Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Smartphone-Based Point-of-Care Technologies for Mobile Healthcare

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Smartphone (SP)-based devices and associated tools have emerged as ideal next-generation point-of-care devices (POCD) for in vitro diagnostics (IVD) of important physiological parameters including blood glucose level. Such devices with advanced features are anticipated to play an enhanced role in the future of cost-effective mobile healthcare (mH) and personalized medicine. The detection principle of the diversified SP-IVD devices encompasses optical, surface plasmon resonance, lateral flow, or electrochemical methods. Another appealing approach is the transformation of SP into a compact and inexpensive microscope or cytometer to detect biomolecules, metabolites, biomarkers, and pathogens. The exponential development of SP-IVD technologies will foster their widespread use in personalized mH in remote settings and, particularly, in developing countries with limited healthcare resources. The extent of private health data created by SP-IVD will herald the enlargement of Cloud-based technologies to securely transmit, store, and retrieve such confidential data across medical fraternity and policymakers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRef Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.CrossRef
3.
Zurück zum Zitat Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRef Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.CrossRef
4.
Zurück zum Zitat Vashist SK, Luong JHT. Smartphone-based immunoassays. Handbook of immunoassay technologies. Elsevier; 2018. p. 433–53. ISBN: 9780128117620. Vashist SK, Luong JHT. Smartphone-based immunoassays. Handbook of immunoassay technologies. Elsevier; 2018. p. 433–53. ISBN: 9780128117620.
5.
Zurück zum Zitat Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.CrossRef Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.CrossRef
6.
Zurück zum Zitat Erickson D, O’Dell D, Jiang L, Oncescu V, Gumus A, Lee S, et al. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip. 2014;14(17):3159–64.CrossRef Erickson D, O’Dell D, Jiang L, Oncescu V, Gumus A, Lee S, et al. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab Chip. 2014;14(17):3159–64.CrossRef
7.
Zurück zum Zitat You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRef You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.CrossRef
8.
Zurück zum Zitat Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRef Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.CrossRef
10.
Zurück zum Zitat Cadle BA, Rasmus KC, Varela JA, Leverich LS, O’Neill CE, Bachtell RK, et al. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications. Subst Abus. 2010;4:21–33. Cadle BA, Rasmus KC, Varela JA, Leverich LS, O’Neill CE, Bachtell RK, et al. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications. Subst Abus. 2010;4:21–33.
12.
Zurück zum Zitat Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010;10(11):1417–28.CrossRef Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010;10(11):1417–28.CrossRef
13.
Zurück zum Zitat Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip. 2011;11(7):1276–9.CrossRef Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip. 2011;11(7):1276–9.CrossRef
14.
Zurück zum Zitat Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.CrossRef Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.CrossRef
15.
Zurück zum Zitat Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.CrossRef Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.CrossRef
16.
Zurück zum Zitat Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRef Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.CrossRef
17.
Zurück zum Zitat Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRef Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.CrossRef
18.
Zurück zum Zitat Oberding JW, Geiger GE, White KD, Ward RN. Blood glucose meter/modem interface arrangement. U.S. Patent Application No. 7,181,350.B2.2007. Oberding JW, Geiger GE, White KD, Ward RN. Blood glucose meter/modem interface arrangement. U.S. Patent Application No. 7,181,350.B2.2007.
19.
Zurück zum Zitat Peeters JP. Diagnostic radio frequency identification sensors and applications thereof. U.S. Patent No. 8,077,042. Peeters JP. Diagnostic radio frequency identification sensors and applications thereof. U.S. Patent No. 8,077,042.
20.
Zurück zum Zitat Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, et al. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem. 2014;209:677–85.CrossRef Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, et al. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem. 2014;209:677–85.CrossRef
21.
Zurück zum Zitat Lu Y, Shi W, Qin J, Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–82.CrossRef Lu Y, Shi W, Qin J, Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–82.CrossRef
22.
Zurück zum Zitat Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRef Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.CrossRef
23.
Zurück zum Zitat Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.CrossRef Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.CrossRef
24.
Zurück zum Zitat McGeough CM, O’Driscoll S. Camera phone-based quantitative analysis of C-reactive protein ELISA. IEEE Trans Biomed Circuits Syst. 2013;7(5):655–9.CrossRef McGeough CM, O’Driscoll S. Camera phone-based quantitative analysis of C-reactive protein ELISA. IEEE Trans Biomed Circuits Syst. 2013;7(5):655–9.CrossRef
25.
Zurück zum Zitat Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem. 2012;51(46):11585–8.CrossRef Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem. 2012;51(46):11585–8.CrossRef
26.
Zurück zum Zitat Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep. 2014;4:6789.CrossRef Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep. 2014;4:6789.CrossRef
27.
Zurück zum Zitat Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.CrossRef Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.CrossRef
28.
Zurück zum Zitat Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12(21):4240–3.CrossRef Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12(21):4240–3.CrossRef
29.
Zurück zum Zitat Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66:169–76.CrossRef Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66:169–76.CrossRef
30.
Zurück zum Zitat Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRef Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRef
31.
Zurück zum Zitat Oncescu V, Mancuso M, Erickson D. Cholesterol testing on a smartphone. Lab Chip. 2014;14(4):759–63.CrossRef Oncescu V, Mancuso M, Erickson D. Cholesterol testing on a smartphone. Lab Chip. 2014;14(4):759–63.CrossRef
32.
Zurück zum Zitat Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRef Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.CrossRef
33.
Zurück zum Zitat Vashist SK, Luong JHT. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv. 2016;34(3):137–8.CrossRef Vashist SK, Luong JHT. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv. 2016;34(3):137–8.CrossRef
34.
Zurück zum Zitat Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.CrossRef Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.CrossRef
35.
Zurück zum Zitat Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, et al. A smartphone-based colorimetric reader for human C-reactive protein immunoassay. Methods Mol Biol. 2017;1571:343–56.CrossRef Venkatesh AG, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT, et al. A smartphone-based colorimetric reader for human C-reactive protein immunoassay. Methods Mol Biol. 2017;1571:343–56.CrossRef
36.
