Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 2/2020

14.12.2018

Solar cell surface defect inspection based on multispectral convolutional neural network

verfasst von: Haiyong Chen, Yue Pang, Qidi Hu, Kun Liu

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Similar and indeterminate defect detection of solar cell surface with heterogeneous texture and complex background is a challenge of solar cell manufacturing. The traditional manufacturing process relies on human eye detection which requires a large number of workers without a stable and good detection effect. In order to solve the problem, a visual defect detection method based on multi-spectral deep convolutional neural network (CNN) is designed in this paper. Firstly, a selected CNN model is established. By adjusting the depth and width of the model, the influence of model depth and kernel size on the recognition result is evaluated. The optimal CNN model structure is selected. Secondly, the light spectrum features of solar cell color image are analyzed. It is found that a variety of defects exhibited different distinguishable characteristics in different spectral bands. Thus, a multi-spectral CNN model is constructed to enhance the discrimination ability of the model to distinguish between complex texture background features and defect features. Finally, some experimental results and K-fold cross validation show that the multi-spectral deep CNN model can effectively detect the solar cell surface defects with higher accuracy and greater adaptability. The accuracy of defect recognition reaches 94.30%. Applying such an algorithm can increase the efficiency of solar cell manufacturing and make the manufacturing process smarter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal, K., & Shivpuri, R. (2015). On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. Journal of Intelligent Manufacturing,26(4), 785–800.CrossRef Agarwal, K., & Shivpuri, R. (2015). On line prediction of surface defects in hot bar rolling based on Bayesian hierarchical modeling. Journal of Intelligent Manufacturing,26(4), 785–800.CrossRef
Zurück zum Zitat Anwar, S. A., & Abdullah, M. Z. (2014). Micro-crack detection of multi crystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique. EURASIP Journal on Image and Video Processing,2014(1), 15.CrossRef Anwar, S. A., & Abdullah, M. Z. (2014). Micro-crack detection of multi crystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique. EURASIP Journal on Image and Video Processing,2014(1), 15.CrossRef
Zurück zum Zitat Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing,45(2), 434–444.CrossRef Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing,45(2), 434–444.CrossRef
Zurück zum Zitat Bianconi, F., González, E., Fernández, A., & Saetta, S. A. (2012). Automatic classification of granite tiles through colour and texture features. Expert Systems with Applications,39(12), 11212–11218.CrossRef Bianconi, F., González, E., Fernández, A., & Saetta, S. A. (2012). Automatic classification of granite tiles through colour and texture features. Expert Systems with Applications,39(12), 11212–11218.CrossRef
Zurück zum Zitat Bulnes, F. G., Usamentiaga, R., Garcia, D. F., & Molleda, J. (2016). An efficient method for defect detection during the manufacturing of web materials. Journal of Intelligent Manufacturing,27(2), 431–445.CrossRef Bulnes, F. G., Usamentiaga, R., Garcia, D. F., & Molleda, J. (2016). An efficient method for defect detection during the manufacturing of web materials. Journal of Intelligent Manufacturing,27(2), 431–445.CrossRef
Zurück zum Zitat Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing,23(3), 639–650.CrossRef Çaydaş, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing,23(3), 639–650.CrossRef
Zurück zum Zitat Chen, F. C., & Jahanshahi, M. R. (2018). NB-CNN: Deep learning-based crack detection using convolutional neural network and naive Bayes data fusion. IEEE Transactions on Industrial Electronics,65(5), 4392–4400.CrossRef Chen, F. C., & Jahanshahi, M. R. (2018). NB-CNN: Deep learning-based crack detection using convolutional neural network and naive Bayes data fusion. IEEE Transactions on Industrial Electronics,65(5), 4392–4400.CrossRef
Zurück zum Zitat Chen, S. H., & Perng, D. B. (2016). Automatic optical inspection system for IC molding surface. Journal of Intelligent Manufacturing,27, 1–12.CrossRef Chen, S. H., & Perng, D. B. (2016). Automatic optical inspection system for IC molding surface. Journal of Intelligent Manufacturing,27, 1–12.CrossRef
