., Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9, 1110 (2017)CrossRef T. Adão, J. Hruška, L. Pádua, et al., Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 9, 1110 (2017)CrossRef
5.
Zurück zum Zitat H.A. Alalwan, A.H. Alminshid, H.A.S. Aljaafari, Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 28, 127–139 (2019)CrossRef H.A. Alalwan, A.H. Alminshid, H.A.S. Aljaafari, Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 28, 127–139 (2019)CrossRef
11.
Zurück zum Zitat J.G.A. Barbedo, A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones 3, 40 (2019)CrossRef J.G.A. Barbedo, A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones 3, 40 (2019)CrossRef
12.
Zurück zum Zitat S. Bargoti, J. Underwood, Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34, 1039–1060 (2016)CrossRef S. Bargoti, J. Underwood, Image segmentation for fruit detection and yield estimation in apple orchards. J. Field Robot. 34, 1039–1060 (2016)CrossRef
13.
Zurück zum Zitat O. Bawden, D. Ball, J. Kulk, et al., A lightweight, modular robotic vehicle for the sustainable intensification of agriculture, in Proceedings of the 16th Australasian Conference on Robotics and Automation, ed. by C. Chen, (Australian Robotics and Automation Association Inc., Sydney, 2014), pp. 1–9 O. Bawden, D. Ball, J. Kulk, et al., A lightweight, modular robotic vehicle for the sustainable intensification of agriculture, in Proceedings of the 16th Australasian Conference on Robotics and Automation, ed. by C. Chen, (Australian Robotics and Automation Association Inc., Sydney, 2014), pp. 1–9
15.
Zurück zum Zitat J. Bendig, A. Bolten, S. Bennertz, et al., Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6, 10395–10412 (2014)CrossRef J. Bendig, A. Bolten, S. Bennertz, et al., Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6, 10395–10412 (2014)CrossRef
16.
Zurück zum Zitat A. Benelli, C. Cevoli, A. Fabbri, In-field hyperspectral imaging: An overview on the ground-based applications in agriculture. J. Agric Eng. 51, 129–139 (2020)CrossRef A. Benelli, C. Cevoli, A. Fabbri, In-field hyperspectral imaging: An overview on the ground-based applications in agriculture. J. Agric Eng. 51, 129–139 (2020)CrossRef
19.
Zurück zum Zitat J. Boulent, S. Foucher, J. Théau, P.L. St-Charles, Convolutional neural networks for the automatic identification of plant diseases. Front. Plant Sci. 10, 941 (2019)CrossRef J. Boulent, S. Foucher, J. Théau, P.L. St-Charles, Convolutional neural networks for the automatic identification of plant diseases. Front. Plant Sci. 10, 941 (2019)CrossRef
22.
Zurück zum Zitat D. Caballero, R. Calvini, J.M. Amigo, Hyperspectral imaging in crop fields: Precision agriculture, in Data Handling in Science and Technology. Hyperspectral Imaging, ed. by J.M. Amigo, vol. 32, (Elsevier, 2020), pp. 453–473CrossRef D. Caballero, R. Calvini, J.M. Amigo, Hyperspectral imaging in crop fields: Precision agriculture, in Data Handling in Science and Technology. Hyperspectral Imaging, ed. by J.M. Amigo, vol. 32, (Elsevier, 2020), pp. 453–473CrossRef
26.
Zurück zum Zitat C.T. Chen, S. Chen, K.W. Hsieh, et al., Estimation of leaf nitrogen content using artificial neural network with cross-learning scheme and significant wavelengths. Trans. ASABE 50, 295–301 (2007)CrossRef C.T. Chen, S. Chen, K.W. Hsieh, et al., Estimation of leaf nitrogen content using artificial neural network with cross-learning scheme and significant wavelengths. Trans. ASABE 50, 295–301 (2007)CrossRef
27.
Zurück zum Zitat X. Chen, Y. Xun, W. Li, J. Zhang, Combining discriminant analysis and neural networks for corn variety identification. Comput. Electron. Agric. 71, 48–53 (2010)CrossRef X. Chen, Y. Xun, W. Li, J. Zhang, Combining discriminant analysis and neural networks for corn variety identification. Comput. Electron. Agric. 71, 48–53 (2010)CrossRef
28.
Zurück zum Zitat L.S. Chen, S.J. Zhang, K. Wang, et al., Identifying of rice phosphorus stress based on machine vision technology. Life Sci. J. 10, 2655–2663 (2013) L.S. Chen, S.J. Zhang, K. Wang, et al., Identifying of rice phosphorus stress based on machine vision technology. Life Sci. J. 10, 2655–2663 (2013)
29.