Zurück zum Zitat Park TS, Li W, McCracken KE, Yoon JY. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–40.CrossRef Park TS, Li W, McCracken KE, Yoon JY. Smartphone quantifies Salmonella from paper microfluidics. Lab Chip. 2013;13(24):4832–40.CrossRef
37.
Zurück zum Zitat Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.CrossRef Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.CrossRef
38.
Zurück zum Zitat Lee S, Kim G, Moon J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors. 2013;13(4):5109–16.CrossRef Lee S, Kim G, Moon J. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system. Sensors. 2013;13(4):5109–16.CrossRef
39.
Zurück zum Zitat Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, et al. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–9.CrossRef Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, et al. Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res. 2015;70:360–9.CrossRef
40.
Zurück zum Zitat Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9(8):7857–66.CrossRef Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9(8):7857–66.CrossRef
41.
Zurück zum Zitat Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. A smartphone platform for the quantification of vitamin D levels. Lab Chip. 2014;14(8):1437–42.CrossRef Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. A smartphone platform for the quantification of vitamin D levels. Lab Chip. 2014;14(8):1437–42.CrossRef
42.
Zurück zum Zitat Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.CrossRef Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.CrossRef
43.
Zurück zum Zitat Smith JE, Griffin DK, Leny JK, Hagen JA, Chavez JL, Kelley-Loughnane N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 2014;121:247–55.CrossRef Smith JE, Griffin DK, Leny JK, Hagen JA, Chavez JL, Kelley-Loughnane N. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field. Talanta. 2014;121:247–55.CrossRef
44.
Zurück zum Zitat El Kaoutit H, Estévez P, García FC, Serna F, García JM. Sub-ppm quantification of Hg(II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone. Anal Methods. 2013;5(1):54–8.CrossRef El Kaoutit H, Estévez P, García FC, Serna F, García JM. Sub-ppm quantification of Hg(II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone. Anal Methods. 2013;5(1):54–8.CrossRef
45.
Zurück zum Zitat Xiao W, Xiao M, Fu Q, Yu S, Shen H, Bian H, et al. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors. 2016;16(11):1871.CrossRef Xiao W, Xiao M, Fu Q, Yu S, Shen H, Bian H, et al. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors. 2016;16(11):1871.CrossRef
46.
Zurück zum Zitat Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile-platform based colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2014;191:561–6.CrossRef Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile-platform based colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2014;191:561–6.CrossRef
47.
Zurück zum Zitat Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2013;182:592–7.CrossRef Sumriddetchkajorn S, Chaitavon K, Intaravanne Y. Mobile device-based self-referencing colorimeter for monitoring chlorine concentration in water. Sensors Actuators B Chem. 2013;182:592–7.CrossRef
48.
Zurück zum Zitat Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRef Chen A, Wang R, Bever CR, Xing S, Hammock BD, Pan T. Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics. 2014;8(6):064101.CrossRef
49.
Zurück zum Zitat Salles MO, Meloni GN, de Araujo WR, Paixão TRLC. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods. 2014;6(7):2047–52.CrossRef Salles MO, Meloni GN, de Araujo WR, Paixão TRLC. Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods. 2014;6(7):2047–52.CrossRef
50.
Zurück zum Zitat Oncescu V, O’Dell D, Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip. 2013;13(16):3232–8.CrossRef Oncescu V, O’Dell D, Erickson D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip. 2013;13(16):3232–8.CrossRef
51.
Zurück zum Zitat Hong JI, Chang BY. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip. 2014;14(10):1725–32.CrossRef Hong JI, Chang BY. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip. 2014;14(10):1725–32.CrossRef
52.
Zurück zum Zitat Mancuso M, Cesarman E, Erickson D. Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip. 2014;14(19):3809–16.CrossRef Mancuso M, Cesarman E, Erickson D. Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory. Lab Chip. 2014;14(19):3809–16.CrossRef
53.
Zurück zum Zitat Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale. 2013;5(4):1678–86.CrossRef Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale. 2013;5(4):1678–86.CrossRef
54.
Zurück zum Zitat García A, Erenas M, Marinetto ED, Abad CA, de Orbe-Paya I, Palma AJ, et al. Mobile phone platform as portable chemical analyzer. Sensors Actuators B: Chemical. 2011;156(1):350–9.CrossRef García A, Erenas M, Marinetto ED, Abad CA, de Orbe-Paya I, Palma AJ, et al. Mobile phone platform as portable chemical analyzer. Sensors Actuators B: Chemical. 2011;156(1):350–9.CrossRef
55.
Zurück zum Zitat Chen W, Cao F, Zheng W, Tian Y, Xianyu Y, Xu P, et al. Detection of the nanomolar level of total Cr[(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale. 2015;7(5):2042–9.CrossRef Chen W, Cao F, Zheng W, Tian Y, Xianyu Y, Xu P, et al. Detection of the nanomolar level of total Cr[(III) and (VI)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models. Nanoscale. 2015;7(5):2042–9.CrossRef
56.
Zurück zum Zitat Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, et al. Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ. 2015;92(4):737–41.CrossRef Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, Remcho TP, et al. Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. J Chem Educ. 2015;92(4):737–41.CrossRef
57.
Zurück zum Zitat Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sensors Actuators B: Chemical. 2015;216:134–40.CrossRef Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sensors Actuators B: Chemical. 2015;216:134–40.CrossRef
58.
Zurück zum Zitat Masawat P, Harfield A, Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 2015;184:23–9.CrossRef Masawat P, Harfield A, Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 2015;184:23–9.CrossRef
59.
Zurück zum Zitat Nie H, Wang W, Li W, Nie Z, Yao S. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst. 2015;140(8):2771–7.CrossRef Nie H, Wang W, Li W, Nie Z, Yao S. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst. 2015;140(8):2771–7.CrossRef
60.
Zurück zum Zitat Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRef Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–707.CrossRef
61.
