Skip to main content

2012 | OriginalPaper | Buchkapitel

3. Smart Materials in Active Vibration Control

verfasst von : Gergely Takács, Boris Rohal’-Ilkiv

Erschienen in: Model Predictive Vibration Control

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The mechanical behavior of classical materials can be described by their elastic constant, which relates stress to strain. In advanced engineering materials that are often referred to as smart or intelligent materials, the mechanical behavior is also influenced by other fields; such as magnetic, electric charge, temperature, light and chemical composition. This is also reflected in the underlying constitutive equations, which couple two or more of these fields to describe the physical behavior of the material. These aforementioned materials have desirable properties when it comes to their use in active vibration control (AVC), since they may be readily integrated within the controlled structure and do not alter the mass of the mechanical system significantly. The aim of this chapter is thus to give a review of advanced engineering materials used in active and semi-active vibration control. The chapter covers the shape memory and superelastic property of shape memory alloys (SMA) and their current use in vibration control. Magnetostrictive and electrostrictive (MS, ES) materials are less commonly utilized in vibration control, however due to their engineering potential we will give a concise account of these materials and the underlying physical principles. The advantages of magnetorheological (MR) fluid based dampers with adjustable properties have become increasingly recognized in the engineering community, thus the discussion of magnetorheological and the related electrorheological (ER) fluids is provided here as well. Piezoelectric materials such as piezoceramics are probably the most commonly used smart materials in AVC. Here, we introduce the direct and converse piezoelectric effect, a short review on the application of transducers in vibration damping and some notes on the mathematical modeling of their dynamics. The chapter is finished by the emerging electrochemical materials or electroactive polymers (EAP).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Courtesy of NASA.
 
2
However, these are also based on the piezoelectric effect and use piezoelectric materials [46].
 
3
Courtesy of NASA.
 
4
This nickel and titanium alloy was discovered and developed by Buechler et al. in 1963 at the U.S. Naval Ordnance Laboratory, thus the name NiTiNOL.
 
5
Courtesy of NASA.
 
6
Similar to nitinol, it has been invented at the United States Naval Ordnance Laboratory (NOL). Terfenol-D stands for Terbium Ferrum NOL Dysprosium; with the chemical composition \(Tb_xDy_{1-x}Fe_2.\)
 
7
Courtesy of the CEDRAT Group.
 
8
Courtesy of NASA.
 
9
Courtesy of NASA.
 
10
Due to the inherent similarities with piezoceramic materials, sometimes polyvinylidene fluoride (PVDF) is regarded to be a piezoelectric material. The piezoelectric effect is reversible, however the actuating effect in PVDF is only one way.
 
11
Courtesy of Bishakh Bhattacharya.
 
12
As some researchers have pointed out through experimental tests, models could be linearized as EAP behaves linearly under certain conditions [8, 84].
 