Zurück zum Zitat L.S. Chen, Y.Y. Sun, K. Wang, Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics. Int. J. Agric. Biol. 10, 158–164 (2017) L.S. Chen, Y.Y. Sun, K. Wang, Rapid diagnosis of nitrogen nutrition status in rice based on static scanning and extraction of leaf and sheath characteristics. Int. J. Agric. Biol. 10, 158–164 (2017)
32.
Zurück zum Zitat R.H.M. Condori, L.M. Romualdo, O.M. Bruno, P.H.C. Luz, Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops, in Proceedings of 2017 Workshop of Computer Vision, 2017, pp. 7–12 R.H.M. Condori, L.M. Romualdo, O.M. Bruno, P.H.C. Luz, Comparison between traditional texture methods and deep learning descriptors for detection of nitrogen deficiency in maize crops, in Proceedings of 2017 Workshop of Computer Vision, 2017, pp. 7–12
35.
Zurück zum Zitat S. Demotes-Mainard, T. Péron, A. Corot, et al., Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21 (2016)CrossRef S. Demotes-Mainard, T. Péron, A. Corot, et al., Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 121, 4–21 (2016)CrossRef
36.
Zurück zum Zitat V. Dharmaraj, C. Vijayanand, Artificial intelligence (AI) in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 7, 2122–2128 (2018)CrossRef V. Dharmaraj, C. Vijayanand, Artificial intelligence (AI) in agriculture. Int. J. Curr. Microbiol. Appl. Sci. 7, 2122–2128 (2018)CrossRef
37.
Zurück zum Zitat N. Edomah, Economics of energy supply, in Reference Module in Earth Systems and Environmental Sciences, (Elsevier, Amsterdam, 2018) N. Edomah, Economics of energy supply, in Reference Module in Earth Systems and Environmental Sciences, (Elsevier, Amsterdam, 2018)
38.
Zurück zum Zitat J. Eggers, Y. Melin, J. Lundström, D. Bergström, K. Öhman, Management strategies for wood fuel harvesting—Trade-offs with biodiversity and forest ecosystem services. Sustainability 12(10), 4089 (2020)CrossRef J. Eggers, Y. Melin, J. Lundström, D. Bergström, K. Öhman, Management strategies for wood fuel harvesting—Trade-offs with biodiversity and forest ecosystem services. Sustainability 12(10), 4089 (2020)CrossRef
42.
Zurück zum Zitat FAO, How to Feed the World in 2050 (Food and Agriculture Organization of the United Nations, Rome, 2009) FAO, How to Feed the World in 2050 (Food and Agriculture Organization of the United Nations, Rome, 2009)
43.
Zurück zum Zitat FAO, Energy-Smart Food for People and Climate (Food and Agriculture Organization of the United Nations, Rome, 2011a) FAO, Energy-Smart Food for People and Climate (Food and Agriculture Organization of the United Nations, Rome, 2011a)
44.
Zurück zum Zitat FAO, The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) – Managing Systems at Risk (Food and Agriculture Organization of the United Nations, Rome, 2011b) FAO, The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) – Managing Systems at Risk (Food and Agriculture Organization of the United Nations, Rome, 2011b)
45.
Zurück zum Zitat FAO, The Water-Energy-Food Nexus a New Approach in Support of Food Security and Sustainable Agriculture (Food and Agriculture Organization of the United Nations, Rome, 2014) FAO, The Water-Energy-Food Nexus a New Approach in Support of Food Security and Sustainable Agriculture (Food and Agriculture Organization of the United Nations, Rome, 2014)
46.
Zurück zum Zitat B.M. Fekete, Biomass, in Climate Vulnerability, ed. by R.A. Pielke, (Academic, Cambridge, 2013), pp. 83–87CrossRef B.M. Fekete, Biomass, in Climate Vulnerability, ed. by R.A. Pielke, (Academic, Cambridge, 2013), pp. 83–87CrossRef
49.
Zurück zum Zitat I.F. García-Tejero, V.H. Durán-Zuazo, J.L. Muriel-Fernández, C.R. Rodríguez-Pleguezuelo, Water and Sustainable Agriculture (Springer, Dordrecht, 2011)CrossRef I.F. García-Tejero, V.H. Durán-Zuazo, J.L. Muriel-Fernández, C.R. Rodríguez-Pleguezuelo, Water and Sustainable Agriculture (Springer, Dordrecht, 2011)CrossRef
51.
Zurück zum Zitat S. Ghosal, D. Blystone, A.K. Singh, et al., An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. 115, 4613–4618 (2018)CrossRef S. Ghosal, D. Blystone, A.K. Singh, et al., An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. 115, 4613–4618 (2018)CrossRef
52.