Zurück zum Zitat Wang S, Tasoglu S, Chen PZ, Chen M, Akbas R, Wach S, et al. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep. 2014;4:3796.CrossRef Wang S, Tasoglu S, Chen PZ, Chen M, Akbas R, Wach S, et al. Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep. 2014;4:3796.CrossRef
62.
Zurück zum Zitat Wang H, Li YJ, Wei JF, Xu JR, Wang YH, Zheng GX. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem. 2014;406(12):2799–807.CrossRef Wang H, Li YJ, Wei JF, Xu JR, Wang YH, Zheng GX. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem. 2014;406(12):2799–807.CrossRef
63.
Zurück zum Zitat Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem. 2014;196:156–60.CrossRef Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem. 2014;196:156–60.CrossRef
64.
Zurück zum Zitat Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re1.CrossRef Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re1.CrossRef
65.
Zurück zum Zitat Gómez-Robledo L, López-Ruiz N, Melgosa M, Palma AJ, Capitán-Vallvey LF, Sánchez-Marañón M. Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions. Comput Electron Agric. 2013;99:200–8.CrossRef Gómez-Robledo L, López-Ruiz N, Melgosa M, Palma AJ, Capitán-Vallvey LF, Sánchez-Marañón M. Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions. Comput Electron Agric. 2013;99:200–8.CrossRef
66.
Zurück zum Zitat Moonrungsee N, Pencharee S, Jakmunee J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta. 2015;136:204–9.CrossRef Moonrungsee N, Pencharee S, Jakmunee J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta. 2015;136:204–9.CrossRef
67.
Zurück zum Zitat Vesali F, Omid M, Kaleita A, Mobli H. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Comput Electron Agric. 2015;116:211–20.CrossRef Vesali F, Omid M, Kaleita A, Mobli H. Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Comput Electron Agric. 2015;116:211–20.CrossRef
68.
Zurück zum Zitat Intaravanne Y, Sumriddetchkajorn S. Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Comput Electron Agric. 2015;116:228–33.CrossRef Intaravanne Y, Sumriddetchkajorn S. Android-based rice leaf color analyzer for estimating the needed amount of nitrogen fertilizer. Comput Electron Agric. 2015;116:228–33.CrossRef
69.
Zurück zum Zitat Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15(6):13752–62.CrossRef Pohanka M. Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors. 2015;15(6):13752–62.CrossRef
70.
Zurück zum Zitat Wu Y, Boonloed A, Sleszynski N, Koesdjojo M, Armstrong C, Bracha S, et al. Clinical chemistry measurements with commercially available test slides on a smartphone platform: colorimetric determination of glucose and urea. Clin Chim Acta. 2015;448:133–8.CrossRef Wu Y, Boonloed A, Sleszynski N, Koesdjojo M, Armstrong C, Bracha S, et al. Clinical chemistry measurements with commercially available test slides on a smartphone platform: colorimetric determination of glucose and urea. Clin Chim Acta. 2015;448:133–8.CrossRef
71.
Zurück zum Zitat Thiha A, Ibrahim F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors. 2015;15(5):11431–41.CrossRef Thiha A, Ibrahim F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors. 2015;15(5):11431–41.CrossRef
72.
Zurück zum Zitat Moonrungsee N, Pencharee S, Peamaroon N. Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrum Sci Technol. 2016;44(4):401–9.CrossRef Moonrungsee N, Pencharee S, Peamaroon N. Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrum Sci Technol. 2016;44(4):401–9.CrossRef
73.
Zurück zum Zitat Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P. Monitoring of fluoride in water samples using a smartphone. Sci Total Environ. 2016;551–552:101–7.CrossRef Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P. Monitoring of fluoride in water samples using a smartphone. Sci Total Environ. 2016;551–552:101–7.CrossRef
74.
Zurück zum Zitat Wang L, Li B, Xu F, Shi X, Feng D, Wei D, et al. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron. 2016;79:1–8.CrossRef Wang L, Li B, Xu F, Shi X, Feng D, Wei D, et al. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Biosens Bioelectron. 2016;79:1–8.CrossRef
75.
Zurück zum Zitat Im SH, Kim KR, Park YM, Yoon JH, Hong JW, Yoon HC. An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device. Sensors Actuators B: Chemical. 2016;229:166–73.CrossRef Im SH, Kim KR, Park YM, Yoon JH, Hong JW, Yoon HC. An animal cell culture monitoring system using a smartphone-mountable paper-based analytical device. Sensors Actuators B: Chemical. 2016;229:166–73.CrossRef
77.
Zurück zum Zitat Su K, Qiu X, Fang J, Zou Q, Wang P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—Bionic e-Eye. Sensors Actuators B: Chemical. 2017;238:1165–72.CrossRef Su K, Qiu X, Fang J, Zou Q, Wang P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—Bionic e-Eye. Sensors Actuators B: Chemical. 2017;238:1165–72.CrossRef
78.
Zurück zum Zitat Abderrahim M, MA S, Condezo-Hoyos L. A novel high-throughput image based rapid Folin-Ciocalteau assay for assessment of reducing capacity in foods. Talanta. 2016;152:82–9.CrossRef Abderrahim M, MA S, Condezo-Hoyos L. A novel high-throughput image based rapid Folin-Ciocalteau assay for assessment of reducing capacity in foods. Talanta. 2016;152:82–9.CrossRef
79.
Zurück zum Zitat Yang X, Wang Y, Liu W, Zhang Y, Zheng F, Wang S, et al. A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with a smartphone reader. Biosens Bioelectron. 2016;75:48–54.CrossRef Yang X, Wang Y, Liu W, Zhang Y, Zheng F, Wang S, et al. A portable system for on-site quantification of formaldehyde in air based on G-quadruplex halves coupled with a smartphone reader. Biosens Bioelectron. 2016;75:48–54.CrossRef
80.
Zurück zum Zitat Mei Q, Jing H, Li Y, Yisibashaer W, Chen J, Nan Li B, et al. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens Bioelectron. 2016;75:427–32.CrossRef Mei Q, Jing H, Li Y, Yisibashaer W, Chen J, Nan Li B, et al. Smartphone based visual and quantitative assays on upconversional paper sensor. Biosens Bioelectron. 2016;75:427–32.CrossRef
81.
