Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Solid Oxide Fuel Cell Materials

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid oxide fuel cells (SOFCs) are promising power generation systems that electrochemically convert chemical energy into electrical energy with little or no emission of pollutants [1–3]. Moreover, a high-temperature fuel cell has many advantages such as a high efficiency and fuel flexibility in comparison with a low-temperature fuel cell. For these reasons, a considerable amount of attention has been paid to SOFCs in recent years for application to medium- to large-scale power generation and combined heat and power (CHP).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J.J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance (CRC Press, London, 2009) J. Fergus, R. Hui, X. Li, D.P. Wilkinson, J.J. Zhang, Solid Oxide Fuel Cells: Materials Properties and Performance (CRC Press, London, 2009)
2.
Zurück zum Zitat S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, design and applications (Elsevier Ltd, Amsterdam, 2003) S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, design and applications (Elsevier Ltd, Amsterdam, 2003)
3.
Zurück zum Zitat D.K. Lim, J.G. Guk, H.S. Choi, S.J. Song, Measurement of partial conductivity of 8YSZ by Hebb-Wagner polarization method. J. Kor. Ceram. Soc. 52, 299–303 (2015)CrossRef D.K. Lim, J.G. Guk, H.S. Choi, S.J. Song, Measurement of partial conductivity of 8YSZ by Hebb-Wagner polarization method. J. Kor. Ceram. Soc. 52, 299–303 (2015)CrossRef
4.
Zurück zum Zitat I.Y. Jung, D.H. Lee, S.O. Lee, D.H. Kim, J.S. Kim, S.H. Hyun, J.H. Moon, LSCM-YSZ nanocomposites for a high performance SOFC anode. Ceram. Int. 39, 9753–9758 (2013)CrossRef I.Y. Jung, D.H. Lee, S.O. Lee, D.H. Kim, J.S. Kim, S.H. Hyun, J.H. Moon, LSCM-YSZ nanocomposites for a high performance SOFC anode. Ceram. Int. 39, 9753–9758 (2013)CrossRef
5.
Zurück zum Zitat M. Toshiaki, M. Yuichi, M. Hiroki, E. Koichi, Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells. J. Power Sources 242, 790–796 (2013)CrossRef M. Toshiaki, M. Yuichi, M. Hiroki, E. Koichi, Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells. J. Power Sources 242, 790–796 (2013)CrossRef
6.
Zurück zum Zitat T.H. Shin, M. Shin, G.W. Park, S. Lee, S.K. Woo, J. Yu, Fabrication and characterization of oxide ion conducting films, Zr1-xMxO2-δ (M=Y, Sc) on porous SOFC anodes, prepared by electron beam physical vapor deposition. Sustain. Energy Fuels 1, 103–111 (2017)CrossRef T.H. Shin, M. Shin, G.W. Park, S. Lee, S.K. Woo, J. Yu, Fabrication and characterization of oxide ion conducting films, Zr1-xMxO2-δ (M=Y, Sc) on porous SOFC anodes, prepared by electron beam physical vapor deposition. Sustain. Energy Fuels 1, 103–111 (2017)CrossRef
7.
Zurück zum Zitat H.Z. Wang, Z. Gao, S.A. Barnett, Anode-supported solid oxide fuel cells fabricated by single step reduced-temperature co-firing. J. Electrochem. Soc. 163, 196–201 (2016)CrossRef H.Z. Wang, Z. Gao, S.A. Barnett, Anode-supported solid oxide fuel cells fabricated by single step reduced-temperature co-firing. J. Electrochem. Soc. 163, 196–201 (2016)CrossRef
8.
Zurück zum Zitat B. Timurkutluk, C. Timurkutluk, M.D. Mat, Y. Kaplan, Development of high-performance anode supported solid oxide fuel cell. Int. J. Energy Res. 36, 1383–1387 (2012)CrossRef B. Timurkutluk, C. Timurkutluk, M.D. Mat, Y. Kaplan, Development of high-performance anode supported solid oxide fuel cell. Int. J. Energy Res. 36, 1383–1387 (2012)CrossRef
9.
Zurück zum Zitat S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review. Ceram. Int. 22, 257–265 (1996)CrossRef S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review. Ceram. Int. 22, 257–265 (1996)CrossRef
10.
Zurück zum Zitat K. Huang, S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology. A critical review. J. Power Sources 237, 84–97 (2013)CrossRef K. Huang, S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology. A critical review. J. Power Sources 237, 84–97 (2013)CrossRef
11.
Zurück zum Zitat D. Stolten, B. Emonts, P. Heidebrecht, S. Piewek, K. Sundmacher, Fuel Cell Science and Engineering: Materials, Processes, systems and technology (Wiley-VCH, Weinheim, 2012)CrossRef D. Stolten, B. Emonts, P. Heidebrecht, S. Piewek, K. Sundmacher, Fuel Cell Science and Engineering: Materials, Processes, systems and technology (Wiley-VCH, Weinheim, 2012)CrossRef
12.