Zurück zum Zitat H.K. Gill, H. Garg, Pesticides: Environmental impacts and management strategies, in Pesticides – Toxic Aspects, ed. by M.L. Larramendy, S. Soloneski, (InTech, 2014), pp. 187–230 H.K. Gill, H. Garg, Pesticides: Environmental impacts and management strategies, in Pesticides – Toxic Aspects, ed. by M.L. Larramendy, S. Soloneski, (InTech, 2014), pp. 187–230
53.
Zurück zum Zitat A.A. Gitelson, Y. Gritz, M.N. Merzlyak, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003)CrossRef A.A. Gitelson, Y. Gritz, M.N. Merzlyak, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282 (2003)CrossRef
55.
Zurück zum Zitat S.M. Haque, A.H. Bhat, I. Khan, Biomass: An ageless raw material for biofuels, in Agricultural Biomass Based Potential Materials, ed. by K.R. Hakeem, M. Jawaid, O.Y. Alothman, (Springer Cham, Heidelberg, 2015), pp. 435–454CrossRef S.M. Haque, A.H. Bhat, I. Khan, Biomass: An ageless raw material for biofuels, in Agricultural Biomass Based Potential Materials, ed. by K.R. Hakeem, M. Jawaid, O.Y. Alothman, (Springer Cham, Heidelberg, 2015), pp. 435–454CrossRef
56.
Zurück zum Zitat H. Hoff, Understanding the nexus, in Background paper for the Bonn 2011 conference: The water, energy and food security nexus, (Stockholm Environment Institute, Stockholm, 2011) H. Hoff, Understanding the nexus, in Background paper for the Bonn 2011 conference: The water, energy and food security nexus, (Stockholm Environment Institute, Stockholm, 2011)
58.
Zurück zum Zitat J. Hu, D. Li, G. Chen, Q. Duan, Y. Han, Image segmentation method for crop nutrient deficiency based on fuzzy C-means clustering algorithm. Intell. Autom. Soft Comput. 18, 1145–1155 (2012)CrossRef J. Hu, D. Li, G. Chen, Q. Duan, Y. Han, Image segmentation method for crop nutrient deficiency based on fuzzy C-means clustering algorithm. Intell. Autom. Soft Comput. 18, 1145–1155 (2012)CrossRef
60.
Zurück zum Zitat Y. Ishigure, K. Hirai, H. Kawasaki, A pruning robot with a power-saving chainsaw drive, in Proceedings of 2013 IEEE International Conference on Mechatronics and Automation, IEEE, Takamatsu, Japan, 4–7 August 2013, pp. 1223–1228 Y. Ishigure, K. Hirai, H. Kawasaki, A pruning robot with a power-saving chainsaw drive, in Proceedings of 2013 IEEE International Conference on Mechatronics and Automation, IEEE, Takamatsu, Japan, 4–7 August 2013, pp. 1223–1228
61.
Zurück zum Zitat R. Ishimwe, K. Abutaleb, F. Ahmed, Applications of thermal imaging in agriculture—A review. Adv. Remote Sens. 03, 128–140 (2014)CrossRef R. Ishimwe, K. Abutaleb, F. Ahmed, Applications of thermal imaging in agriculture—A review. Adv. Remote Sens. 03, 128–140 (2014)CrossRef
62.
Zurück zum Zitat M. Jansen, F. Gilmer, B. Biskup, et al., Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914 (2009)CrossRef M. Jansen, F. Gilmer, B. Biskup, et al., Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36, 902–914 (2009)CrossRef
63.
Zurück zum Zitat K. Jha, A. Doshi, P. Patel, M. Shah, A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2, 1–12 (2019) K. Jha, A. Doshi, P. Patel, M. Shah, A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2, 1–12 (2019)
66.
Zurück zum Zitat U. Kafkafi, S. Kant, Fertigation, in Encyclopedia of Soils in the Environment, ed. by D. Hillel, J.L. Hatfield, (Academic, Cambridge, 2005), pp. 1–9 U. Kafkafi, S. Kant, Fertigation, in Encyclopedia of Soils in the Environment, ed. by D. Hillel, J.L. Hatfield, (Academic, Cambridge, 2005), pp. 1–9
67.
Zurück zum Zitat V. Kakani, V.H. Nguyen, B.P. Kumar, et al., A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2, 100033 (2020) V. Kakani, V.H. Nguyen, B.P. Kumar, et al., A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2, 100033 (2020)
68.
Zurück zum Zitat A. Kamilaris, F.X. Prenafeta-Boldú, A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156, 312–322 (2018)CrossRef A. Kamilaris, F.X. Prenafeta-Boldú, A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156, 312–322 (2018)CrossRef
69.
Zurück zum Zitat H. Kawasaki, S. Murakami, H. Kachi, S. Ueki, Novel climbing method of pruning robot, in Proceedings of the SICE Annual Conference, Japan, 20–22 August 2008, pp. 160–163 H. Kawasaki, S. Murakami, H. Kachi, S. Ueki, Novel climbing method of pruning robot, in Proceedings of the SICE Annual Conference, Japan, 20–22 August 2008, pp. 160–163
71.