Zurück zum Zitat Wang Y, Liu X, Chen P, Tran NT, Zhang J, Chia WS, et al. Smartphone spectrometer for colorimetric biosensing. Analyst. 2016;141(11):3233–8.CrossRef Wang Y, Liu X, Chen P, Tran NT, Zhang J, Chia WS, et al. Smartphone spectrometer for colorimetric biosensing. Analyst. 2016;141(11):3233–8.CrossRef
82.
Zurück zum Zitat Oliveira KA, Damasceno D, de Oliveira CR, da Silveira LA, de Oliveira AE, Coltro WK. Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Anal Methods. 2016;8(35):6506–11.CrossRef Oliveira KA, Damasceno D, de Oliveira CR, da Silveira LA, de Oliveira AE, Coltro WK. Dengue diagnosis on laser printed microzones using smartphone-based detection and multivariate image analysis. Anal Methods. 2016;8(35):6506–11.CrossRef
83.
Zurück zum Zitat Yang J-S, Shin J, Choi S, Jung H-I. Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors Actuators B: Chemical. 2017;241:80–4.CrossRef Yang J-S, Shin J, Choi S, Jung H-I. Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors Actuators B: Chemical. 2017;241:80–4.CrossRef
84.
Zurück zum Zitat Kim SW, Cho IH, Lim GS, Park GN, Paek SH. Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis. Biosens Bioelectron. 2017;98:7–14.CrossRef Kim SW, Cho IH, Lim GS, Park GN, Paek SH. Biochemical-immunological hybrid biosensor based on two-dimensional chromatography for on-site sepsis diagnosis. Biosens Bioelectron. 2017;98:7–14.CrossRef
85.
Zurück zum Zitat Kostelnik A, Cegan A, Pohanka M. Acetylcholinesterase inhibitors assay using colorimetric pH sensitive strips and image analysis by a smartphone. Int J Anal Chem. 2017;2017:3712384.CrossRef Kostelnik A, Cegan A, Pohanka M. Acetylcholinesterase inhibitors assay using colorimetric pH sensitive strips and image analysis by a smartphone. Int J Anal Chem. 2017;2017:3712384.CrossRef
86.
Zurück zum Zitat Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I. Smart Forensic Phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors Actuators B: Chemical. 2017;243:221–5.CrossRef Shin J, Choi S, Yang J-S, Song J, Choi J-S, Jung H-I. Smart Forensic Phone: colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors Actuators B: Chemical. 2017;243:221–5.CrossRef
87.
Zurück zum Zitat Li L, Liu Z, Zhang H, Yue W, Li C-W, Yi C. A point-of-need enzyme linked aptamer assay for Mycobacterium tuberculosis detection using a smartphone. Sensors Actuators B: Chemical. 2017;254:337–46.CrossRef Li L, Liu Z, Zhang H, Yue W, Li C-W, Yi C. A point-of-need enzyme linked aptamer assay for Mycobacterium tuberculosis detection using a smartphone. Sensors Actuators B: Chemical. 2017;254:337–46.CrossRef
88.
Zurück zum Zitat Kim SC, Jalal UM, Im SB, Ko S, Shim JS. A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors Actuators B Chem. 2017;239:52–9.CrossRef Kim SC, Jalal UM, Im SB, Ko S, Shim JS. A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sensors Actuators B Chem. 2017;239:52–9.CrossRef
89.
Zurück zum Zitat Calabria D, Caliceti C, Zangheri M, Mirasoli M, Simoni P, Roda A. Smartphone–based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens Bioelectron. 2017;94:124–30.CrossRef Calabria D, Caliceti C, Zangheri M, Mirasoli M, Simoni P, Roda A. Smartphone–based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens Bioelectron. 2017;94:124–30.CrossRef
90.
Zurück zum Zitat Amirjani A, Fatmehsari DH. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta. 2017;176:242–6.CrossRef Amirjani A, Fatmehsari DH. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles. Talanta. 2017;176:242–6.CrossRef
91.
Zurück zum Zitat Machado JMD, Soares RRG, Chu V, Conde JP. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens Bioelectron. 2018;99:40–6.CrossRef Machado JMD, Soares RRG, Chu V, Conde JP. Multiplexed capillary microfluidic immunoassay with smartphone data acquisition for parallel mycotoxin detection. Biosens Bioelectron. 2018;99:40–6.CrossRef
92.
Zurück zum Zitat Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, et al. Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensors Actuators B: Chemical. 2017;251:134–43.CrossRef Su K, Pan Y, Wan Z, Zhong L, Fang J, Zou Q, et al. Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sensors Actuators B: Chemical. 2017;251:134–43.CrossRef
93.
Zurück zum Zitat Liu Z, Zhang Y, Xu S, Zhang H, Tan Y, Ma C, et al. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal Chim Acta. 2017;966:81–9.CrossRef Liu Z, Zhang Y, Xu S, Zhang H, Tan Y, Ma C, et al. A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal Chim Acta. 2017;966:81–9.CrossRef
94.
Zurück zum Zitat Ludwig SK, Zhu H, Phillips S, Shiledar A, Feng S, Tseng D, et al. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal Bioanal Chem. 2014;406(27):6857–66.CrossRef Ludwig SK, Zhu H, Phillips S, Shiledar A, Feng S, Tseng D, et al. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal Bioanal Chem. 2014;406(27):6857–66.CrossRef
95.
Zurück zum Zitat Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–8.CrossRef Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–8.CrossRef
96.
Zurück zum Zitat Zhang C, Kim JP, Creer M, Yang J, Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens Bioelectron. 2017;97:164–8.CrossRef Zhang C, Kim JP, Creer M, Yang J, Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens Bioelectron. 2017;97:164–8.CrossRef
97.
