Skip to main content

2016 | OriginalPaper | Buchkapitel

19. Smoldering Combustion

verfasst von : Guillermo Rein

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Smoldering combustion is the slow, low temperature, flameless burning of porous fuels and is the most persistent type of combustion phenomena. It is especially common in porous fuels which form a char on heating, like cellulosic insulation, polyurethane foam or peat. Smoldering combustion is among the leading causes of residential fires, and it is a source of safety concerns in industrial premises as well as in commercial and space flights. Smoldering is also the dominant combustion phenomena in megafires in natural deposits of peat and coal which are the largest and longest burning fires on Eartht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Pyrolysis in this context is the chemical decomposition of a solid material solely by heating. It does not involve oxidation reactions and it is endothermic. It involves the irreversible and simultaneous change of chemical composition and physical phase.
 
2
Oxidation in this context is the reaction of a species with the oxygen in the air. It is an exothermic reaction.
 
3
The onset of pyrolysis or oxidation does not occur at one fixed temperature but it is known to be a function of the heating rate and start over a range of temperatures; higher onset temperatures are observed for higher heating rates. See Rein et al. [15] and the section “Smoldering Kinetics” for evidence of this.
 
4
The surface-to-volume ratio of a sample is inversely proportional to its characteristic length (e.g., thickness for a very wide layer, diameter for a cylinder, side length for a prism or diameter for a sphere).
 
5
Avoidance of flaming re-ignition of a non-porous fuel requires cooling of the surface layer only.
 
6
The water content in dry basis is the mass of water divided by the mass of a dried sample expressed as a %.
 
7
The mineral content is the % of the fuel mass (on dry basis) that will not burn or react at high temperatures. It results in ash.
 
Literatur
1.
Zurück zum Zitat TJ. Ohlemiller, “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, p. 277 (1985). TJ. Ohlemiller, “Modeling of Smoldering Combustion Propagation,” Progress in Energy and Combustion Science, 11, p. 277 (1985).
2.
Zurück zum Zitat D. Drysdale, An Introduction to Fire Dynamics, 3rd ed. Wiley, UK, 2011. D. Drysdale, An Introduction to Fire Dynamics, 3rd ed. Wiley, UK, 2011.
3.
Zurück zum Zitat M. Ahrens. U.S. Home Structure Fires, National Fire Protection Association Fire Analysis and Research, Quincy, MA April 2013. M. Ahrens. U.S. Home Structure Fires, National Fire Protection Association Fire Analysis and Research, Quincy, MA April 2013.
4.
Zurück zum Zitat J.R. Hall, The Smoking-Material Fire Problem, (Fire Analysis and Research Division of The National Fire Protection Association, November 2004, Massachusetts). J.R. Hall, The Smoking-Material Fire Problem, (Fire Analysis and Research Division of The National Fire Protection Association, November 2004, Massachusetts).
6.
Zurück zum Zitat T’ien, J.S., Shih, H., Jiang, C., Ross, H.D., Miller, F.J., Fernandez-Pello, A.C., Torero, J.L., and Walther, D.C., Mechanisms of Flame Spread and Smolder Wave Propagation, Chapter 5 in. Microgravity Combustion: Fire in Free Fall, H.D. Ross, Editor, Academic Press, 2001, pp. 299–417. T’ien, J.S., Shih, H., Jiang, C., Ross, H.D., Miller, F.J., Fernandez-Pello, A.C., Torero, J.L., and Walther, D.C., Mechanisms of Flame Spread and Smolder Wave Propagation, Chapter 5 in. Microgravity Combustion: Fire in Free Fall, H.D. Ross, Editor, Academic Press, 2001, pp. 299–417.
8.
Zurück zum Zitat V. Babrauskas, Ignition Handbook, 2003 Fire Science Publishers, Issaquah WA, USA. ISBN-10: 0-9728111-3-3. V. Babrauskas, Ignition Handbook, 2003 Fire Science Publishers, Issaquah WA, USA. ISBN-10: 0-9728111-3-3.
9.