Zurück zum Zitat S. Kiani, A. Jafari, Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J. Agric. Sci. Technol. 14, 755–765 (2012) S. Kiani, A. Jafari, Crop detection and positioning in the field using discriminant analysis and neural networks based on shape features. J. Agric. Sci. Technol. 14, 755–765 (2012)
72.
Zurück zum Zitat J. Kim, S. Kim, C. Ju, H.I. Son, Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access 7, 105100–105115 (2019)CrossRef J. Kim, S. Kim, C. Ju, H.I. Son, Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access 7, 105100–105115 (2019)CrossRef
73.
Zurück zum Zitat M. Kise, Q. Zhang, Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosyst. Eng. 101, 191–198 (2008)CrossRef M. Kise, Q. Zhang, Development of a stereovision sensing system for 3D crop row structure mapping and tractor guidance. Biosyst. Eng. 101, 191–198 (2008)CrossRef
74.
Zurück zum Zitat Z.H. Kok, A.R.M. Shariff, M.S.M. Alfatni, S. Khairunniza-Bejo, Support vector machine in precision agriculture: A review. Comput. Electron. Agric. 191, 106546 (2021)CrossRef Z.H. Kok, A.R.M. Shariff, M.S.M. Alfatni, S. Khairunniza-Bejo, Support vector machine in precision agriculture: A review. Comput. Electron. Agric. 191, 106546 (2021)CrossRef
75.
Zurück zum Zitat S. Konanz, L. Kocsányi, C. Buschmann, Advanced multi-color fluorescence imaging system for detection of biotic and abiotic stresses in leaves. Agriculture 4, 79–95 (2014)CrossRef S. Konanz, L. Kocsányi, C. Buschmann, Advanced multi-color fluorescence imaging system for detection of biotic and abiotic stresses in leaves. Agriculture 4, 79–95 (2014)CrossRef
76.
Zurück zum Zitat K.C. Lawrence, B. Park, W.R. Windham, C. Mao, Calibration of a pushbroom hyperspectral imaging system for agricultural inspection. Trans. ASAE 46, 513 (2003)CrossRef K.C. Lawrence, B. Park, W.R. Windham, C. Mao, Calibration of a pushbroom hyperspectral imaging system for agricultural inspection. Trans. ASAE 46, 513 (2003)CrossRef
77.
Zurück zum Zitat D. LeBlanc, C. Vigneault, Traceability of environmental conditions for maintaining horticultural produce quality. Stewart Postharvest Rev. 2, 1–10 (2006) D. LeBlanc, C. Vigneault, Traceability of environmental conditions for maintaining horticultural produce quality. Stewart Postharvest Rev. 2, 1–10 (2006)
78.
Zurück zum Zitat S.Y. Lee, K. Ono, Y. Ashizawa, M. Watanabe, The investigation of the plant factory in Taiwan, in Proceedings of the Annual Conference of JSSD the 59th Annual Conference of JSSD. Japanese Society for the Science of Design, 2012, p. 96 S.Y. Lee, K. Ono, Y. Ashizawa, M. Watanabe, The investigation of the plant factory in Taiwan, in Proceedings of the Annual Conference of JSSD the 59th Annual Conference of JSSD. Japanese Society for the Science of Design, 2012, p. 96
81.
Zurück zum Zitat J.H. Li, F. Wang, J.W. Li, R.B. Zou, G.P. Liao, Multifractal methods for rapeseed nitrogen nutrition qualitative diagnosis modeling. Int. J. Biomath. 9, 1650064 (2016)CrossRef J.H. Li, F. Wang, J.W. Li, R.B. Zou, G.P. Liao, Multifractal methods for rapeseed nitrogen nutrition qualitative diagnosis modeling. Int. J. Biomath. 9, 1650064 (2016)CrossRef
82.
Zurück zum Zitat Y. Lin, Lidar: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput. Electron. Agric. 119, 61–73 (2015)CrossRef Y. Lin, Lidar: An important tool for next-generation phenotyping technology of high potential for plant phenomics? Comput. Electron. Agric. 119, 61–73 (2015)CrossRef
85.
Zurück zum Zitat B. Lu, P.D. Dao, J. Liu, et al., Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12, 2659 (2020)CrossRef B. Lu, P.D. Dao, J. Liu, et al., Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 12, 2659 (2020)CrossRef
87.