Zurück zum Zitat Chiou, Y. C., Liu, J. Z., & Liang, Y. T. (2011). Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques. Sensor Review,31(2), 154–165.CrossRef Chiou, Y. C., Liu, J. Z., & Liang, Y. T. (2011). Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques. Sensor Review,31(2), 154–165.CrossRef
Zurück zum Zitat Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., et al. (2018). Automatic classification of defective photovoltaic module cells in electroluminescence images. arXiv preprint arXiv:1807.02894. Deitsch, S., Christlein, V., Berger, S., Buerhop-Lutz, C., Maier, A., Gallwitz, F., et al. (2018). Automatic classification of defective photovoltaic module cells in electroluminescence images. arXiv preprint arXiv:​1807.​02894.
Zurück zum Zitat Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2013). Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement,62(3), 612–621.CrossRef Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2013). Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement,62(3), 612–621.CrossRef
Zurück zum Zitat Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315–323). Glorot, X., Bordes, A., & Bengio, Y. (2011, June). Deep sparse rectifier neural networks. In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315–323).
Zurück zum Zitat Jeguirim, S. E. G., Dhouib, A. B., Sahnoun, M., Cheikhrouhou, M., Schacher, L., & Adolphe, D. (2011). The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing,22(6), 873–884.CrossRef Jeguirim, S. E. G., Dhouib, A. B., Sahnoun, M., Cheikhrouhou, M., Schacher, L., & Adolphe, D. (2011). The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing,22(6), 873–884.CrossRef
Zurück zum Zitat Jian, C., Gao, J., & Ao, Y. (2017). Automatic surface defect detection for mobile phone screen glass based on machine vision. Applied Soft Computing,52, 348–358.CrossRef Jian, C., Gao, J., & Ao, Y. (2017). Automatic surface defect detection for mobile phone screen glass based on machine vision. Applied Soft Computing,52, 348–358.CrossRef
Zurück zum Zitat Kim, S., Kim, W., Noh, Y. K., & Park, F. C. (2017). Transfer learning for automated optical inspection. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2517–2524). IEEE. Kim, S., Kim, W., Noh, Y. K., & Park, F. C. (2017). Transfer learning for automated optical inspection. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2517–2524). IEEE.
Zurück zum Zitat Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, T., & Starr, J. (2018). Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Automation in Construction,91, 273–283.CrossRef Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, T., & Starr, J. (2018). Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks. Automation in Construction,91, 273–283.CrossRef
Zurück zum Zitat Latif-Amet, A., Ertüzün, A., & Erçil, A. (2000). An efficient method for texture defect detection: Sub-band domain co-occurrence matrices. Image and Vision Computing,18(6–7), 543–553.CrossRef Latif-Amet, A., Ertüzün, A., & Erçil, A. (2000). An efficient method for texture defect detection: Sub-band domain co-occurrence matrices. Image and Vision Computing,18(6–7), 543–553.CrossRef
Zurück zum Zitat Li, W. C., & Tsai, D. M. (2012). Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recognition,45(2), 742–756. Li, W. C., & Tsai, D. M. (2012). Wavelet-based defect detection in solar wafer images with inhomogeneous texture. Pattern Recognition,45(2), 742–756.
Zurück zum Zitat Liao, S., Law, M. W., & Chung, A. C. (2009). Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing,18(5), 1107–1118.CrossRef Liao, S., Law, M. W., & Chung, A. C. (2009). Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing,18(5), 1107–1118.CrossRef
Zurück zum Zitat Liu, A., Lin, W., Paul, M., Deng, C., & Zhang, F. (2010). Just noticeable difference for images with decomposition model for separating edge and textured regions. IEEE Transactions on Circuits and Systems for Video Technology,20(11), 1648–1652.CrossRef Liu, A., Lin, W., Paul, M., Deng, C., & Zhang, F. (2010). Just noticeable difference for images with decomposition model for separating edge and textured regions. IEEE Transactions on Circuits and Systems for Video Technology,20(11), 1648–1652.CrossRef
Zurück zum Zitat Mirmehdi, M. (2008). Handbook of texture analysis. London: Imperial College Press.CrossRef Mirmehdi, M. (2008). Handbook of texture analysis. London: Imperial College Press.CrossRef
Zurück zum Zitat Ordaz, M. A., & Lush, G. B. (2000, March). Machine vision for solar cell characterization. In Machine Vision Applications in Industrial Inspection VIII (Vol. 3966, pp. 238–249). International Society for Optics and Photonics. Ordaz, M. A., & Lush, G. B. (2000, March). Machine vision for solar cell characterization. In Machine Vision Applications in Industrial Inspection VIII (Vol. 3966, pp. 238–249). International Society for Optics and Photonics.