Zurück zum Zitat G Rein, Smouldering Combustion Phenomena in Science and Technology, International Review of Chemical Engineering, 1, 1, pp. 3–18, 2009. G Rein, Smouldering Combustion Phenomena in Science and Technology, International Review of Chemical Engineering, 1, 1, pp. 3–18, 2009.
10.
Zurück zum Zitat TJ. Ohlemiller and W. Shaub, “Products of Wood Smolder and Their Relation to Wood-Burning Stoves,” NBSIR 88-3767, National Bureau of Standards, Washington, DC (1988). fire.nist.gov/bfrlpubs/fire88/PDF/f88017.pdf TJ. Ohlemiller and W. Shaub, “Products of Wood Smolder and Their Relation to Wood-Burning Stoves,” NBSIR 88-3767, National Bureau of Standards, Washington, DC (1988). fire.nist.gov/bfrlpubs/fire88/PDF/f88017.pdf
13.
Zurück zum Zitat C. Switzer, P Pironi, G Rein, JL Torero, JI Gerhard, Self-Sustaining Smoldering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media, Environmental Science and Technology 43, pp. 5871–5877, 2009. doi: 10.1021/es803483s. C. Switzer, P Pironi, G Rein, JL Torero, JI Gerhard, Self-Sustaining Smoldering Combustion: A Novel Remediation Process for Non-Aqueous-Phase Liquids in Porous Media, Environmental Science and Technology 43, pp. 5871–5877, 2009. doi: 10.​1021/​es803483s.
14.
Zurück zum Zitat J. Torero and C. Fernandez-Pello, Forward Smolder of Polyurethane Foam in a Forced Air Flow, Combustion and Flame, 106, pp. 89–109 (1996).CrossRef J. Torero and C. Fernandez-Pello, Forward Smolder of Polyurethane Foam in a Forced Air Flow, Combustion and Flame, 106, pp. 89–109 (1996).CrossRef
15.
Zurück zum Zitat G Rein, C Lautenberger, AC Fernandez-Pello, JL Torero, DL. Urban, Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion, Combustion and Flame 146 (1-2), pp 95–108, 2006. doi:10.1016/j.combustflame.2006.04.013. G Rein, C Lautenberger, AC Fernandez-Pello, JL Torero, DL. Urban, Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion, Combustion and Flame 146 (1-2), pp 95–108, 2006. doi:10.​1016/​j.​combustflame.​2006.​04.​013.
17.
Zurück zum Zitat TJ. Ohlemiller and D. Lucca, “An Experimental Comparison of Forward and Reverse Smolder Propagation in Permeable Fuel Beds,” Combustion and Flame, 54, p. 131 (1983). TJ. Ohlemiller and D. Lucca, “An Experimental Comparison of Forward and Reverse Smolder Propagation in Permeable Fuel Beds,” Combustion and Flame, 54, p. 131 (1983).
18.
Zurück zum Zitat M. Ortiz-Molina, T-Y. Toong, N. Moussa, and G. Tesoro, 17th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1979). M. Ortiz-Molina, T-Y. Toong, N. Moussa, and G. Tesoro, 17th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA (1979).
19.
Zurück zum Zitat R Hadden, A Alkatib, G Rein, JL Torero, Radiant Ignition of Polyurethane Foam: the Effect of Sample Size, Fire Technology 50 (3), pp. 673–691 (2014) doi:10.1007/s10694-012-0257-x. R Hadden, A Alkatib, G Rein, JL Torero, Radiant Ignition of Polyurethane Foam: the Effect of Sample Size, Fire Technology 50 (3), pp. 673–691 (2014) doi:10.​1007/​s10694-012-0257-x.
20.
Zurück zum Zitat M. Anderson, R. Sleight, and J. Torero, “Downward Smolder of Polyurethane Foam: Ignition Signatures,” Fire Safety Journal, 35, pp. 131–147 (2000).CrossRef M. Anderson, R. Sleight, and J. Torero, “Downward Smolder of Polyurethane Foam: Ignition Signatures,” Fire Safety Journal, 35, pp. 131–147 (2000).CrossRef
21.