Zurück zum Zitat P.D.O. Lucas, M.A. Alves, e.S. PCL, F.G. Guimarães, Reference evapotranspiration time series forecasting with ensemble of convolutional neural networks. Comput. Electron. Agric. 177, 105700 (2020)CrossRef P.D.O. Lucas, M.A. Alves, e.S. PCL, F.G. Guimarães, Reference evapotranspiration time series forecasting with ensemble of convolutional neural networks. Comput. Electron. Agric. 177, 105700 (2020)CrossRef
88.
Zurück zum Zitat A.I. Luna-Maldonado, C. Vigneault, K. Nakaji, Postharvest technologies of fresh horticulture produce, in Horticulture, ed. by A.I. Luna-Maldonado, (InTech, 2012), pp. 161–172 A.I. Luna-Maldonado, C. Vigneault, K. Nakaji, Postharvest technologies of fresh horticulture produce, in Horticulture, ed. by A.I. Luna-Maldonado, (InTech, 2012), pp. 161–172
89.
Zurück zum Zitat P.H.C. Luz, M.A. Marin, F.F.S. Devechio, Boron deficiency precisely identified on growth stage v4 of maize crop using texture image analysis. Commun. Soil Sci. Plant Anal. 49, 159–169 (2018)CrossRef P.H.C. Luz, M.A. Marin, F.F.S. Devechio, Boron deficiency precisely identified on growth stage v4 of maize crop using texture image analysis. Commun. Soil Sci. Plant Anal. 49, 159–169 (2018)CrossRef
90.
Zurück zum Zitat S. Mahesh, D.S. Jayas, J. Paliwal, N.D.G. White, Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 61, 17–26 (2015)CrossRef S. Mahesh, D.S. Jayas, J. Paliwal, N.D.G. White, Hyperspectral imaging to classify and monitor quality of agricultural materials. J. Stored Prod. Res. 61, 17–26 (2015)CrossRef
91.
Zurück zum Zitat A.K. Mahlein, Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100, 241–251 (2016)CrossRef A.K. Mahlein, Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100, 241–251 (2016)CrossRef
92.
Zurück zum Zitat P. Miguel, O. Rubén, I. Ignacio, et al., New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with spad-502. Comput. Electron. Agric. 65, 213–218 (2009)CrossRef P. Miguel, O. Rubén, I. Ignacio, et al., New method to assess barley nitrogen nutrition status based on image colour analysis: Comparison with spad-502. Comput. Electron. Agric. 65, 213–218 (2009)CrossRef
93.
Zurück zum Zitat U.R. Mogili, B.B.V.L. Deepak, Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 133, 502–509 (2018)CrossRef U.R. Mogili, B.B.V.L. Deepak, Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 133, 502–509 (2018)CrossRef
94.
Zurück zum Zitat M. Möller, S. Cohen, Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 58, 827 (2007)CrossRef M. Möller, S. Cohen, Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. J. Exp. Bot. 58, 827 (2007)CrossRef
96.
Zurück zum Zitat S.J. Moorehead, C.K. Wellington, H. Paulino, J.F. Reid, R-Gator: An unmanned utility vehicle, in Unmanned Systems Technology XII. SPIE, Orlando, 5–9 April 2010 S.J. Moorehead, C.K. Wellington, H. Paulino, J.F. Reid, R-Gator: An unmanned utility vehicle, in Unmanned Systems Technology XII. SPIE, Orlando, 5–9 April 2010
98.
Zurück zum Zitat T.V. Nandeesh, H.M. Kalpana, Smart multipurpose agricultural robot, in 2021 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 9–11 July 2021 T.V. Nandeesh, H.M. Kalpana, Smart multipurpose agricultural robot, in 2021 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 9–11 July 2021
99.
Zurück zum Zitat A. Narayanamoorthy, Impact assessment of drip irrigation in India: The case of sugarcane. Dev. Policy Rev. 22, 443–462 (2004)CrossRef A. Narayanamoorthy, Impact assessment of drip irrigation in India: The case of sugarcane. Dev. Policy Rev. 22, 443–462 (2004)CrossRef
100.
Zurück zum Zitat S. Nebiker, N. Lack, M. Abächerli, S. Läderach, Light-weight multispectral uav sensors and their capabilities for predicting grain yield and detecting plant diseases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 963–970 (2016)CrossRef S. Nebiker, N. Lack, M. Abächerli, S. Läderach, Light-weight multispectral uav sensors and their capabilities for predicting grain yield and detecting plant diseases. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 963–970 (2016)CrossRef
102.
Zurück zum Zitat S. Nuske, K. Wilshusen, S. Achar, et al., Automated visual yield estimation in vineyards. J. Field Robot. 31, 837–860 (2014)CrossRef S. Nuske, K. Wilshusen, S. Achar, et al., Automated visual yield estimation in vineyards. J. Field Robot. 31, 837–860 (2014)CrossRef
104.