Zurück zum Zitat Pierdicca, R., Malinverni, E. S., Piccinini, F., Paolanti, M., Felicetti, A., & Zingaretti, P. (2018). Deep convolutional neural network for automatic detection of damaged photovoltaic cells. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2, 893–900. Pierdicca, R., Malinverni, E. S., Piccinini, F., Paolanti, M., Felicetti, A., & Zingaretti, P. (2018). Deep convolutional neural network for automatic detection of damaged photovoltaic cells. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2, 893–900.
Zurück zum Zitat Qian, X., Zhang, H., Zhang, H., Wu, Y., Diao, Z., Wu, Q. E., et al. (2017). Solar cell surface defects detection based on computer vision. International Journal of Performability Engineering,13(7), 1048. Qian, X., Zhang, H., Zhang, H., Wu, Y., Diao, Z., Wu, Q. E., et al. (2017). Solar cell surface defects detection based on computer vision. International Journal of Performability Engineering,13(7), 1048.
Zurück zum Zitat Silvén, O., Niskanen, M., & Kauppinen, H. (2003). Wood inspection with non-supervised clustering. Machine Vision and Applications,13(5–6), 275–285.CrossRef Silvén, O., Niskanen, M., & Kauppinen, H. (2003). Wood inspection with non-supervised clustering. Machine Vision and Applications,13(5–6), 275–285.CrossRef
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,15(1), 1929–1958. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,15(1), 1929–1958.
Zurück zum Zitat Torres, P. J. R., Mercado, E. S., & Rifón, L. A. (2018). Probabilistic Boolean network modeling of an industrial machine. Journal of Intelligent Manufacturing,29(4), 875–890.CrossRef Torres, P. J. R., Mercado, E. S., & Rifón, L. A. (2018). Probabilistic Boolean network modeling of an industrial machine. Journal of Intelligent Manufacturing,29(4), 875–890.CrossRef
Zurück zum Zitat Tsai, D. M., Wu, S. C., & Li, W. C. (2012). Defect detection of solar cells in electroluminescence images using Fourier image reconstruction. Solar Energy Materials and Solar Cells,99, 250–262.CrossRef Tsai, D. M., Wu, S. C., & Li, W. C. (2012). Defect detection of solar cells in electroluminescence images using Fourier image reconstruction. Solar Energy Materials and Solar Cells,99, 250–262.CrossRef
Zurück zum Zitat Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. International Journal of Advanced Manufacturing Technology,94(9–12), 3465–3471.CrossRef Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). A fast and robust convolutional neural network-based defect detection model in product quality control. International Journal of Advanced Manufacturing Technology,94(9–12), 3465–3471.CrossRef
Zurück zum Zitat Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Annals,65(1), 417–420.CrossRef Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Annals,65(1), 417–420.CrossRef
Zurück zum Zitat Xian-Bao, W., Jie, L., Ming-Hai, Y., Wen-Xiu, H., & Yun-Tao, Q. (2014). Solar cells surface defects detection based on deep learning. Pattern Recognition and Artificial Intelligence,27(6), 517–523. Xian-Bao, W., Jie, L., Ming-Hai, Y., Wen-Xiu, H., & Yun-Tao, Q. (2014). Solar cells surface defects detection based on deep learning. Pattern Recognition and Artificial Intelligence,27(6), 517–523.
Zurück zum Zitat Yao, M. H., Li, J., & Wang, X. B. (2013). Solar cells surface defects detection using RPCA method. Chinese Journal of Computers,36(9), 1943–1952.CrossRef Yao, M. H., Li, J., & Wang, X. B. (2013). Solar cells surface defects detection using RPCA method. Chinese Journal of Computers,36(9), 1943–1952.CrossRef
Zurück zum Zitat Zhuang, F., Yanzheng, Z., Yang, L., Qixin, C., Mingbo, C., Jun, Z., et al. (2004). Solar cell crack inspection by image processing. In 2004 International Conference on Business of Electronic Product Reliability and Liability (pp. 77–80). IEEE. Zhuang, F., Yanzheng, Z., Yang, L., Qixin, C., Mingbo, C., Jun, Z., et al. (2004). Solar cell crack inspection by image processing. In 2004 International Conference on Business of Electronic Product Reliability and Liability (pp. 77–80). IEEE.
Metadaten
Titel
Solar cell surface defect inspection based on multispectral convolutional neural network
verfasst von
Haiyong Chen
Yue Pang
Qidi Hu
Kun Liu
Publikationsdatum
14.12.2018
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 2/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-018-1458-z

Weitere Artikel der Ausgabe 2/2020

Journal of Intelligent Manufacturing 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.