Zurück zum Zitat Z. Lu, X.D. Zhou, D. Fisher, J. Templeton, J. Stevenson, N. Wu, A. Ignatiev, Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2 Ce0.8 O1.9 interlayer. Electrochem. Commun. 12, 179–182 (2010)CrossRef Z. Lu, X.D. Zhou, D. Fisher, J. Templeton, J. Stevenson, N. Wu, A. Ignatiev, Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2 Ce0.8 O1.9 interlayer. Electrochem. Commun. 12, 179–182 (2010)CrossRef
13.
Zurück zum Zitat EG & G Technical Services, Fuel Cell Handbook, 5th edn. (Parsons, Inc, Morgan, 2000) EG & G Technical Services, Fuel Cell Handbook, 5th edn. (Parsons, Inc, Morgan, 2000)
14.
Zurück zum Zitat D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics 166, 229–239 (2004)CrossRef D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ionics 166, 229–239 (2004)CrossRef
15.
Zurück zum Zitat M.J. Santillán, A. Caneiro, N. Quaranta, A.R. Boccaccini, Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3-δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). J. Eur. Ceram. Soc. 29, 1125–1132 (2009)CrossRef M.J. Santillán, A. Caneiro, N. Quaranta, A.R. Boccaccini, Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3-δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). J. Eur. Ceram. Soc. 29, 1125–1132 (2009)CrossRef
16.
Zurück zum Zitat M. Matsuda, T. Hosomia, K. Murata, T. Fukui, M. Miyake, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. J. Power Sources 165, 102–107 (2007)CrossRef M. Matsuda, T. Hosomia, K. Murata, T. Fukui, M. Miyake, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. J. Power Sources 165, 102–107 (2007)CrossRef
17.
Zurück zum Zitat I. Muneeb, S. Khurram, R. Rizwan, A. Anwar, T. Pankaj, Z. Bin, R. Asia, A. Amjad, K.U. Muhammad, U. Arslan, A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl. Sci. 6, 75 (2016)CrossRef I. Muneeb, S. Khurram, R. Rizwan, A. Anwar, T. Pankaj, Z. Bin, R. Asia, A. Amjad, K.U. Muhammad, U. Arslan, A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl. Sci. 6, 75 (2016)CrossRef
18.
Zurück zum Zitat Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang, P. Cheang, Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. J. Power Sources 117, 26–34 (2003)CrossRef Y.J. Leng, S.H. Chan, K.A. Khor, S.P. Jiang, P. Cheang, Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. J. Power Sources 117, 26–34 (2003)CrossRef
19.
Zurück zum Zitat W. Li, K. Hasinska, M. Seabaugh, S. Swartz, J. Lannutti, Curvature in solid oxide fuel cells. J. Power Sources 138, 145–155 (2004)CrossRef W. Li, K. Hasinska, M. Seabaugh, S. Swartz, J. Lannutti, Curvature in solid oxide fuel cells. J. Power Sources 138, 145–155 (2004)CrossRef
20.
Zurück zum Zitat M.F. Carolan, J.N. Michaels, Growth rates and mechanism of electrochemical vapor deposited yttria-stabilized zirconia films. Solid State Ionics 37, 189–196 (1990)CrossRef M.F. Carolan, J.N. Michaels, Growth rates and mechanism of electrochemical vapor deposited yttria-stabilized zirconia films. Solid State Ionics 37, 189–196 (1990)CrossRef
21.
Zurück zum Zitat H.Y. Jung, K.S. Hong, H. Kim, J.K. Park, J.W. Son, J. Kim, H.W. Lee, J.H. Lee, Characterization of thinfilm YSZ deposited via EB-PVD technique in anode-supported SOFCs. J. Electrochem. Soc. 153, 961–966 (2006)CrossRef H.Y. Jung, K.S. Hong, H. Kim, J.K. Park, J.W. Son, J. Kim, H.W. Lee, J.H. Lee, Characterization of thinfilm YSZ deposited via EB-PVD technique in anode-supported SOFCs. J. Electrochem. Soc. 153, 961–966 (2006)CrossRef
22.
Zurück zum Zitat T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J. Am. Ceram. Soc. 79, 913–919 (1996)CrossRef T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. J. Am. Ceram. Soc. 79, 913–919 (1996)CrossRef
23.
Zurück zum Zitat T. Setoguchi, M. Sawano, K. Eguchi, H. Arai, Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC. Solid State Ionics 40-41, 502–505 (1990)CrossRef T. Setoguchi, M. Sawano, K. Eguchi, H. Arai, Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC. Solid State Ionics 40-41, 502–505 (1990)CrossRef
24.