Zurück zum Zitat H. Onoyama, C. Ryu, M. Suguri, M. Iida, Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: Growing degree-days integrated model. Precis. Agric. 16, 558–570 (2015)CrossRef H. Onoyama, C. Ryu, M. Suguri, M. Iida, Nitrogen prediction model of rice plant at panicle initiation stage using ground-based hyperspectral imaging: Growing degree-days integrated model. Precis. Agric. 16, 558–570 (2015)CrossRef
105.
Zurück zum Zitat L.P. Osco, A.P.M. Ramos, M.M. Faita Pinheiro, et al., A machine learning framework to predict nutrient content in Valencia-orange leaf hyperspectral measurements. Remote Sens. 12, 906 (2020)CrossRef L.P. Osco, A.P.M. Ramos, M.M. Faita Pinheiro, et al., A machine learning framework to predict nutrient content in Valencia-orange leaf hyperspectral measurements. Remote Sens. 12, 906 (2020)CrossRef
106.
Zurück zum Zitat C. Park, M. Allaby, A Dictionary of Environment and Conservation (Oxford University Press, Oxford, 2017)CrossRef C. Park, M. Allaby, A Dictionary of Environment and Conservation (Oxford University Press, Oxford, 2017)CrossRef
107.
Zurück zum Zitat J. Park, S. Lee, Smart village projects in Korea: Rural tourism, 6th industrialization, and smart farming, in Smart Villages in the EU and Beyond, ed. by A. Visvizi, M.D. Mytras, G. Mudri, (Emerald Publishing, Bingley, 2019), pp. 139–154CrossRef J. Park, S. Lee, Smart village projects in Korea: Rural tourism, 6th industrialization, and smart farming, in Smart Villages in the EU and Beyond, ed. by A. Visvizi, M.D. Mytras, G. Mudri, (Emerald Publishing, Bingley, 2019), pp. 139–154CrossRef
108.
Zurück zum Zitat D.I. Patrício, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018)CrossRef D.I. Patrício, R. Rieder, Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018)CrossRef
109.
Zurück zum Zitat M.L. Pérez-Bueno, M. Pineda, F.M. Cabeza, M. Barón, Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Front. Plant Sci. 7, 1790 (2016)CrossRef M.L. Pérez-Bueno, M. Pineda, F.M. Cabeza, M. Barón, Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Front. Plant Sci. 7, 1790 (2016)CrossRef
110.
Zurück zum Zitat A. Prakash, Thermal remote sensing: Concepts, issues and applications. ISPRS J. Photogramm. 33, 239–243 (2000) A. Prakash, Thermal remote sensing: Concepts, issues and applications. ISPRS J. Photogramm. 33, 239–243 (2000)
112.
Zurück zum Zitat A.P.M. Ramos, L.P. Osco, D.E.G. Furuya, et al., A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020)CrossRef A.P.M. Ramos, L.P. Osco, D.E.G. Furuya, et al., A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020)CrossRef
113.
Zurück zum Zitat T.U. Rehman, M.S. Mahmud, Y.K. Chang, et al., Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 156, 585–605 (2019)CrossRef T.U. Rehman, M.S. Mahmud, Y.K. Chang, et al., Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 156, 585–605 (2019)CrossRef
114.
Zurück zum Zitat G. Reina, M. Torres-Torriti, G. Kantor, F.A. Cheein, A survey of ranging and imaging techniques for precision agriculture phenotyping. IEEE/ASME Trans. Mechatron. 22, 2428–2439 (2017)CrossRef G. Reina, M. Torres-Torriti, G. Kantor, F.A. Cheein, A survey of ranging and imaging techniques for precision agriculture phenotyping. IEEE/ASME Trans. Mechatron. 22, 2428–2439 (2017)CrossRef
117.
Zurück zum Zitat M. Saleem, Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8, e08905 (2022)CrossRef M. Saleem, Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8, e08905 (2022)CrossRef
118.
Zurück zum Zitat G.D. Saratale, R.G. Saratale, J.R. Banu, J.S. Chang, Biohydrogen production from renewable biomass resources, in Biomass, Biofuels, Biochemicals, Biohydrogen, ed. by A. Pandey, S.V. Mohan, J. Chang, P.C. Hallenbeck, C. Larroche, 2nd edn., (Elsevier, Amsterdam, 2019), pp. 247–277 G.D. Saratale, R.G. Saratale, J.R. Banu, J.S. Chang, Biohydrogen production from renewable biomass resources, in Biomass, Biofuels, Biochemicals, Biohydrogen, ed. by A. Pandey, S.V. Mohan, J. Chang, P.C. Hallenbeck, C. Larroche, 2nd edn., (Elsevier, Amsterdam, 2019), pp. 247–277
119.