Zurück zum Zitat Liao SC, Peng J, Mauk MG, Awasthi S, Song J, Friedman H, et al. Smart Cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B: Chemical. 2016;229:232–8.CrossRef Liao SC, Peng J, Mauk MG, Awasthi S, Song J, Friedman H, et al. Smart Cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sensors Actuators B: Chemical. 2016;229:232–8.CrossRef
98.
Zurück zum Zitat Rajendran VK, Bakthavathsalam P, Jaffar Ali BM. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta. 2014;181(15–16):1815–21.CrossRef Rajendran VK, Bakthavathsalam P, Jaffar Ali BM. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta. 2014;181(15–16):1815–21.CrossRef
99.
Zurück zum Zitat Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem. 2014;86(18):9236–41.CrossRef Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem. 2014;86(18):9236–41.CrossRef
100.
Zurück zum Zitat Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon J-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4(22):11103.CrossRef Fronczek CF, Park TS, Harshman DK, Nicolini AM, Yoon J-Y. Paper microfluidic extraction and direct smartphone-based identification of pathogenic nucleic acids from field and clinical samples. RSC Adv. 2014;4(22):11103.CrossRef
101.
Zurück zum Zitat Lee D, Chou WP, Yeh SH, Chen PJ, Chen PH. DNA detection using commercial mobile phones. Biosens Bioelectron. 2011;26(11):4349–54.CrossRef Lee D, Chou WP, Yeh SH, Chen PJ, Chen PH. DNA detection using commercial mobile phones. Biosens Bioelectron. 2011;26(11):4349–54.CrossRef
102.
Zurück zum Zitat Nicolini AM, Fronczek CF, Yoon JY. Droplet-based immunoassay on a ‘sticky’ nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron. 2015;67:560–9.CrossRef Nicolini AM, Fronczek CF, Yoon JY. Droplet-based immunoassay on a ‘sticky’ nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron. 2015;67:560–9.CrossRef
103.
Zurück zum Zitat Thom NK, Lewis GG, Yeung K, Phillips ST. Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 2014;4(3):1334–40.CrossRef Thom NK, Lewis GG, Yeung K, Phillips ST. Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 2014;4(3):1334–40.CrossRef
104.
Zurück zum Zitat Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7(10):9147–55.CrossRef Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7(10):9147–55.CrossRef
105.
Zurück zum Zitat Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.CrossRef Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.CrossRef
106.
Zurück zum Zitat Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.CrossRef Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.CrossRef
107.
Zurück zum Zitat Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.CrossRef Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.CrossRef
108.
Zurück zum Zitat Hossain A, Canning J, Ast S, Rutledge PJ, Teh Li Y, Jamalipour A. Lab-in-a-Phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sensors J. 2015;15(9):5095–102.CrossRef Hossain A, Canning J, Ast S, Rutledge PJ, Teh Li Y, Jamalipour A. Lab-in-a-Phone: smartphone-based portable fluorometer for pH measurements of environmental water. IEEE Sensors J. 2015;15(9):5095–102.CrossRef
109.
Zurück zum Zitat Awqatty B, Samaddar S, Cash KJ, Clark HA, Dubach JM. Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst. 2014;139(20):5230–8.CrossRef Awqatty B, Samaddar S, Cash KJ, Clark HA, Dubach JM. Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst. 2014;139(20):5230–8.CrossRef
110.
Zurück zum Zitat Petryayeva E, Algar WR. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015;140(12):4037–45.CrossRef Petryayeva E, Algar WR. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015;140(12):4037–45.CrossRef
111.
Zurück zum Zitat Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano. 2015;9(3):3060–74.CrossRef Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano. 2015;9(3):3060–74.CrossRef
112.
Zurück zum Zitat Wargocki P, Deng W, Anwer AG, Goldys EM. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system. Sensors. 2015;15(5):11653–64.CrossRef Wargocki P, Deng W, Anwer AG, Goldys EM. Medically relevant assays with a simple smartphone and tablet based fluorescence detection system. Sensors. 2015;15(5):11653–64.CrossRef
113.
Zurück zum Zitat Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM, et al. Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics. 2016;6(2):231–42.CrossRef Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM, et al. Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics. 2016;6(2):231–42.CrossRef
114.
Zurück zum Zitat Bueno D, Muñoz R, Marty JL. Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors Actuators B: Chemical. 2016;232:462–8.CrossRef Bueno D, Muñoz R, Marty JL. Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors Actuators B: Chemical. 2016;232:462–8.CrossRef
115.
Zurück zum Zitat Priye A, Wong S, Bi Y, Carpio M, Chang J, Coen M, et al. Lab-on-a-Drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem. 2016;88(9):4651–60.CrossRef Priye A, Wong S, Bi Y, Carpio M, Chang J, Coen M, et al. Lab-on-a-Drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem. 2016;88(9):4651–60.CrossRef
116.
Zurück zum Zitat Slusarewicz P, Pagano S, Mills C, Popa G, Chow KM, Mendenhall M, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46(8):485–93.CrossRef Slusarewicz P, Pagano S, Mills C, Popa G, Chow KM, Mendenhall M, et al. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol. 2016;46(8):485–93.CrossRef
117.
Zurück zum Zitat Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron. 2016;86:697–705.CrossRef Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron. 2016;86:697–705.CrossRef
118.
Zurück zum Zitat Ko J, Hemphill MA, Gabrieli D, Wu L, Yelleswarapu V, Lawrence G, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 2016;6:31215.CrossRef Ko J, Hemphill MA, Gabrieli D, Wu L, Yelleswarapu V, Lawrence G, et al. Smartphone-enabled optofluidic exosome diagnostic for concussion recovery. Sci Rep. 2016;6:31215.CrossRef
119.
Zurück zum Zitat Joh DY, Hucknall AM, Wei Q, Mason KA, Lund ML, Fontes CM, et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc Natl Acad Sci U S A. 2017;114(34):E7054–E62.CrossRef Joh DY, Hucknall AM, Wei Q, Mason KA, Lund ML, Fontes CM, et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc Natl Acad Sci U S A. 2017;114(34):E7054–E62.CrossRef
120.