Zurück zum Zitat R. Anthenien and C. Fernandez-Pello, A Study of Forward Smolder Ignition of Polyurethane Foam, Proceedings 27th Symposium (International) on Combustion, Vol. 2, Combustion Institute, Pittsburgh, PA, pp. 2683–2690 (1998). R. Anthenien and C. Fernandez-Pello, A Study of Forward Smolder Ignition of Polyurethane Foam, Proceedings 27th Symposium (International) on Combustion, Vol. 2, Combustion Institute, Pittsburgh, PA, pp. 2683–2690 (1998).
22.
Zurück zum Zitat R Hadden, G Rein, Burning and Suppression of Smouldering Coal Fires, Chapter 18 in. Coal and Peat Fires: A Global Perspective, Volume 1, pp. 317–326, Stracher, Prakash and Sokol (editors), Elsevier Geoscience, 2011. ISBN 9780444528582. doi: 10.1016/B978-0-444-52858-2.00018-9. R Hadden, G Rein, Burning and Suppression of Smouldering Coal Fires, Chapter 18 in. Coal and Peat Fires: A Global Perspective, Volume 1, pp. 317–326, Stracher, Prakash and Sokol (editors), Elsevier Geoscience, 2011. ISBN 9780444528582. doi: 10.​1016/​B978-0-444-52858-2.​00018-9.
23.
Zurück zum Zitat Manzello, S. L.; Cleary, T. G.; Shields, J. R.; Maranghides, A.; Mell, W. E.; Yang, J. C., Experimental Investigation of Firebrands: Generation and Ignition of Fuel Beds, Fire Safety Journal, Vol. 43, No. 3, 226–233, April 2008. Manzello, S. L.; Cleary, T. G.; Shields, J. R.; Maranghides, A.; Mell, W. E.; Yang, J. C., Experimental Investigation of Firebrands: Generation and Ignition of Fuel Beds, Fire Safety Journal, Vol. 43, No. 3, 226–233, April 2008.
24.
Zurück zum Zitat R Hadden, S Scott, C Lautenberger and AC Fernandez-Pello, Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study, Fire Technology 47 (2), pp. 341–355, 2011, doi:10.1007/s10694-010-0181-x CrossRef R Hadden, S Scott, C Lautenberger and AC Fernandez-Pello, Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study, Fire Technology 47 (2), pp. 341–355, 2011, doi:10.​1007/​s10694-010-0181-x CrossRef
25.
Zurück zum Zitat U Krause, Schmidt M (2000) Propagation of smouldering in dust deposits caused by glowing nests or embedded hot bodies. J Loss Prev Process Indus 13(3-5):319–326. doi:10.1016/S0950-4230(99)00031-5 U Krause, Schmidt M (2000) Propagation of smouldering in dust deposits caused by glowing nests or embedded hot bodies. J Loss Prev Process Indus 13(3-5):319–326. doi:10.​1016/​S0950-4230(99)00031-5
26.
Zurück zum Zitat P. Bowes, Self-Heating: Evaluating and Controlling the Hazards, Elsevier, New York, Chap. 7 (1984). P. Bowes, Self-Heating: Evaluating and Controlling the Hazards, Elsevier, New York, Chap. 7 (1984).
27.
Zurück zum Zitat K. Palmer, “Smoldering Combustion in Dusts and Fibrous Materials,” Combustion and Flame, 1, p. 129 (1957).CrossRef K. Palmer, “Smoldering Combustion in Dusts and Fibrous Materials,” Combustion and Flame, 1, p. 129 (1957).CrossRef
28.
Zurück zum Zitat TJ. Ohlemiller and F. Rogers, “Cellulosic Insulation Material II. Effect of Additives on Some Smolder Characteristics,” Combustion Science and Technology, 24, p. 139 (1980). TJ. Ohlemiller and F. Rogers, “Cellulosic Insulation Material II. Effect of Additives on Some Smolder Characteristics,” Combustion Science and Technology, 24, p. 139 (1980).
31.