Zurück zum Zitat M.V. Schönfeld, R. Heil, L. Bittner, Big data on a farm—Smart farming, in Big Data in Context, ed. by T. Hoeren, B. Kolany-Raiser, (Springer, Cham, 2018), pp. 109–119CrossRef M.V. Schönfeld, R. Heil, L. Bittner, Big data on a farm—Smart farming, in Big Data in Context, ed. by T. Hoeren, B. Kolany-Raiser, (Springer, Cham, 2018), pp. 109–119CrossRef
121.
Zurück zum Zitat K. Shah, L. Pathak, Transgenic energy plants for phytoremediation of toxic metals and metalloids, in Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, ed. by M.N.V. Prasad, (Academic, Cambridge, 2019), pp. 319–340CrossRef K. Shah, L. Pathak, Transgenic energy plants for phytoremediation of toxic metals and metalloids, in Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, ed. by M.N.V. Prasad, (Academic, Cambridge, 2019), pp. 319–340CrossRef
124.
Zurück zum Zitat R.R. Shamshiri, I.A. Hameed, M. Karkee, C. Weltzien, Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB, in Automation in Agriculture – Securing Food Supplies for Future Generations, ed. by S. Hussman, (InTech, 2018b), pp. 81–105 R.R. Shamshiri, I.A. Hameed, M. Karkee, C. Weltzien, Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB, in Automation in Agriculture – Securing Food Supplies for Future Generations, ed. by S. Hussman, (InTech, 2018b), pp. 81–105
125.
Zurück zum Zitat J.Y. Shi, X.B. Zou, J.W. Zhao, et al., Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci. Hortic. 138, 190–197 (2012)CrossRef J.Y. Shi, X.B. Zou, J.W. Zhao, et al., Nondestructive diagnostics of nitrogen deficiency by cucumber leaf chlorophyll distribution map based on near infrared hyperspectral imaging. Sci. Hortic. 138, 190–197 (2012)CrossRef
126.
Zurück zum Zitat M. Shibayama, T. Sakamoto, E. Takada, et al., Continuous monitoring of visible and near-infrared band reflectance from a rice paddy for determining nitrogen uptake using digital cameras. Plant Prod. Sci. 12, 293–306 (2009)CrossRef M. Shibayama, T. Sakamoto, E. Takada, et al., Continuous monitoring of visible and near-infrared band reflectance from a rice paddy for determining nitrogen uptake using digital cameras. Plant Prod. Sci. 12, 293–306 (2009)CrossRef
128.
Zurück zum Zitat F.F. Silva, P.H.C. Luz, L.M. Romualdo, et al., A diagnostic tool for magnesium nutrition in maize based on image analysis of different leaf sections. Crop Sci. 54, 738–745 (2014)CrossRef F.F. Silva, P.H.C. Luz, L.M. Romualdo, et al., A diagnostic tool for magnesium nutrition in maize based on image analysis of different leaf sections. Crop Sci. 54, 738–745 (2014)CrossRef
129.
Zurück zum Zitat V. Silva-Perez, G. Molero, S.P. Serbin, et al., Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 69, 483–496 (2018)CrossRef V. Silva-Perez, G. Molero, S.P. Serbin, et al., Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 69, 483–496 (2018)CrossRef
130.
Zurück zum Zitat M. Sugano, Elemental technologies for realizing a fully-controlled artificial light-type plant factory, in 2015 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT), IEEE, Melville, NY, 19–20 October 2015, pp. 1–5 M. Sugano, Elemental technologies for realizing a fully-controlled artificial light-type plant factory, in 2015 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT), IEEE, Melville, NY, 19–20 October 2015, pp. 1–5
131.
Zurück zum Zitat Y. Sun, J. Gao, K. Wang, Z. Shen, L. Chen, Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus and potassium deficiencies. J. Spectrosc. 2018, 1–13 (2018)CrossRef Y. Sun, J. Gao, K. Wang, Z. Shen, L. Chen, Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus and potassium deficiencies. J. Spectrosc. 2018, 1–13 (2018)CrossRef
135.
Zurück zum Zitat I.I. Tartachnyk, I. Rademacher, W. Kühbauch, Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis. Agric. 7, 281–293 (2006)CrossRef I.I. Tartachnyk, I. Rademacher, W. Kühbauch, Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence. Precis. Agric. 7, 281–293 (2006)CrossRef
136.
Zurück zum Zitat A. Thulasisingh, Applications of nanomaterials in biofuel and bioenergy, in Nanomaterials, ed. by R.P. Kumar, B. Bharathiraja, (Academic, Cambridge, 2021), pp. 607–630CrossRef A. Thulasisingh, Applications of nanomaterials in biofuel and bioenergy, in Nanomaterials, ed. by R.P. Kumar, B. Bharathiraja, (Academic, Cambridge, 2021), pp. 607–630CrossRef
137.