Literatur
3.
Zurück zum Zitat Ansys Inc (2009) Release 12.1 Documentation for ANSYS. Ansys Inc. / SAS IP Inc., Canonsburg Ansys Inc (2009) Release 12.1 Documentation for ANSYS. Ansys Inc. / SAS IP Inc., Canonsburg
5.
Zurück zum Zitat Aslam M, Xiong-Liang Y, Zhong-Chao D (2006) Review of magnetorheological (MR) fluids and its applications in vibration control. J Marine Sci Appl 5(3):17–29CrossRef Aslam M, Xiong-Liang Y, Zhong-Chao D (2006) Review of magnetorheological (MR) fluids and its applications in vibration control. J Marine Sci Appl 5(3):17–29CrossRef
7.
Zurück zum Zitat Bandopadhya D, Bhogadi D, Bhattacharya B, Dutta A (2006) Active vibration suppression of a flexible link using ionic polymer metal composite. In: 2006 IEEE conference on robotics, automation and mechatronics, pp 1–6. doi:10.1109/RAMECH.2006.252638 Bandopadhya D, Bhogadi D, Bhattacharya B, Dutta A (2006) Active vibration suppression of a flexible link using ionic polymer metal composite. In: 2006 IEEE conference on robotics, automation and mechatronics, pp 1–6. doi:10.​1109/​RAMECH.​2006.​252638
9.
Zurück zum Zitat Bandyopadhyay B, Manjunath T, Umapathy M (2007) Modeling, control and implementation of smart structures: A FEM-State Space Approach, 1st edn. Springer, BerlinMATH Bandyopadhyay B, Manjunath T, Umapathy M (2007) Modeling, control and implementation of smart structures: A FEM-State Space Approach, 1st edn. Springer, BerlinMATH
10.
Zurück zum Zitat Bar-Cohen Y (2000) Electroactive polymers as artificial muscles —capabilities, potentials and challenges, 1st edn, NTS Inc., Chap 8.11, pp 936–950. Handbook on Biomimetics Bar-Cohen Y (2000) Electroactive polymers as artificial muscles —capabilities, potentials and challenges, 1st edn, NTS Inc., Chap 8.11, pp 936–950. Handbook on Biomimetics
11.
Zurück zum Zitat Bar-Cohen Y (2002) Electro-active polymers: current capabilities and challenges. In: Proceedings of the SPIE smart structures and materials symposium, San Diego, pp 4695–4702 Bar-Cohen Y (2002) Electro-active polymers: current capabilities and challenges. In: Proceedings of the SPIE smart structures and materials symposium, San Diego, pp 4695–4702
12.
Zurück zum Zitat Bar-Cohen Y, Sheritt S, Lih SS (2001) Electro-active polymers: current capabilities and challenges. In: Proceedings SPIE 8th annual international symposium on smart structures and materials, Newport, pp 4329–4343 Bar-Cohen Y, Sheritt S, Lih SS (2001) Electro-active polymers: current capabilities and challenges. In: Proceedings SPIE 8th annual international symposium on smart structures and materials, Newport, pp 4329–4343
22.
Zurück zum Zitat Chen Q, Levy C (1999) Vibration analysis of flexible beam by using smart damping structures. Composites Part B: Eng 30:395–406CrossRef Chen Q, Levy C (1999) Vibration analysis of flexible beam by using smart damping structures. Composites Part B: Eng 30:395–406CrossRef
33.
Zurück zum Zitat Fuller CR, Elliott SJ, Nelson PA (1996) Active Control of Vibration, 1st edn. Academic Press, San Francisco Fuller CR, Elliott SJ, Nelson PA (1996) Active Control of Vibration, 1st edn. Academic Press, San Francisco
36.
Zurück zum Zitat Gaudenzi P, Carbonaro R, Benzi E (2000) Control of beam vibrations by means of piezoelectric devices: theory and experiments. Compos Struct 50:373–379CrossRef Gaudenzi P, Carbonaro R, Benzi E (2000) Control of beam vibrations by means of piezoelectric devices: theory and experiments. Compos Struct 50:373–379CrossRef
38.
Zurück zum Zitat Giannopoulos G, Santafe F, Vantomme J, Buysschaert F, Hendrick P (2006) Smart helicopter blade using piezoelectric actuators for both cyclic and collective pitch control. Multifunctional Structures / Integration of Sensors and Antennas 11(1) Giannopoulos G, Santafe F, Vantomme J, Buysschaert F, Hendrick P (2006) Smart helicopter blade using piezoelectric actuators for both cyclic and collective pitch control. Multifunctional Structures / Integration of Sensors and Antennas 11(1)
45.
46.
Zurück zum Zitat Inman DJ (2007) Engineering Vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle River Inman DJ (2007) Engineering Vibrations, 3rd edn. Pearson International Education (Prentice Hall), Upper Saddle River
47.
Zurück zum Zitat Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures: overview, limits and new ideas. Mater Struct 38:578–592. doi:10.1007/BF02479550 Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures: overview, limits and new ideas. Mater Struct 38:578–592. doi:10.​1007/​BF02479550
61.
Zurück zum Zitat LORD Corporation (2006) Magneto-Rheological (MR) Fluid. LORD Corporation, Cary LORD Corporation (2006) Magneto-Rheological (MR) Fluid. LORD Corporation, Cary
69.
Zurück zum Zitat MIDÉ (2007) Shape memory alloy starter kit—reference manual. MIDÉ Technology, Medford MIDÉ (2007) Shape memory alloy starter kit—reference manual. MIDÉ Technology, Medford
70.
Zurück zum Zitat Moheimani S, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London Moheimani S, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping. Springer, London
75.
Zurück zum Zitat NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— after intentional failure. Image ID: EC01-0124-1 NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— after intentional failure. Image ID: EC01-0124-1
76.
Zurück zum Zitat NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— before failure. Image ID: EC01-0086-4 NASA Dryden Flight Research Center (NASA-DFRC) (2001) The Aerostructures Test Wing (ATW)— before failure. Image ID: EC01-0086-4
78.
Zurück zum Zitat NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02698 NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02698
79.
Zurück zum Zitat NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02707 NASA Glenn Research Center (NASA-GRC) (2008) Shape Memory Alloy (SMA) Demonstration Hardware. Image ID: C-2008-02707
80.
