Skip to main content

2025 | OriginalPaper | Buchkapitel

Smartwatch as a Pervasive Computing Application in Health Metrics Tracking

verfasst von : Akshita Sah, Shishir Saurav, Aditya Meena, Sushruta Mishra, Naresh Kumar

Erschienen in: Innovative Computing and Communications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Pervasive computing, characterized by the integration of technology into everyday life, has transformed the healthcare landscape. This research paper explores the significant role of smartwatches as a vital tool of pervasive computing in healthcare. Smartwatches have evolved into powerful health monitoring and management devices, providing continuous and unobtrusive tracking of health metrics such as heart rate, sleep patterns, physical activity, and more. They offer early detection of critical health events, personalized health insights, and motivation for lifestyle changes. Moreover, smartwatches contribute to telemedicine, telehealth, and remote patient monitoring, enhancing the accessibility and quality of healthcare services. This paper delves into the future scope of smartwatches in healthcare, highlighting advanced health monitoring, predictive health insights, personalized healthcare, and their potential impact on wellness and mental health. This paper also discusses the technologies, applications, key components, and benefits of pervasive computing in healthcare. The paper also gives us information about the benefits of smartwatches as an effective application of pervasive computing in healthcare.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lyons, K., & Profita, H. (2014). The multiple dispositions of on-body and wearable devices. IEEE Pervasive Computing, 13(4), 24–31.CrossRef Lyons, K., & Profita, H. (2014). The multiple dispositions of on-body and wearable devices. IEEE Pervasive Computing, 13(4), 24–31.CrossRef
3.
Zurück zum Zitat Nair, S., Kheirkhahan, M., Davoudi, A., Rashidi, P., Wanigatunga, A. A., Corbett, D. B., Manini, T. M., & Ranka, S. (2016). ROAMM: A software infrastructure for real-time monitoring of personal health. In 2016 IEEE 18th international conference on e-Health. Nair, S., Kheirkhahan, M., Davoudi, A., Rashidi, P., Wanigatunga, A. A., Corbett, D. B., Manini, T. M., & Ranka, S. (2016). ROAMM: A software infrastructure for real-time monitoring of personal health. In 2016 IEEE 18th international conference on e-Health.
4.
Zurück zum Zitat Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., & Schreiber, A. J. (2016). Smartwatchbased activity recognition: A machine learning approach. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, 426–429. Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., & Schreiber, A. J. (2016). Smartwatchbased activity recognition: A machine learning approach. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 2016, 426–429.
5.
Zurück zum Zitat Nichols, J., & Myers, B. A. (2006). Controlling home and office appliances with smart phones. IEEE Pervasive Computing, 5, 60–67. Nichols, J., & Myers, B. A. (2006). Controlling home and office appliances with smart phones. IEEE Pervasive Computing, 5, 60–67.
6.
Zurück zum Zitat Ranganathan, K., & Foster, I. (2002). Decoupling computation and data scheduling in distributed data-intensive applications. In Proceedings of 11th IEEE international symposium on high performance distributed computing (pp. 352–359). Ranganathan, K., & Foster, I. (2002). Decoupling computation and data scheduling in distributed data-intensive applications. In Proceedings of 11th IEEE international symposium on high performance distributed computing (pp. 352–359).
7.
Zurück zum Zitat Kheirkhahan, M., Das, H., Battula, M., Davoudi, A., Rashidi, P., Manini, T. M., & Ranka, S. (2017). Power-efficient real-time approach to non-wear time detection for smartwatches. In 2017 IEEE EMBS international conference on biomedical & health informatics (BHI) (pp. 217–220). IEEE. Kheirkhahan, M., Das, H., Battula, M., Davoudi, A., Rashidi, P., Manini, T. M., & Ranka, S. (2017). Power-efficient real-time approach to non-wear time detection for smartwatches. In 2017 IEEE EMBS international conference on biomedical & health informatics (BHI) (pp. 217–220). IEEE.