Zurück zum Zitat H. Tian, T. Wang, Y. Liu, et al., Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 7, 1–19 (2020) H. Tian, T. Wang, Y. Liu, et al., Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 7, 1–19 (2020)
138.
Zurück zum Zitat R. Tombe, Computer vision for smart farming and sustainable agriculture, in 2020 IST-Africa Conference (IST-Africa). IEEE, Kampala, Uganda, 18–22 May 2020, pp. 1–8 R. Tombe, Computer vision for smart farming and sustainable agriculture, in 2020 IST-Africa Conference (IST-Africa). IEEE, Kampala, Uganda, 18–22 May 2020, pp. 1–8
142.
Zurück zum Zitat M. Vázquez-Arellano, H.W. Griepentrog, D. Reiser, D.S. Paraforos, 3-D imaging systems for agricultural applications—A review. Sensors 16, 618 (2016)CrossRef M. Vázquez-Arellano, H.W. Griepentrog, D. Reiser, D.S. Paraforos, 3-D imaging systems for agricultural applications—A review. Sensors 16, 618 (2016)CrossRef
143.
Zurück zum Zitat C. Vigneault, J. Thompson, S. Wu, et al., Transportation of fresh horticultural produce, in Postharvest Technologies for Horticultural Crops, Research Signpost, ed. by N. Benkeblia, vol. 2, (Kerala, India, 2009), pp. 1–24 C. Vigneault, J. Thompson, S. Wu, et al., Transportation of fresh horticultural produce, in Postharvest Technologies for Horticultural Crops, Research Signpost, ed. by N. Benkeblia, vol. 2, (Kerala, India, 2009), pp. 1–24
147.
Zurück zum Zitat P. Wang, X. Lü, General introduction to biofuels and bioethanol, in Advances in 2nd Generation of Bioethanol Production, ed. by X. Lü, (Woodhead Publishing, Cambridge, 2021), pp. 1–7 P. Wang, X. Lü, General introduction to biofuels and bioethanol, in Advances in 2nd Generation of Bioethanol Production, ed. by X. Lü, (Woodhead Publishing, Cambridge, 2021), pp. 1–7
148.
Zurück zum Zitat Y. Wang, X. Hu, Z. Hou, J. Ning, Z. Zhang, Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. J. Sci. Food Agric. 98, 4659–4664 (2018)CrossRef Y. Wang, X. Hu, Z. Hou, J. Ning, Z. Zhang, Discrimination of nitrogen fertilizer levels of tea plant (Camellia sinensis) based on hyperspectral imaging. J. Sci. Food Agric. 98, 4659–4664 (2018)CrossRef
149.
Zurück zum Zitat U. Weiss, P. Biber, Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 59, 265–273 (2011)CrossRef U. Weiss, P. Biber, Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 59, 265–273 (2011)CrossRef
152.
Zurück zum Zitat E.M. Yahia, J.M. Fonseca, L. Kitinoja, Postharvest losses and waste, in Postharvest Technology of Perishable Horticultural Commodities, ed. by E. Yahia, (Woodhead Publishing, Cambridge, 2019), pp. 43–69 E.M. Yahia, J.M. Fonseca, L. Kitinoja, Postharvest losses and waste, in Postharvest Technology of Perishable Horticultural Commodities, ed. by E. Yahia, (Woodhead Publishing, Cambridge, 2019), pp. 43–69
153.
Zurück zum Zitat D. Zhang, Q. Liao, L. Huang, et al., Studying on red edge characteristics of maize leaf using visible/near-infrared imaging hyperspectra. Proc. SPIE 8194, 884–891 (2011) D. Zhang, Q. Liao, L. Huang, et al., Studying on red edge characteristics of maize leaf using visible/near-infrared imaging hyperspectra. Proc. SPIE 8194, 884–891 (2011)
154.
Zurück zum Zitat C. Zhang, H. Gao, J. Zhou, et al., 3D robotic system development for high-throughput crop phenotyping. IFAC-PapersOnLine 49, 242–247 (2016)CrossRef C. Zhang, H. Gao, J. Zhou, et al., 3D robotic system development for high-throughput crop phenotyping. IFAC-PapersOnLine 49, 242–247 (2016)CrossRef
155.
Zurück zum Zitat X. Zou, J. Shi, L. Hao, et al., In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. Anal. Chim. Acta 706, 105–112 (2011)CrossRef X. Zou, J. Shi, L. Hao, et al., In vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging. Anal. Chim. Acta 706, 105–112 (2011)CrossRef
Metadaten
Titel
Smart Farming Technologies for Sustainable Agriculture: From Food to Energy
verfasst von
Bihter Güven
İpek Baz
Beyza Kocaoğlu
Elif Toprak
Duygun Erol Barkana
Bahar Soğutmaz Özdemir
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-24942-6_22