Zurück zum Zitat NASA Langley Research Center (NASA-LaRC) (1996) High Displacement Actuator (HDA). Image ID: EL-1996-00133 NASA Langley Research Center (NASA-LaRC) (1996) High Displacement Actuator (HDA). Image ID: EL-1996-00133
81.
Zurück zum Zitat NASA Langley Research Center (NASA-LaRC) (2000) F-15 model in the 16 foot transonic tunnel. Image ID: EL-2000-00147 NASA Langley Research Center (NASA-LaRC) (2000) F-15 model in the 16 foot transonic tunnel. Image ID: EL-2000-00147
82.
Zurück zum Zitat NASA Marshall Space Flight Center (NASA-MSFC) (2002) Comparison of magnetorheological fluids on earth and in space. Image ID: MSFC-0700441 NASA Marshall Space Flight Center (NASA-MSFC) (2002) Comparison of magnetorheological fluids on earth and in space. Image ID: MSFC-0700441
86.
Zurück zum Zitat Phillips DJ, Hyland DC, Collins CG (2002) Real-time seismic damping and frequency control of steel structures using nitinol wire. In: Proceedings of SPIE 2002, vol 4696, pp 176–185 Phillips DJ, Hyland DC, Collins CG (2002) Real-time seismic damping and frequency control of steel structures using nitinol wire. In: Proceedings of SPIE 2002, vol 4696, pp 176–185
87.
Zurück zum Zitat Piefort V (2001) Finite element modelling of piezoelectric structures. PhD thesis, Université Libre de Bruxelles Piefort V (2001) Finite element modelling of piezoelectric structures. PhD thesis, Université Libre de Bruxelles
91.
Zurück zum Zitat Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht Preumont A (2002) Vibration control of active structures, 2nd edn. Kluwer Academic Publishers, Dordrecht
92.
Zurück zum Zitat Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, ChichesterCrossRef Preumont A, Seto K (2008) Active control of structures, 3rd edn. Wiley, ChichesterCrossRef
96.
Zurück zum Zitat Rossing TD, Moore RF, Wheeler PA (2001) The science of sound. 3rd edn. Addison Wesley, San Francisco Rossing TD, Moore RF, Wheeler PA (2001) The science of sound. 3rd edn. Addison Wesley, San Francisco
105.
Zurück zum Zitat Stanway R (2004) Smart fluids: current and future developments. Mater Sci Technol 20(8):931–939CrossRef Stanway R (2004) Smart fluids: current and future developments. Mater Sci Technol 20(8):931–939CrossRef
112.
Zurück zum Zitat Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton-Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, Oxford Takács G, Rohal’-Ilkiv B (2009) Implementation of the Newton-Raphson MPC algorithm in active vibration control applications. In: Mace BR, Ferguson NS, Rustighi E (eds) Proceedings of the 3rd international conference on noise and vibration: emerging methods, Oxford
113.
Zurück zum Zitat Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the 11th IASTED international conference on control and applications, Cambridge Takács G, Rohal’-Ilkiv B (2009) MPC with guaranteed stability and constraint feasibility on flexible vibrating active structures: a comparative study. In: Hu H (ed) Proceedings of the 11th IASTED international conference on control and applications, Cambridge
114.
Zurück zum Zitat Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control control conference, Budapest Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson based efficient model predictive control applied on active vibrating structures. In: Proceedings of the European control control conference, Budapest
115.
Zurück zum Zitat Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, Innsbruck Takács G, Rohal’-Ilkiv B (2009) Newton-Raphson MPC controlled active vibration attenuation. In: Hangos KM (ed) Proceedings of the 28th IASTED international conference on modeling, identification and control, Innsbruck
118.
Zurück zum Zitat Van den Broeck L, Diehl M, Swevers J (2009) Time optimal MPC for mechatronic applications. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 8040–8045 Van den Broeck L, Diehl M, Swevers J (2009) Time optimal MPC for mechatronic applications. In: Proceedings of the 48th IEEE conference on decision and control, Shanghai, pp 8040–8045
119.
Zurück zum Zitat Van den Broeck L, Swevers J, Diehl M (2009) Performant design of an input shaping prefilter via embedded optimization. In: Proceedings of the 2009 American control conference, St-Louis, pp 166–171 Van den Broeck L, Swevers J, Diehl M (2009) Performant design of an input shaping prefilter via embedded optimization. In: Proceedings of the 2009 American control conference, St-Louis, pp 166–171
120.
Zurück zum Zitat Vereda F, de Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: Magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179CrossRef Vereda F, de Vicente J, Hidalgo-Álvarez R (2009) Physical properties of elongated magnetic particles: Magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179CrossRef
122.
Zurück zum Zitat Wang H, Zheng H, Li Y, Lu S (2008) Mechanical properties of magnetorheological fluids under squeeze-shear mode. In: Society of photo-optical instrumentation engineers (SPIE) conference series, presented at the Society of Photo-optical Instrumentation Engineers (SPIE) conference, vol 7130. doi:10.1117/12.819634 Wang H, Zheng H, Li Y, Lu S (2008) Mechanical properties of magnetorheological fluids under squeeze-shear mode. In: Society of photo-optical instrumentation engineers (SPIE) conference series, presented at the Society of Photo-optical Instrumentation Engineers (SPIE) conference, vol 7130. doi:10.​1117/​12.​819634
127.
Zurück zum Zitat Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRef Wills AG, Bates D, Fleming AJ, Ninness B, Moheimani SOR (2008) Model predictive control applied to constraint handling in active noise and vibration control. IEEE Trans Control Syst Technol 16(1):3–12CrossRef
Metadaten
Titel
Smart Materials in Active Vibration Control
verfasst von
Gergely Takács
Boris Rohal’-Ilkiv
Copyright-Jahr
2012
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-2333-0_3

Neuer Inhalt