Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2022 | OriginalPaper | Buchkapitel

8. Social Network Data and Predictive Mining (Business Intelligence 2)

verfasst von : Amy Van Looy

Erschienen in: Social Media Management

Verlag: Springer International Publishing

Abstract

This chapter covers the second part of our business intelligence discussion and makes the reader learn how organizations can create business value by analyzing social network data. Diverse information about a certain person can be collected from different social media tools and combined into a database to obtain more complete profiles of employees, customers, or prospects (i.e., social engineering). The latter can supplement the social CRM database (see Chap. 5). Particularly, social media may uncover information about what people post, share, or like but also to whom they are connected. By combining or aggregating such information for many individuals in social networks, organizations can start predicting trends, e.g., to improve their targeted marketing (see Chap. 4) or to predict which people are more likely to churn, fraud, resign, etc. Hence, social media are seen as big data in the sense that they can provide massive amounts of real-time data about many Internet users, which can be used to predict someone’s future behavior based on the past behavior of others. This chapter explains how social networks can be built from social media data and introduces concepts such as peer influence and homophily. The chapter concludes with big data challenges to social network data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbas, A. M. (2021). Social network analysis using deep learning: Applications and schemes. Social Network Analysis and Mining, 11(1), 1–21. CrossRef Abbas, A. M. (2021). Social network analysis using deep learning: Applications and schemes. Social Network Analysis and Mining, 11(1), 1–21. CrossRef
Zurück zum Zitat Aral, S., & Walker, D. (2011). Identifying social influence in networks using randomized experiments. IEEE Intelligent Systems, 26(5), 91–96. CrossRef Aral, S., & Walker, D. (2011). Identifying social influence in networks using randomized experiments. IEEE Intelligent Systems, 26(5), 91–96. CrossRef
Zurück zum Zitat Cab, U., & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis problems and applications. Physica A, 535, 1–38. Cab, U., & Alatas, B. (2019). A new direction in social network analysis: Online social network analysis problems and applications. Physica A, 535, 1–38.
Zurück zum Zitat McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. CrossRef McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444. CrossRef
Zurück zum Zitat Minnaert, B. (2012). Guest lecture of Bart Minnaert in the course Creating Value Using Social Media at Ghent University, November 2012. Minnaert, B. (2012). Guest lecture of Bart Minnaert in the course Creating Value Using Social Media at Ghent University, November 2012.
Zurück zum Zitat Provost, F., Dalessandro, B., Hook, R., Zhang, X., & Murray, A. (2009). Audience selection for on-line brand advertising: Privacy-friendly social network targeting. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. Provost, F., Dalessandro, B., Hook, R., Zhang, X., & Murray, A. (2009). Audience selection for on-line brand advertising: Privacy-friendly social network targeting. Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining.
Zurück zum Zitat Rogers, E. M. (2003). The diffusion of innovations (5th ed.). Free Press. Rogers, E. M. (2003). The diffusion of innovations (5th ed.). Free Press.
Zurück zum Zitat Rousidis, D., Koukaras, P., & Tjortjis, C. (2020). Social media prediction: A literature review. Multimedia Tools and Applications, 79(9–10), 6279–6311. CrossRef Rousidis, D., Koukaras, P., & Tjortjis, C. (2020). Social media prediction: A literature review. Multimedia Tools and Applications, 79(9–10), 6279–6311. CrossRef
Zurück zum Zitat Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8, 183470–183487. CrossRef Yuliansyah, H., Othman, Z. A., & Bakar, A. A. (2020). Taxonomy of link prediction for social network analysis: A review. IEEE Access, 8, 183470–183487. CrossRef
Metadaten
Titel
Social Network Data and Predictive Mining (Business Intelligence 2)
verfasst von
Amy Van Looy
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-99094-7_8