Zurück zum Zitat X Huang, G Rein, “Smouldering Combustion of Peat in Wildfires: Inverse Modelling of the Drying and the Thermal and Oxidative Decomposition Kinetics,” Combustion and Flame 161 (6), pp. 1633–1644, 2014. doi:10.1016/j.combustflame.2013.12.013. X Huang, G Rein, “Smouldering Combustion of Peat in Wildfires: Inverse Modelling of the Drying and the Thermal and Oxidative Decomposition Kinetics,” Combustion and Flame 161 (6), pp. 1633–1644, 2014. doi:10.​1016/​j.​combustflame.​2013.​12.​013.
32.
Zurück zum Zitat TJ. Ohlemiller, “Smoldering Combustion Propagation Through a Permeable Horizontal Fuel Layer,” Combustion and Flame, 81, p. 341 (1990a). TJ. Ohlemiller, “Smoldering Combustion Propagation Through a Permeable Horizontal Fuel Layer,” Combustion and Flame, 81, p. 341 (1990a).
33.
Zurück zum Zitat J. Brenden and E. Schaffer, “Wavefront Velocity in Smoldering Fiberboard,” Research Paper FPL 367, U.S. Forest Products Laboratory (1980). J. Brenden and E. Schaffer, “Wavefront Velocity in Smoldering Fiberboard,” Research Paper FPL 367, U.S. Forest Products Laboratory (1980).
34.
Zurück zum Zitat T. Kinbara, H. Endo, and S. Sega, Proceedings of the Combustion Institute, p. 525 (1967). T. Kinbara, H. Endo, and S. Sega, Proceedings of the Combustion Institute, p. 525 (1967).
35.
Zurück zum Zitat A. Egerton, K. Gugan, and F. Weinberg, “The Mechanism of Smoldering in Cigarettes,” Combustion and Flame, 7, p. 63 (1963).CrossRef A. Egerton, K. Gugan, and F. Weinberg, “The Mechanism of Smoldering in Cigarettes,” Combustion and Flame, 7, p. 63 (1963).CrossRef
36.
Zurück zum Zitat D. Donaldson and D. Yeadon, “Smoldering Phenomena Associated with Cotton,” Textile Research Journal, March, p. 160, (1983). D. Donaldson and D. Yeadon, “Smoldering Phenomena Associated with Cotton,” Textile Research Journal, March, p. 160, (1983).
37.
Zurück zum Zitat W. Stiefel, R. Bukowski, J. Hall, and F. Clarke, “Fire Risk Assessment Method: Case Study 1, Upholstered Furniture in Residences,” NISTIR 90-4243, National Institute of Standards and Technology, Gaithersburg, MD (1990). W. Stiefel, R. Bukowski, J. Hall, and F. Clarke, “Fire Risk Assessment Method: Case Study 1, Upholstered Furniture in Residences,” NISTIR 90-4243, National Institute of Standards and Technology, Gaithersburg, MD (1990).
40.
Zurück zum Zitat T. Kashiwagi, H. Nambu, Global kinetic constants for thermal oxidative degradation of a cellulosic paper, Combustion and Flame, Volume 88, Issues 3–4, March 1992, Pages 345–368, http://dx.doi.org/10.1016/0010-2180(92)90039-R. T. Kashiwagi, H. Nambu, Global kinetic constants for thermal oxidative degradation of a cellulosic paper, Combustion and Flame, Volume 88, Issues 3–4, March 1992, Pages 345–368, http://​dx.​doi.​org/​10.​1016/​0010-2180(92)90039-R.
41.
Zurück zum Zitat F. Rogers and T. Ohlemiller, “Smolder Characteristics of Flexible Polyurethane Foams,” Journal of Fire and Flammability, 11, p. 32 (1980). F. Rogers and T. Ohlemiller, “Smolder Characteristics of Flexible Polyurethane Foams,” Journal of Fire and Flammability, 11, p. 32 (1980).
42.
Zurück zum Zitat C.Y.H. Chao, J.H. Wang, 2001a, Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam, Journal of Fire Science 19, pp. 137–155.CrossRef C.Y.H. Chao, J.H. Wang, 2001a, Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam, Journal of Fire Science 19, pp. 137–155.CrossRef
43.
