Skip to main content

2023 | OriginalPaper | Buchkapitel

Socio-economic Drivers of Energy Consumption: Evidence from Three Urban Agglomerations in the Yangtze River Economic Belt

verfasst von : Mengxue Li, Yu Zhang, Xi Cai, Liudan Jiao, Xiaosen Huo

Erschienen in: Proceedings of the 27th International Symposium on Advancement of Construction Management and Real Estate

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study explores the Socio-economic drivers of energy consumption in three Urban Agglomerations and cities in the Yangtze River Economic Belt during the 2011–2020 period. Using the logarithmic mean Divisia index (LMDI) method decompose the change in energy consumption into five factors: energy intensity effect (\(\varDelta C_{EI}^{{}}\)), per urban population GDP effect (\(\varDelta C_{PG}^{{}}\)), urbanization rate effect (\(\varDelta C_{UR}^{{}}\)), investment population support coefficient effect (\(\varDelta C_{IP}^{{}}\)) and investment effect (\(\varDelta C_{I}^{{}}\)). The main results showed the following: (1) \(\varDelta C_{I}^{{}}\) ranks the first most important factor in three Urban Agglomerations and in whole cities from 2011–2020 period; (2) The impact of \(\varDelta C_{UR}^{{}} \) on the reduction of energy consumption is negative in three Urban Agglomerations and in whole cities. (3) \(\varDelta C_{EI}^{{}}\) has a strong impact on swelling energy consumption in three Urban Agglomerations and in 68 cities during the study period. The most of the cities mainly focusing on Urban Agglomeration in the middle reaches of the Yangtze River as well as Yangtze River Delta Urban Agglomeration. (4) \(\varDelta C_{IP}^{{}}\) has a most powerful force to reduce energy consumption in three Urban Agglomerations and in whole cities over the whole study period. (5) The role of \(\varDelta C_{PG}^{{}}\) in the increase of energy consumption cannot be disregarded in three Urban Agglomerations as well as in cities particularly showing in Shanghai, Nanjing. Therefore, decision-makers should balance the social and economic implications of energy usage in addition to developing suitable fixed asset investment strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rehman, A., Ma, H., Chishti, M.Z., Ozturk, I., Irfan, M., Ahmad, M.: Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: another outlook. Environ. Sci. Pollut. Res. 28(14), 17319–17330 (2021)CrossRef Rehman, A., Ma, H., Chishti, M.Z., Ozturk, I., Irfan, M., Ahmad, M.: Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: another outlook. Environ. Sci. Pollut. Res. 28(14), 17319–17330 (2021)CrossRef
2.
Zurück zum Zitat Barboza, D.: China passes Japan as second-largest economy. The New York Times, p. 15 (2010) Barboza, D.: China passes Japan as second-largest economy. The New York Times, p. 15 (2010)
3.
Zurück zum Zitat Dale, S.: BP statistical review of world energy. BP Plc, London, United Kingdom, pp. 14–16 (2019) Dale, S.: BP statistical review of world energy. BP Plc, London, United Kingdom, pp. 14–16 (2019)
4.
Zurück zum Zitat Jiang, T.B., Deng, Z.W., Zhi, Y.P., Cheng, H., Gao, Q.: The effect of urbanization on population health: evidence from China. Front. Public Health 766 (2021) Jiang, T.B., Deng, Z.W., Zhi, Y.P., Cheng, H., Gao, Q.: The effect of urbanization on population health: evidence from China. Front. Public Health 766 (2021)
5.
Zurück zum Zitat Zhang, M., Song, Y., Li, P., Li, H.: Study on affecting factors of residential energy consumption in urban and rural Jiangsu. Renew. Sustain. Energy Rev. 53, 330–337 (2016)CrossRef Zhang, M., Song, Y., Li, P., Li, H.: Study on affecting factors of residential energy consumption in urban and rural Jiangsu. Renew. Sustain. Energy Rev. 53, 330–337 (2016)CrossRef
6.
Zurück zum Zitat Gürel, A.E., Ağbulut, Ü., Ergün, A., Ceylan, I.: Environmental and economic assessment of a low energy consumption household refrigerator. Eng. Sci. Technol. Int. J. 23(2), 365–372 (2020) Gürel, A.E., Ağbulut, Ü., Ergün, A., Ceylan, I.: Environmental and economic assessment of a low energy consumption household refrigerator. Eng. Sci. Technol. Int. J. 23(2), 365–372 (2020)
7.
Zurück zum Zitat Yang, J., et al.: Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci. Total Environ. 711, 134569 (2020)CrossRef Yang, J., et al.: Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci. Total Environ. 711, 134569 (2020)CrossRef
9.
Zurück zum Zitat Peng, T., Ou, X., Yan, X., Wang, G.: Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia 158, 3937–3943 (2019)CrossRef Peng, T., Ou, X., Yan, X., Wang, G.: Life-cycle analysis of energy consumption and GHG emissions of aluminium production in China. Energy Procedia 158, 3937–3943 (2019)CrossRef
10.
Zurück zum Zitat Ağbulut, Ü., Gürel, A.E., Biçen, Y.: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew. Sustain. Energy Rev. 135, 110114 (2021)CrossRef Ağbulut, Ü., Gürel, A.E., Biçen, Y.: Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison. Renew. Sustain. Energy Rev. 135, 110114 (2021)CrossRef