Zurück zum Zitat Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.CrossRef Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep. 2014;4:4137.CrossRef
121.
Zurück zum Zitat Lee WI, Shrivastava S, Duy LT, Yeong Kim B, Son YM, Lee NE. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron. 2017;94:643–50.CrossRef Lee WI, Shrivastava S, Duy LT, Yeong Kim B, Son YM, Lee NE. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens Bioelectron. 2017;94:643–50.CrossRef
122.
Zurück zum Zitat Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, et al. M kit: a cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron. 2017;99:259–67.CrossRef Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, et al. M kit: a cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron. 2017;99:259–67.CrossRef
123.
Zurück zum Zitat Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron. 2017;98:36–40.CrossRef Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ. A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron. 2017;98:36–40.CrossRef
124.
Zurück zum Zitat Priye A, Bird SW, Light YK, Ball CS, Negrete OA, Meagher RJ. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. 2017;7:44778.CrossRef Priye A, Bird SW, Light YK, Ball CS, Negrete OA, Meagher RJ. A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses. Sci Rep. 2017;7:44778.CrossRef
125.
Zurück zum Zitat Knowlton S, Joshi A, Syrrist P, Coskun AF, Tasoglu S. 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip. 2017;17(16):2839–51.CrossRef Knowlton S, Joshi A, Syrrist P, Coskun AF, Tasoglu S. 3D-printed smartphone-based point of care tool for fluorescence- and magnetophoresis-based cytometry. Lab Chip. 2017;17(16):2839–51.CrossRef
126.
Zurück zum Zitat Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.CrossRef Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.CrossRef
127.
Zurück zum Zitat Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.CrossRef Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.CrossRef
128.
Zurück zum Zitat Quimbar ME, Krenek KM, Lippert AR. A chemiluminescent platform for smartphone monitoring of H2O2 in human exhaled breath condensates. Methods. 2016;109:123–30.CrossRef Quimbar ME, Krenek KM, Lippert AR. A chemiluminescent platform for smartphone monitoring of H2O2 in human exhaled breath condensates. Methods. 2016;109:123–30.CrossRef
129.
Zurück zum Zitat Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2014;64:63–8.CrossRef Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2014;64:63–8.CrossRef
130.
Zurück zum Zitat Hao N, Xiong M, Zhang JD, Xu JJ, Chen HY. Portable thermo-powered high-throughput visual electrochemiluminescence sensor. Anal Chem. 2013;85(24):11715–9.CrossRef Hao N, Xiong M, Zhang JD, Xu JJ, Chen HY. Portable thermo-powered high-throughput visual electrochemiluminescence sensor. Anal Chem. 2013;85(24):11715–9.CrossRef
131.
Zurück zum Zitat Doeven EH, Barbante GJ, Harsant AJ, Donnelly PS, Connell TU, Hogan CF, et al. Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB on–the–go’ protocol. Sensors Actuators B: Chemical. 2015;216:608–13.CrossRef Doeven EH, Barbante GJ, Harsant AJ, Donnelly PS, Connell TU, Hogan CF, et al. Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB on–the–go’ protocol. Sensors Actuators B: Chemical. 2015;216:608–13.CrossRef
132.
Zurück zum Zitat Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem. 2016;408(11):2913–25.CrossRef Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem. 2016;408(11):2913–25.CrossRef
133.
Zurück zum Zitat Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A. Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B: Chemical. 2016;225:249–57.CrossRef Cevenini L, Calabretta MM, Tarantino G, Michelini E, Roda A. Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells”. Sensors Actuators B: Chemical. 2016;225:249–57.CrossRef
134.
Zurück zum Zitat Arts R, Den Hartog I, Zijlema SE, Thijssen V, van der Beelen SH, Merkx M. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal Chem. 2016;88(8):4525–32.CrossRef Arts R, Den Hartog I, Zijlema SE, Thijssen V, van der Beelen SH, Merkx M. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal Chem. 2016;88(8):4525–32.CrossRef
135.
Zurück zum Zitat Spyrou EM, Kalogianni DP, Tragoulias SS, Ioannou PC, Christopoulos TK. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms. Anal Bioanal Chem. 2016;408:7393–402.CrossRef Spyrou EM, Kalogianni DP, Tragoulias SS, Ioannou PC, Christopoulos TK. Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms. Anal Bioanal Chem. 2016;408:7393–402.CrossRef
136.
Zurück zum Zitat He M, Li Z, Ge Y, Liu Z. Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem. 2016;88(3):1530–4.CrossRef He M, Li Z, Ge Y, Liu Z. Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Anal Chem. 2016;88(3):1530–4.CrossRef
137.
Zurück zum Zitat Long KD, Yu H, Cunningham BT. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomed Opt Express. 2014;5(11):3792–806.CrossRef Long KD, Yu H, Cunningham BT. Smartphone instrument for portable enzyme-linked immunosorbent assays. Biomed Opt Express. 2014;5(11):3792–806.CrossRef
138.
Zurück zum Zitat Zhang C, Cheng G, Edwards P, Zhou MD, Zheng S, Liu Z. G-Fresnel smartphone spectrometer. Lab Chip. 2016;16(2):246–50.CrossRef Zhang C, Cheng G, Edwards P, Zhou MD, Zheng S, Liu Z. G-Fresnel smartphone spectrometer. Lab Chip. 2016;16(2):246–50.CrossRef
139.
Zurück zum Zitat Yang C, Shi K, Edwards P, Liu Z. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Opt Express. 2010;18(23):23529–34.CrossRef Yang C, Shi K, Edwards P, Liu Z. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Opt Express. 2010;18(23):23529–34.CrossRef
140.
Zurück zum Zitat Kwon H, Park J, An Y, Sim J, Park S. A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity. Anal Chim Acta. 2014;845:15–22.CrossRef Kwon H, Park J, An Y, Sim J, Park S. A smartphone metabolomics platform and its application to the assessment of cisplatin-induced kidney toxicity. Anal Chim Acta. 2014;845:15–22.CrossRef
141.