Zurück zum Zitat C Belcher, J Yearsley, R Hadden, J McElwain, G Rein, Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years, Proceedings of the National Academy of Sciences 107 (52), pp. 22448–22453, 2010. doi:10.1073/pnas.1011974107.CrossRef C Belcher, J Yearsley, R Hadden, J McElwain, G Rein, Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years, Proceedings of the National Academy of Sciences 107 (52), pp. 22448–22453, 2010. doi:10.​1073/​pnas.​1011974107.CrossRef
44.
Zurück zum Zitat R Hadden, G Rein, C Belcher, Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat, Proceedings of the Combustion Institute 34, pp. 2547–2553, 2013. doi:10.1016/j.proci.2012.05.060. R Hadden, G Rein, C Belcher, Study of the competing chemical reactions in the initiation and spread of smouldering combustion in peat, Proceedings of the Combustion Institute 34, pp. 2547–2553, 2013. doi:10.​1016/​j.​proci.​2012.​05.​060.
45.
Zurück zum Zitat M. Tuomisaari, D. Baroudi, and R. Latva, “Extinguishing Smoldering Fires in Silos,” Publication 339, VTT Technical Research Centre of Finland, Espoo, Finland (1998). M. Tuomisaari, D. Baroudi, and R. Latva, “Extinguishing Smoldering Fires in Silos,” Publication 339, VTT Technical Research Centre of Finland, Espoo, Finland (1998).
46.
Zurück zum Zitat G Rein, S Cohen, A Simeoni, Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts, Proceedings of the Combustion Institute 32, pp. 2489–2496, 2009. G Rein, S Cohen, A Simeoni, Carbon Emissions from Smouldering Peat in Shallow and Strong Fronts, Proceedings of the Combustion Institute 32, pp. 2489–2496, 2009.
47.
Zurück zum Zitat A. Stec, T.R Hull, Assessment of the fire toxicity of building insulation materials, Energy and Buildings 43 (2011) 498–506.CrossRef A. Stec, T.R Hull, Assessment of the fire toxicity of building insulation materials, Energy and Buildings 43 (2011) 498–506.CrossRef
48.
Zurück zum Zitat J. Quintiere, M. Birky, F. McDonald, and G. Smith, An Analysis of Smoldering Fires in a Closed Compartment and Their Hazard due to Carbon Monoxide, Fire and Materials, 6, p. 99, 1982.CrossRef J. Quintiere, M. Birky, F. McDonald, and G. Smith, An Analysis of Smoldering Fires in a Closed Compartment and Their Hazard due to Carbon Monoxide, Fire and Materials, 6, p. 99, 1982.CrossRef
49.
Zurück zum Zitat G. Mulholland and T. Ohlemiller, “Aerosol Characterization of a Smoldering Source,” Aerosol Science and Technology, 1, p. 59 (1982).CrossRef G. Mulholland and T. Ohlemiller, “Aerosol Characterization of a Smoldering Source,” Aerosol Science and Technology, 1, p. 59 (1982).CrossRef
50.
Zurück zum Zitat H. Hotta, Y. Oka, and O. Sugawa, “Interaction Between Hot Layer and Updraft from a Smoldering Source. Part 1. An Experimental Approach,” Fire Science and Technology, 7, p. 17 (1987).CrossRef H. Hotta, Y. Oka, and O. Sugawa, “Interaction Between Hot Layer and Updraft from a Smoldering Source. Part 1. An Experimental Approach,” Fire Science and Technology, 7, p. 17 (1987).CrossRef
51.
Zurück zum Zitat I Bertschi, Yokelson, R.J., Ward, D.E., et al. (2003) Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. Geophysical Research 108 (D13): 8472; doi: 10.1029/2002JD002100. I Bertschi, Yokelson, R.J., Ward, D.E., et al. (2003) Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. Geophysical Research 108 (D13): 8472; doi: 10.​1029/​2002JD002100.
52.
