Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Socially-Enriched Multimedia Data Co-clustering

verfasst von : Lei Meng, Ah-Hwee Tan, Donald C. Wunsch II

Erschienen in: Adaptive Resonance Theory in Social Media Data Clustering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heterogeneous data co-clustering is a commonly used technique for tapping the rich meta-information of multimedia web documents, including category, annotation, and description, for associative discovery. However, most co-clustering methods proposed for heterogeneous data do not consider the representation problem of short and noisy text and their performance is limited by the empirical weighting of the multimodal features. This chapter explains how to use the Generalized Heterogeneous Fusion Adaptive Resonance Theory (GHF-ART) for clustering large-scale web multimedia documents. Specifically, GHF-ART is designed to handle multimedia data with an arbitrarily rich level of meta-information. For handling short and noisy text, GHF-ART employs the representation and learning methods of PF-ART as described in Sect. 3.​5, which identify key tags for cluster prototype modeling by learning the probabilistic distribution of tag occurrences of clusters. More importantly, GHF-ART incorporates an adaptive method for effective fusion of the multimodal features, which weights the features of multiple data sources by incrementally measuring the importance of feature modalities through the intra-cluster scatters. Extensive experiments on two web image datasets and one text document set have shown that GHF-ART achieves significantly better clustering performance and is much faster than many existing state-of-the-art algorithms. The content of this chapter is summarized and extended from [12] (©2014 IEEE. Reprinted, with permission, from [12]), and the Python codes of GHF-ART are available at https://​github.​com/​Lei-Meng/​GHF-ART.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bekkerman R, Jeon J (2007) Multi-modal clustering for multimedia collections. In: CVPR, pp 1–8 Bekkerman R, Jeon J (2007) Multi-modal clustering for multimedia collections. In: CVPR, pp 1–8
2.
Zurück zum Zitat Carpenter GA, Grossberg S, Reynolds J (1991) ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw. 4(5):565–588CrossRef Carpenter GA, Grossberg S, Reynolds J (1991) ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Netw. 4(5):565–588CrossRef
3.
Zurück zum Zitat Chen Y, Wang L, Dong M (2010) Non-negative matrix factorization for semisupervised heterogeneous data coclustering. TKDE 22(10):1459–1474 Chen Y, Wang L, Dong M (2010) Non-negative matrix factorization for semisupervised heterogeneous data coclustering. TKDE 22(10):1459–1474
4.
Zurück zum Zitat Chua T, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from national university of singapore. In: CIVR, pp 1–9 Chua T, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from national university of singapore. In: CIVR, pp 1–9
5.
Zurück zum Zitat Gao B, Liu TY, Zheng X, Cheng QS, Ma WY (2005) Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of international conference on knowledge discovery and data mining, pp 41–50 Gao B, Liu TY, Zheng X, Cheng QS, Ma WY (2005) Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering. In: Proceedings of international conference on knowledge discovery and data mining, pp 41–50
6.
Zurück zum Zitat He J, Tan AH, Tan CL, Sung SY (2003) On quantitative evaluation of clustering systems. Clustering and information retrieval. Kluwer Academic Publishers, Netherland, pp 105–133 He J, Tan AH, Tan CL, Sung SY (2003) On quantitative evaluation of clustering systems. Clustering and information retrieval. Kluwer Academic Publishers, Netherland, pp 105–133
7.
Zurück zum Zitat Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of ACM conference on information and knowledge management, pp 919–928 Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of ACM conference on information and knowledge management, pp 919–928
8.
Zurück zum Zitat Lang K (2005) Newsweeder: Learning to filter netnews. In: Proceedings international conference machine learning, pp 331–339CrossRef Lang K (2005) Newsweeder: Learning to filter netnews. In: Proceedings international conference machine learning, pp 331–339CrossRef
9.
Zurück zum Zitat Li X, Snoek CGM, Worring M (2008) Learning tag relevance by neighbor voting for social image retrieval. Proceedings of ACM multimedia, pp 180–187 Li X, Snoek CGM, Worring M (2008) Learning tag relevance by neighbor voting for social image retrieval. Proceedings of ACM multimedia, pp 180–187
10.
Zurück zum Zitat Liu D, Hua X, Yang L, Wang M, Zhang, H (2009) Tag ranking. In: Proceedings of international conference on World Wide Web, pp 351–360 Liu D, Hua X, Yang L, Wang M, Zhang, H (2009) Tag ranking. In: Proceedings of international conference on World Wide Web, pp 351–360
11.
Zurück zum Zitat Long B, Wu X, Zhang Z, Yu PS (2006) Spectral clustering for multi-type relational data. In: ICML, pp 585–592 Long B, Wu X, Zhang Z, Yu PS (2006) Spectral clustering for multi-type relational data. In: ICML, pp 585–592
12.
Zurück zum Zitat Meng L, Tan AH, Xu D (2014) Semi-supervised heterogeneous fusion for multimedia data co-clustering. IEEE Trans Knowl Data Eng 26(9):2293–2306CrossRef Meng L, Tan AH, Xu D (2014) Semi-supervised heterogeneous fusion for multimedia data co-clustering. IEEE Trans Knowl Data Eng 26(9):2293–2306CrossRef
13.
Zurück zum Zitat Rege M, Dong M, Hua J (2008) Graph theoretical framework for simultaneously integrating visual and textual features for efficient web image clustering. In: Proceedings of international conference on World Wide Web, pp 317–326 Rege M, Dong M, Hua J (2008) Graph theoretical framework for simultaneously integrating visual and textual features for efficient web image clustering. In: Proceedings of international conference on World Wide Web, pp 317–326
14.
Zurück zum Zitat Tan AH (1995) Adaptive resonance associative map. Neural Netw. 8(3):437–446CrossRef Tan AH (1995) Adaptive resonance associative map. Neural Netw. 8(3):437–446CrossRef
15.
Zurück zum Zitat Xu R, II DCW (2011) BARTMAP: A viable structure for biclustering. Neural Netw. 709–716CrossRef Xu R, II DCW (2011) BARTMAP: A viable structure for biclustering. Neural Netw. 709–716CrossRef
16.
Zurück zum Zitat Zhao Y, Karypis G (2001) Criterion functions for document clustering: experiments and analysis. Technical report, Department of computer science, University of Minnesota Zhao Y, Karypis G (2001) Criterion functions for document clustering: experiments and analysis. Technical report, Department of computer science, University of Minnesota
Metadaten
Titel
Socially-Enriched Multimedia Data Co-clustering
verfasst von
Lei Meng
Ah-Hwee Tan
Donald C. Wunsch II
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02985-2_5