Zurück zum Zitat Cao T, Thompson JE. Remote sensing of atmospheric optical depth using a smartphone sun photometer. PLoS One. 2014;9(1):e84119.CrossRef Cao T, Thompson JE. Remote sensing of atmospheric optical depth using a smartphone sun photometer. PLoS One. 2014;9(1):e84119.CrossRef
142.
Zurück zum Zitat Arafat Hossain M, Canning J, Ast S, Cook K, Rutledge PJ, Jamalipour A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt Lett. 2015;40(8):1737–40.CrossRef Arafat Hossain M, Canning J, Ast S, Cook K, Rutledge PJ, Jamalipour A. Combined “dual” absorption and fluorescence smartphone spectrometers. Opt Lett. 2015;40(8):1737–40.CrossRef
143.
Zurück zum Zitat Intaravanne Y, Sumriddetchkajorn S, Nukeaw J. Cell phone-based two-dimensional spectral analysis for banana ripeness estimation. Sensors Actuators B: Chemical. 2012;168:390–4.CrossRef Intaravanne Y, Sumriddetchkajorn S, Nukeaw J. Cell phone-based two-dimensional spectral analysis for banana ripeness estimation. Sensors Actuators B: Chemical. 2012;168:390–4.CrossRef
144.
Zurück zum Zitat Dutta S, Choudhury A, Nath P. Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photon Technol Lett. 2014;26(6):568–70.CrossRef Dutta S, Choudhury A, Nath P. Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photon Technol Lett. 2014;26(6):568–70.CrossRef
145.
Zurück zum Zitat Iqbal Z, Bjorklund RB. Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages. Int J Food Sci Technol. 2011;46(11):2428–36.CrossRef Iqbal Z, Bjorklund RB. Assessment of a mobile phone for use as a spectroscopic analytical tool for foods and beverages. Int J Food Sci Technol. 2011;46(11):2428–36.CrossRef
146.
Zurück zum Zitat Dutta S, Sarma D, Nath P. Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Adv. 2015;5(5):057151.CrossRef Dutta S, Sarma D, Nath P. Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Adv. 2015;5(5):057151.CrossRef
147.
Zurück zum Zitat Grasse EK, Torcasio MH, Smith AW. Teaching UV–Vis spectroscopy with a 3D-printable smartphone spectrophotometer. J Chem Educ. 2015;93(1):146–51.CrossRef Grasse EK, Torcasio MH, Smith AW. Teaching UV–Vis spectroscopy with a 3D-printable smartphone spectrophotometer. J Chem Educ. 2015;93(1):146–51.CrossRef
148.
Zurück zum Zitat Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta. 2015;895:71–9.CrossRef Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A. Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta. 2015;895:71–9.CrossRef
149.
Zurück zum Zitat Wang L-J, Chang Y-C, Ge X, Osmanson AT, Du D, Lin Y, et al. Smartphone optosensing platform using a DVD grating to detect neurotoxins. ACS Sensors. 2016;1(4):366–73.CrossRef Wang L-J, Chang Y-C, Ge X, Osmanson AT, Du D, Lin Y, et al. Smartphone optosensing platform using a DVD grating to detect neurotoxins. ACS Sensors. 2016;1(4):366–73.CrossRef
150.
Zurück zum Zitat Hossain MA, Canning J, Cook K, Jamalipour A. Optical fiber smartphone spectrometer. Opt Lett. 2016;41(10):2237–40.CrossRef Hossain MA, Canning J, Cook K, Jamalipour A. Optical fiber smartphone spectrometer. Opt Lett. 2016;41(10):2237–40.CrossRef
151.
Zurück zum Zitat Wang LJ, Chang YC, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron. 2017;87:686–92.CrossRef Wang LJ, Chang YC, Sun R, Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens Bioelectron. 2017;87:686–92.CrossRef
153.
Zurück zum Zitat Choi S, Kim S, Yang J-S, Lee J-H, Joo C, Jung H-I. Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sens Bio-Sens Res. 2014;2:8–11.CrossRef Choi S, Kim S, Yang J-S, Lee J-H, Joo C, Jung H-I. Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sens Bio-Sens Res. 2014;2:8–11.CrossRef
154.
Zurück zum Zitat Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE. A lateral electrophoretic flow diagnostic assay. Lab Chip. 2015;15(6):1488–96.CrossRef Lin R, Skandarajah A, Gerver RE, Neira HD, Fletcher DA, Herr AE. A lateral electrophoretic flow diagnostic assay. Lab Chip. 2015;15(6):1488–96.CrossRef
155.
Zurück zum Zitat Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron. 2015;69:307–15.CrossRef Yu L, Shi Z, Fang C, Zhang Y, Liu Y, Li C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron. 2015;69:307–15.CrossRef
156.
Zurück zum Zitat Preechaburana P, Macken S, Suska A, Filippini D. HDR imaging evaluation of a NT-proBNP test with a mobile phone. Biosens Bioelectron. 2011;26(5):2107–13.CrossRef Preechaburana P, Macken S, Suska A, Filippini D. HDR imaging evaluation of a NT-proBNP test with a mobile phone. Biosens Bioelectron. 2011;26(5):2107–13.CrossRef
157.
Zurück zum Zitat Lee S, O’Dell D, Hohenstein J, Colt S, Mehta S, Erickson D. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci Rep. 2016;6:28237.CrossRef Lee S, O’Dell D, Hohenstein J, Colt S, Mehta S, Erickson D. NutriPhone: a mobile platform for low-cost point-of-care quantification of vitamin B12 concentrations. Sci Rep. 2016;6:28237.CrossRef
159.
Zurück zum Zitat Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A. 2014;111(33):11984–9.CrossRef Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci U S A. 2014;111(33):11984–9.CrossRef
160.
Zurück zum Zitat Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y, et al. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron. 2015;70:81–8.CrossRef Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y, et al. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron. 2015;70:81–8.CrossRef
161.
Zurück zum Zitat Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, et al. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B: Chemical. 2014;193:653–9.CrossRef Jiang J, Wang X, Chao R, Ren Y, Hu C, Xu Z, et al. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sensors Actuators B: Chemical. 2014;193:653–9.CrossRef
162.