Zurück zum Zitat G. M. Davies, A Gray, G Rein, CJ Legg, Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management 308, pp. 169–177, 2013. doi:10.1016/j.foreco.2013.07.051 G. M. Davies, A Gray, G Rein, CJ Legg, Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland, Forest Ecology and Management 308, pp. 169–177, 2013. doi:10.​1016/​j.​foreco.​2013.​07.​051
53.
Zurück zum Zitat E.R.C. Rabelo, C.A.G. Veras, J.A. Carvalho, E.C. Alvarado, D.V. Sandberg, J.C. Santos, Log smoldering after an Amazonian deforestation fire, Atmospheric Environment 38 (2004) 203–211.CrossRef E.R.C. Rabelo, C.A.G. Veras, J.A. Carvalho, E.C. Alvarado, D.V. Sandberg, J.C. Santos, Log smoldering after an Amazonian deforestation fire, Atmospheric Environment 38 (2004) 203–211.CrossRef
54.
Zurück zum Zitat M. Turetsky, B. Benscoter, S. Page, G. Rein, G.R. van der Werf, A. Watts, Global vulnerability of peatlands to fire and carbon loss, (invited progress paper), Nature Geoscience 8 (1), pp. 11–14, 2015. doi:10.1038/NGEO2325. M. Turetsky, B. Benscoter, S. Page, G. Rein, G.R. van der Werf, A. Watts, Global vulnerability of peatlands to fire and carbon loss, (invited progress paper), Nature Geoscience 8 (1), pp. 11–14, 2015. doi:10.​1038/​NGEO2325.
55.
Zurück zum Zitat S.E. Page, Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A. & Limin, S. (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61–65.CrossRef S.E. Page, Siegert, F., Rieley, J.O., Boehm, H.D.V., Jaya, A. & Limin, S. (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61–65.CrossRef
56.
Zurück zum Zitat W Field, Shen, Nature Geoscience 2, 185–188 (2009) Human amplification of drought-induced biomass burning in Indonesia since 1960, doi:10.1038/ngeo443 W Field, Shen, Nature Geoscience 2, 185–188 (2009) Human amplification of drought-induced biomass burning in Indonesia since 1960, doi:10.​1038/​ngeo443
57.
Zurück zum Zitat X. Huang, G. Rein, Computational Study of Critical Moisture and Depth of Burn in Peat Fires, International Journal of Wildland Fire 24 (in press), (2015). doi:10.1071/WF14178. X. Huang, G. Rein, Computational Study of Critical Moisture and Depth of Burn in Peat Fires, International Journal of Wildland Fire 24 (in press), (2015). doi:10.​1071/​WF14178.
58.
Zurück zum Zitat W Frandsen, Ignition probability of organic soils, Can. J. For. Res. 27(9): 1471–1477 (1997).CrossRef W Frandsen, Ignition probability of organic soils, Can. J. For. Res. 27(9): 1471–1477 (1997).CrossRef
59.
Zurück zum Zitat X. Huang, G. Rein, H. Chen, Computational Smoldering Combustion: Predicting the Roles of Moisture and Inert Contents in Peat Wildfires, Proceedings of the Combustion Institute 35, pp. 2673–2681, (2015). doi:10.1016/j.proci.2014.05.048. X. Huang, G. Rein, H. Chen, Computational Smoldering Combustion: Predicting the Roles of Moisture and Inert Contents in Peat Wildfires, Proceedings of the Combustion Institute 35, pp. 2673–2681, (2015). doi:10.​1016/​j.​proci.​2014.​05.​048.
60.
Zurück zum Zitat RA Hartford, Frandsen W.H. (1992) When it’s hot, it’s hot… or maybe it’s not! (surface flaming may not portend extensive soil heating). International Journal of Wildland Fire 2: 139–44. doi: 10.1071/WF9920139. RA Hartford, Frandsen W.H. (1992) When it’s hot, it’s hot… or maybe it’s not! (surface flaming may not portend extensive soil heating). International Journal of Wildland Fire 2: 139–44. doi: 10.​1071/​WF9920139.
61.