8.
Zurück zum Zitat Amor, J. D., & James, C. J. (2018). Validation of a commercial android smartwatch as an activity monitoring platform. IEEE Journal of Biomedical Health Informatics, 22(4), 968–978.CrossRef Amor, J. D., & James, C. J. (2018). Validation of a commercial android smartwatch as an activity monitoring platform. IEEE Journal of Biomedical Health Informatics, 22(4), 968–978.CrossRef
9.
Zurück zum Zitat Kheirkhahan, M., Tudor-Locke, C., Axtell, R., Buman, M. P., Fielding, R. A., Glynn, N. W., Guralnik, J. M., King, A. C., White, D. K., Miller, M. E., et al. (2016). Actigraphy features for predicting mobility disability in older adults. Physiological Measurement, 37(10), 1813.CrossRef Kheirkhahan, M., Tudor-Locke, C., Axtell, R., Buman, M. P., Fielding, R. A., Glynn, N. W., Guralnik, J. M., King, A. C., White, D. K., Miller, M. E., et al. (2016). Actigraphy features for predicting mobility disability in older adults. Physiological Measurement, 37(10), 1813.CrossRef
10.
Zurück zum Zitat Faiez, H., & Akaichi, J. (2016). A review of pervasive healthcare from prevention to emergency rescue: systems, tools, platforms and techniques. Journal of Software, 11, 1119–1131.CrossRef Faiez, H., & Akaichi, J. (2016). A review of pervasive healthcare from prevention to emergency rescue: systems, tools, platforms and techniques. Journal of Software, 11, 1119–1131.CrossRef
11.
Zurück zum Zitat Bhavya, M., Pranshu, S., Sushruta, M., & Sibanjan, D. (2023). 17 comparative analysis of breast cancer diagnosis driven by the smart IoT-based approach. In Explainable artificial intelligence for biomedical applications (pp. 353–374). River Publishers. Bhavya, M., Pranshu, S., Sushruta, M., & Sibanjan, D. (2023). 17 comparative analysis of breast cancer diagnosis driven by the smart IoT-based approach. In Explainable artificial intelligence for biomedical applications (pp. 353–374). River Publishers.
13.
Zurück zum Zitat Pranjal, P., Mallick, S., Madan, M., Mishra, S., Alkhayyat, A., & Bhaktisudha, S. (2023). A smart data-driven prototype for depression and stress tracking in patients. In A.E. Hassanien, O. Castillo, S. Anand, & A. Jaiswal (Eds.), International conference on innovative computing and communications (Vol. 537). ICICC 2023. Lecture Notes in Networks and Systems. Springer. https://doi.org/10.1007/978-981-99-3010-4_36 Pranjal, P., Mallick, S., Madan, M., Mishra, S., Alkhayyat, A., & Bhaktisudha, S. (2023). A smart data-driven prototype for depression and stress tracking in patients. In A.E. Hassanien, O. Castillo, S. Anand, & A. Jaiswal (Eds.), International conference on innovative computing and communications (Vol. 537). ICICC 2023. Lecture Notes in Networks and Systems. Springer. https://​doi.​org/​10.​1007/​978-981-99-3010-4_​36
15.
Zurück zum Zitat Chakraborty, S., & Mishra, S. (2022). A smart farming-based recommendation system using collaborative machine learning and image processing. In P. K. Mallick, A. K. Bhoi, P. Barsocchi, & V. H. C. de Albuquerque (Eds.), Cognitive informatics and soft computing (Vol. 375). Lecture Notes in Networks and Systems. Springer. https://doi.org/10.1007/978-981-16-8763-1_58 Chakraborty, S., & Mishra, S. (2022). A smart farming-based recommendation system using collaborative machine learning and image processing. In P. K. Mallick, A. K. Bhoi, P. Barsocchi, & V. H. C. de Albuquerque (Eds.), Cognitive informatics and soft computing (Vol. 375). Lecture Notes in Networks and Systems. Springer. https://​doi.​org/​10.​1007/​978-981-16-8763-1_​58
Metadaten
Titel
Smartwatch as a Pervasive Computing Application in Health Metrics Tracking
verfasst von
Akshita Sah
Shishir Saurav
Aditya Meena
Sushruta Mishra
Naresh Kumar
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_11