Skip to main content

2023 | OriginalPaper | Buchkapitel

Social Data to Enhance Typical Consumer Energy Profile Estimation on a National Level

verfasst von : Amr Alyafi, Pierre Cauchois, Benoit Delinchant, Alain Berges

Erschienen in: ELECTRIMACS 2022

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Since the electrical grid creation, assessing the electricity demand is essential as we need to match the energy production/demand at all times. Load analysis is essential in improving the reliability and efficiency of the grid. Beside regular human activities, the main impact factor which explains consumption variations is the outside temperature. But there are still unpredictable variations that are mainly coming from arising social events. To build a better understanding of these variations, this work will focus on how to detect these events from social media and how to quantify their impact on residential and professional typical profiles for energy demand.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alyafi, Amr Alzouhri, et al. “Differential explanations for energy management in buildings.” 2017 computing conference. IEEE, 2017. Alyafi, Amr Alzouhri, et al. “Differential explanations for energy management in buildings.” 2017 computing conference. IEEE, 2017.
2.
Zurück zum Zitat Eid, C., Codani, P., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design. Renewable and Sustainable Energy Reviews, 64, 237–247.CrossRef Eid, C., Codani, P., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design. Renewable and Sustainable Energy Reviews, 64, 237–247.CrossRef
3.
Zurück zum Zitat Duquesne, X., & Thaon, S. (2021). THERMOSENSIBILITY ESTIMATION OF MASS MARKET WITH SMART METERS IN FRANCE.CrossRef Duquesne, X., & Thaon, S. (2021). THERMOSENSIBILITY ESTIMATION OF MASS MARKET WITH SMART METERS IN FRANCE.CrossRef
4.
Zurück zum Zitat Karsenti, Laurent, and Philippe Daguzan. “Enedis approach for the roll-out of technical smart grid industrial solutions.” CIRED-Open Access Proceedings Journal 2017, no. 1 (2017): 1077–1080.CrossRef Karsenti, Laurent, and Philippe Daguzan. “Enedis approach for the roll-out of technical smart grid industrial solutions.” CIRED-Open Access Proceedings Journal 2017, no. 1 (2017): 1077–1080.CrossRef
6.
Zurück zum Zitat T. Hong, Crystal ball lessons in predictive analytics, EnergyBiz Mag. 12 (2) (2015) 35–37. T. Hong, Crystal ball lessons in predictive analytics, EnergyBiz Mag. 12 (2) (2015) 35–37.
7.
Zurück zum Zitat Wang, Zeyu, and Ravi S. Srinivasan. “A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models.” Renewable and Sustainable Energy Reviews 75 (2017): 796–808.CrossRef Wang, Zeyu, and Ravi S. Srinivasan. “A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models.” Renewable and Sustainable Energy Reviews 75 (2017): 796–808.CrossRef
8.
Zurück zum Zitat Wang, Zeyu, and Ravi S. Srinivasan. “A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models.” 2015 Winter Simulation Conference (WSC). IEEE, 2015. Wang, Zeyu, and Ravi S. Srinivasan. “A review of artificial intelligence based building energy prediction with a focus on ensemble prediction models.” 2015 Winter Simulation Conference (WSC). IEEE, 2015.
9.
Zurück zum Zitat Zhang, Liang, et al. “A review of machine learning in building load prediction.” Applied Energy 285 (2021): 116452. Zhang, Liang, et al. “A review of machine learning in building load prediction.” Applied Energy 285 (2021): 116452.
10.
Zurück zum Zitat A tale of tweets: Analyzing microblogging among language learners,Lomicka, Lara and Lord, Gillian, System,40-1, pages:48–63, year:2012 Elsevier A tale of tweets: Analyzing microblogging among language learners,Lomicka, Lara and Lord, Gillian, System,40-1, pages:48–63, year:2012 Elsevier
11.
Zurück zum Zitat Trends in twitter hashtag applications: Design features for value-added dimensions to future library catalogues, Chang, Hsia-Ching and Iyer, Hemalata, Library trends, 2012, Johns Hopkins University Press Trends in twitter hashtag applications: Design features for value-added dimensions to future library catalogues, Chang, Hsia-Ching and Iyer, Hemalata, Library trends, 2012, Johns Hopkins University Press
14.
Zurück zum Zitat Glez-Peña, D., Louren¸co, A., López-Fernández, H., Reboiro-Jato, M., & Fdez-Riverola, F. (2014). Web scraping technologies in an API world. Briefings in bioinformatics, 15(5), 788–797. Glez-Peña, D., Louren¸co, A., López-Fernández, H., Reboiro-Jato, M., & Fdez-Riverola, F. (2014). Web scraping technologies in an API world. Briefings in bioinformatics, 15(5), 788–797.
15.
Zurück zum Zitat Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), pp.1–58.CrossRef Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), pp.1–58.CrossRef
16.
Zurück zum Zitat Weisberg, Sanford. Applied linear regression. Vol. 528. John Wiley & Sons, 2005. Weisberg, Sanford. Applied linear regression. Vol. 528. John Wiley & Sons, 2005.
17.
Zurück zum Zitat Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors).” The annals of statistics 28, no. 2 (2000): 337–407.MathSciNetCrossRefMATH Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors).” The annals of statistics 28, no. 2 (2000): 337–407.MathSciNetCrossRefMATH
18.
Zurück zum Zitat Chen, Tianqi, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, and Hyunsu Cho. “Xgboost: extreme gradient boosting.” R package version 0.4-2 1, no. 4 (2015): 1–4. Chen, Tianqi, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, and Hyunsu Cho. “Xgboost: extreme gradient boosting.” R package version 0.4-2 1, no. 4 (2015): 1–4.
19.
Zurück zum Zitat Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735–1780.CrossRef Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735–1780.CrossRef
20.
Zurück zum Zitat Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z. and Zhang, H., 2019. Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), pp.114–119.CrossRef Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z. and Zhang, H., 2019. Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), pp.114–119.CrossRef
Metadaten
Titel
Social Data to Enhance Typical Consumer Energy Profile Estimation on a National Level
verfasst von
Amr Alyafi
Pierre Cauchois
Benoit Delinchant
Alain Berges
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-24837-5_27