Zurück zum Zitat G. Rein, N. Cleaver, C. Ashton, P. Pironi, JL. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil, Catena 74, 304–309, 2008 G. Rein, N. Cleaver, C. Ashton, P. Pironi, JL. Torero, The Severity of Smouldering Peat Fires and Damage to the Forest Soil, Catena 74, 304–309, 2008
62.
Zurück zum Zitat Stracher, Prakash and Sokol, Coal and Peat Fires: A Global Perspective, Elsevier Geoscience, 2010, ISBN 9780444528582 Stracher, Prakash and Sokol, Coal and Peat Fires: A Global Perspective, Elsevier Geoscience, 2010, ISBN 9780444528582
63.
Zurück zum Zitat G.B. Stracher, T.P. Taylor, Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe, International Journal of Coal Geology 59 (2004) 7–17.CrossRef G.B. Stracher, T.P. Taylor, Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe, International Journal of Coal Geology 59 (2004) 7–17.CrossRef
64.
Zurück zum Zitat M.A. Nolter, D.H. Vice, Looking back at the Centralia coal fire: a synopsis of its present status, International Journal of Coal Geology 59 (2004) 99–106.CrossRef M.A. Nolter, D.H. Vice, Looking back at the Centralia coal fire: a synopsis of its present status, International Journal of Coal Geology 59 (2004) 99–106.CrossRef
65.
Zurück zum Zitat V. Babrauskas and J. Krasny, “Upholstered Furniture Transition from Smoldering to Flaming,” Journal of Forensic Sciences, Nov., pp. 1029–1031 (1997). V. Babrauskas and J. Krasny, “Upholstered Furniture Transition from Smoldering to Flaming,” Journal of Forensic Sciences, Nov., pp. 1029–1031 (1997).
66.
Zurück zum Zitat O. Putzeys, A. Bar-Ilan, G. Rein, A.C. Fernandez-Pello, D.L. Urban, 2007, The role of the Secondary Char Oxidation in Smoldering and its Transition to Flaming by Ultrasound Probing, Proceedings of the Combustion Institute 31 (2007) 2669–2676 doi:10.1016/j.proci.2006.08.006. O. Putzeys, A. Bar-Ilan, G. Rein, A.C. Fernandez-Pello, D.L. Urban, 2007, The role of the Secondary Char Oxidation in Smoldering and its Transition to Flaming by Ultrasound Probing, Proceedings of the Combustion Institute 31 (2007) 2669–2676 doi:10.​1016/​j.​proci.​2006.​08.​006.
67.
Zurück zum Zitat S.D. Tse, A.C. Fernandez-Pello, K. Miyasaka, Controlling Mechanisms in the Transition from Smoldering to Flaming of Flexible Polyurethane foam, Proceedings of the Combustion Institute 26 (1996) 1505–1513.CrossRef S.D. Tse, A.C. Fernandez-Pello, K. Miyasaka, Controlling Mechanisms in the Transition from Smoldering to Flaming of Flexible Polyurethane foam, Proceedings of the Combustion Institute 26 (1996) 1505–1513.CrossRef
69.
Zurück zum Zitat TJ. Ohlemiller, “Forced Smolder Propagation and the Transition to Flaming in Cellulosic Insulation,” Combustion and Flame, 81, p. 354 (1990b). TJ. Ohlemiller, “Forced Smolder Propagation and the Transition to Flaming in Cellulosic Insulation,” Combustion and Flame, 81, p. 354 (1990b).
70.
Zurück zum Zitat A. Bar-Ilan, Putzeys OM, Rein G, et al., 2005, Transition from forward smoldering to flaming in small polyurethane foam samples, Proceedings of the Combustion Institute, 30 (2) pp. 2295–2302, 2005. doi:10.1016/j.proci.2004.08.233. A. Bar-Ilan, Putzeys OM, Rein G, et al., 2005, Transition from forward smoldering to flaming in small polyurethane foam samples, Proceedings of the Combustion Institute, 30 (2) pp. 2295–2302, 2005. doi:10.​1016/​j.​proci.​2004.​08.​233.
Metadaten
Titel
Smoldering Combustion
verfasst von
Guillermo Rein
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_19