Zurück zum Zitat Sun A, Wambach T, Venkatesh A, Hall DA, editors. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Biomedical Circuits and Systems Conference (BioCAS), IEEE; 2014. p. 312–5. Sun A, Wambach T, Venkatesh A, Hall DA, editors. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Biomedical Circuits and Systems Conference (BioCAS), IEEE; 2014. p. 312–5.
163.
Zurück zum Zitat Delaney JL, Doeven EH, Harsant AJ, Hogan CF. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta. 2013;790:56–60.CrossRef Delaney JL, Doeven EH, Harsant AJ, Hogan CF. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta. 2013;790:56–60.CrossRef
164.
Zurück zum Zitat Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, et al. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B: Chemical. 2016;222:994–1002.CrossRef Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, et al. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B: Chemical. 2016;222:994–1002.CrossRef
165.
Zurück zum Zitat Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B: Chemical. 2016;235:126–35.CrossRef Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B: Chemical. 2016;235:126–35.CrossRef
166.
Zurück zum Zitat Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron. 2016;86:690–6.CrossRef Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron. 2016;86:690–6.CrossRef
167.
Zurück zum Zitat Giordano GF, Vicentini MB, Murer RC, Augusto F, Ferrão MF, Helfer GA, et al. Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochim Acta. 2016;219:170–7.CrossRef Giordano GF, Vicentini MB, Murer RC, Augusto F, Ferrão MF, Helfer GA, et al. Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochim Acta. 2016;219:170–7.CrossRef
168.
Zurück zum Zitat Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, et al. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron. 2017;98:449–56.CrossRef Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, et al. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron. 2017;98:449–56.CrossRef
169.
Zurück zum Zitat Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron. 2018;99:156–62.CrossRef Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron. 2018;99:156–62.CrossRef
170.
Zurück zum Zitat Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.CrossRef Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.CrossRef
171.
Zurück zum Zitat Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip. 2013;13(20):4015–23.CrossRef Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D, Nagi R, et al. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip. 2013;13(20):4015–23.CrossRef
172.
Zurück zum Zitat Koydemir HC, Gorocs Z, Tseng D, Cortazar B, Feng S, Chan RYL, et al. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip. 2014;15(5):1284–93.CrossRef Koydemir HC, Gorocs Z, Tseng D, Cortazar B, Feng S, Chan RYL, et al. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip. 2014;15(5):1284–93.CrossRef
173.
Zurück zum Zitat Wei Q, Luo W, Chiang S, Kappel T, Mejia C, Tseng D, et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano. 2014;8(12):12725–33.CrossRef Wei Q, Luo W, Chiang S, Kappel T, Mejia C, Tseng D, et al. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano. 2014;8(12):12725–33.CrossRef
174.
Zurück zum Zitat Skandarajah A, Reber CD, Switz NA, Fletcher DA. Quantitative imaging with a mobile phone microscope. PLoS One. 2014;9(5):e96906.CrossRef Skandarajah A, Reber CD, Switz NA, Fletcher DA. Quantitative imaging with a mobile phone microscope. PLoS One. 2014;9(5):e96906.CrossRef
175.
Zurück zum Zitat Roy S, Pantanowitz L, Amin M, Seethala RR, Ishtiaque A, Yousem SA, et al. Smartphone adapters for digital photomicrography. J Pathol. 2014;1:24. Roy S, Pantanowitz L, Amin M, Seethala RR, Ishtiaque A, Yousem SA, et al. Smartphone adapters for digital photomicrography. J Pathol. 2014;1:24.
176.
Zurück zum Zitat Lee M, Yaglidere O, Ozcan A. Field-portable reflection and transmission microscopy based on lensless holography. Biomed Optics Exp. 2011;2(9):2721–30.CrossRef Lee M, Yaglidere O, Ozcan A. Field-portable reflection and transmission microscopy based on lensless holography. Biomed Optics Exp. 2011;2(9):2721–30.CrossRef
177.
Zurück zum Zitat Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med. 2017;9(382):eaai7863.CrossRef Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, et al. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med. 2017;9(382):eaai7863.CrossRef
178.
Zurück zum Zitat Bremer K, Roth B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt Express. 2015;23(13):17179–84.CrossRef Bremer K, Roth B. Fibre optic surface plasmon resonance sensor system designed for smartphones. Opt Express. 2015;23(13):17179–84.CrossRef
179.
Zurück zum Zitat Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep. 2015;5:12864.CrossRef Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W. Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep. 2015;5:12864.CrossRef
180.
Zurück zum Zitat Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, et al. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron. 2016;75:88–95.CrossRef Lee KL, You ML, Tsai CH, Lin EH, Hsieh SY, Ho MH, et al. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens Bioelectron. 2016;75:88–95.CrossRef
181.
Zurück zum Zitat Dutta S, Saikia K, Nath P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016;6(26):21871–80.CrossRef Dutta S, Saikia K, Nath P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016;6(26):21871–80.CrossRef
182.
Zurück zum Zitat Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16(10):1927–33.CrossRef Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16(10):1927–33.CrossRef
183.
Zurück zum Zitat Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal AE, et al. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B: Chemical. 2017;239:571–7.CrossRef Guner H, Ozgur E, Kokturk G, Celik M, Esen E, Topal AE, et al. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sensors Actuators B: Chemical. 2017;239:571–7.CrossRef
184.
Zurück zum Zitat Zhang J, Khan I, Zhang Q, Liu X, Dostalek J, Liedberg B, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens Bioelectron. 2018;99:312–7.CrossRef Zhang J, Khan I, Zhang Q, Liu X, Dostalek J, Liedberg B, et al. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor. Biosens Bioelectron. 2018;99:312–7.CrossRef
Metadaten
Titel
Smartphone-Based Point-of-Care Technologies for Mobile Healthcare
verfasst von
Sandeep Kumar Vashist
John H. T. Luong
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-11416-9_2

Neuer Inhalt