11.
Zurück zum Zitat Ang, B.W.: LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015)CrossRef Ang, B.W.: LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015)CrossRef
12.
Zurück zum Zitat Lin, B., Xu, M.: Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: a case of China’s metallurgical industry. Energy 189, 116280 (2019)CrossRef Lin, B., Xu, M.: Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: a case of China’s metallurgical industry. Energy 189, 116280 (2019)CrossRef
13.
Zurück zum Zitat Guo, H., Fan, B., Pan, C.: Study on mechanisms underlying changes in agricultural carbon emissions: a case in Jilin Province, China, 1998–2018. Int. J. Environ. Res. Public Health 18(3), 919 (2021)CrossRef Guo, H., Fan, B., Pan, C.: Study on mechanisms underlying changes in agricultural carbon emissions: a case in Jilin Province, China, 1998–2018. Int. J. Environ. Res. Public Health 18(3), 919 (2021)CrossRef
14.
Zurück zum Zitat Isik, M., Sarica, K., Ari, I.: Driving forces of Turkey’s transportation sector CO2 emissions: an LMDI approach. Transp. Policy 97, 210–219 (2020)CrossRef Isik, M., Sarica, K., Ari, I.: Driving forces of Turkey’s transportation sector CO2 emissions: an LMDI approach. Transp. Policy 97, 210–219 (2020)CrossRef
15.
Zurück zum Zitat Liu, M., et al.: Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example. Environ. Impact Assess. Rev. 90, 106623 (2021)CrossRef Liu, M., et al.: Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example. Environ. Impact Assess. Rev. 90, 106623 (2021)CrossRef
16.
Zurück zum Zitat Huo, T., Ma, Y., Yu, T., Cai, W., Liu, B., Ren, H.: Decoupling and decomposition analysis of residential building carbon emissions from residential income: evidence from the provincial level in China. Environ. Impact Assess. Rev. 86, 106487 (2021)CrossRef Huo, T., Ma, Y., Yu, T., Cai, W., Liu, B., Ren, H.: Decoupling and decomposition analysis of residential building carbon emissions from residential income: evidence from the provincial level in China. Environ. Impact Assess. Rev. 86, 106487 (2021)CrossRef
17.
Zurück zum Zitat Moutinho, V., Madaleno, M., Inglesi-Lotz, R., Dogan, E.: Factors affecting CO2 emissions in top countries on renewable energies: a LMDI decomposition application. Renew. Sustain. Energy Rev. 90, 605–622 (2018)CrossRef Moutinho, V., Madaleno, M., Inglesi-Lotz, R., Dogan, E.: Factors affecting CO2 emissions in top countries on renewable energies: a LMDI decomposition application. Renew. Sustain. Energy Rev. 90, 605–622 (2018)CrossRef
18.
Zurück zum Zitat Fang, D., Hao, P., Hao, J.: Study of the influence mechanism of China’s electricity consumption based on multi-period ST-LMDI model. Energy 170, 730–743 (2019)CrossRef Fang, D., Hao, P., Hao, J.: Study of the influence mechanism of China’s electricity consumption based on multi-period ST-LMDI model. Energy 170, 730–743 (2019)CrossRef
19.
Zurück zum Zitat Li, Y., Wang, S., Chen, B.: Driving force analysis of the consumption of water and energy in China based on LMDI method. Energy Procedia 158, 4318–4322 (2019)CrossRef Li, Y., Wang, S., Chen, B.: Driving force analysis of the consumption of water and energy in China based on LMDI method. Energy Procedia 158, 4318–4322 (2019)CrossRef
20.
Zurück zum Zitat Quan, C., Cheng, X., Yu, S., Ye, X.: Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 734, 138473 (2020)CrossRef Quan, C., Cheng, X., Yu, S., Ye, X.: Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 734, 138473 (2020)CrossRef
21.
Zurück zum Zitat Kaya, Y.: Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Intergovernmental Panel on Climate Change/Response Strategies Working Group, May (1989) Kaya, Y.: Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Intergovernmental Panel on Climate Change/Response Strategies Working Group, May (1989)
22.
Zurück zum Zitat Wang, W., Liu, X., Zhang, M., Song, X.: Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 67, 617–622 (2014)CrossRef Wang, W., Liu, X., Zhang, M., Song, X.: Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 67, 617–622 (2014)CrossRef
23.
Zurück zum Zitat Luo, Y., Zeng, W., Wang, Y., Li, D., Hu, X., Zhang, H.: A hybrid approach for examining the drivers of energy consumption in Shanghai. Renew. Sustain. Energy Rev. 151, 111571 (2021)CrossRef Luo, Y., Zeng, W., Wang, Y., Li, D., Hu, X., Zhang, H.: A hybrid approach for examining the drivers of energy consumption in Shanghai. Renew. Sustain. Energy Rev. 151, 111571 (2021)CrossRef
24.
Zurück zum Zitat Ang, B.W.: The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33(7), 867–871 (2005)CrossRef Ang, B.W.: The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33(7), 867–871 (2005)CrossRef
Metadaten
Titel
Socio-economic Drivers of Energy Consumption: Evidence from Three Urban Agglomerations in the Yangtze River Economic Belt
verfasst von
Mengxue Li
Yu Zhang
Xi Cai
Liudan Jiao
Xiaosen Huo
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-3626-7_139