Zurück zum Zitat M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, Thick YSZ films prepared via a modified sol-gel route: thickness control (8~80 mm). J. Eur. Ceram. Soc. 26, 3153–3160 (2006)CrossRef M. Gaudon, C.L. Robert, F. Ansart, P. Stevens, Thick YSZ films prepared via a modified sol-gel route: thickness control (8~80 mm). J. Eur. Ceram. Soc. 26, 3153–3160 (2006)CrossRef
25.
Zurück zum Zitat G. Schiller, R.H. Henne, M. Lang, R. Ruckdaeschel, S. Schaper, Development of vacuum plasma sprayed thinfilm SOFC for reduced operating temperature. Fuel Cells Bulletin 21, 7–12 (2000)CrossRef G. Schiller, R.H. Henne, M. Lang, R. Ruckdaeschel, S. Schaper, Development of vacuum plasma sprayed thinfilm SOFC for reduced operating temperature. Fuel Cells Bulletin 21, 7–12 (2000)CrossRef
26.
Zurück zum Zitat N.A. Baharuddin, A. Muchtar, M.R. Somalu, Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrog. Energy 42, 9149–9155 (2017)CrossRef N.A. Baharuddin, A. Muchtar, M.R. Somalu, Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrog. Energy 42, 9149–9155 (2017)CrossRef
27.
Zurück zum Zitat A. Tarancón, M. Burriel, J. Santiso, S.J. Skinner, J.A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20, 3799–3813 (2010)CrossRef A. Tarancón, M. Burriel, J. Santiso, S.J. Skinner, J.A. Kilner, Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20, 3799–3813 (2010)CrossRef
28.
Zurück zum Zitat F.S. Baumann, J. Fleig, H.U. Habermeier, J. Maier, Ba0.5Sr0.5Co0.8Fe0.2O3-δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177, 3187–3191 (2006)CrossRef F.S. Baumann, J. Fleig, H.U. Habermeier, J. Maier, Ba0.5Sr0.5Co0.8Fe0.2O3-δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177, 3187–3191 (2006)CrossRef
29.
Zurück zum Zitat F.S. Baumann, J. Maier, J. Fleig, The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes. Solid State Ionics 179, 1198–1204 (2008)CrossRef F.S. Baumann, J. Maier, J. Fleig, The polarization resistance of mixed conducting SOFC cathodes: A comparative study using thin film model electrodes. Solid State Ionics 179, 1198–1204 (2008)CrossRef
30.
Zurück zum Zitat A. Bieberle-Hütter, M. Søgaard, H.L. Tuller, Electrical and electrochemical characterization of microstructured thin film La1-xSrxCoO3 electrodes. Solid State Ionics 177, 1969–1975 (2006)CrossRef A. Bieberle-Hütter, M. Søgaard, H.L. Tuller, Electrical and electrochemical characterization of microstructured thin film La1-xSrxCoO3 electrodes. Solid State Ionics 177, 1969–1975 (2006)CrossRef
31.
Zurück zum Zitat A. Bieberle-Hütter, H.L. Tuller, Fabrication and structural characterization of interdigitated thin film La1 – X SrxCoO3 (LSCO) electrodes. J. Electroceram. 16, 151–157 (2006)CrossRef A. Bieberle-Hütter, H.L. Tuller, Fabrication and structural characterization of interdigitated thin film La1 – X SrxCoO3 (LSCO) electrodes. J. Electroceram. 16, 151–157 (2006)CrossRef
32.
Zurück zum Zitat N. Grunbaum, L. Mogni, F. Prado, Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3-δ. J. Solid State Chem. 177, 2350–2357 (2004)CrossRef N. Grunbaum, L. Mogni, F. Prado, Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3-δ. J. Solid State Chem. 177, 2350–2357 (2004)CrossRef
33.
Zurück zum Zitat J.A. Lane, S.J. Benson, D. Waller, J.A. Kilner, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics 121, 201–208 (1999)CrossRef J.A. Lane, S.J. Benson, D. Waller, J.A. Kilner, Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics 121, 201–208 (1999)CrossRef
34.
Zurück zum Zitat F. Prado, T. Armstrong, A. Caneiro, A. Manthiram, Structural stability and oxygen permeation properties of Sr3-xLaxFe2-yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J. Electrochem. Soc. 148, J7–J14 (2001)CrossRef F. Prado, T. Armstrong, A. Caneiro, A. Manthiram, Structural stability and oxygen permeation properties of Sr3-xLaxFe2-yCoyO7-δ (0 ≤ x ≤ 0.3 and 0 ≤ y ≤ 1.0). J. Electrochem. Soc. 148, J7–J14 (2001)CrossRef
35.
Zurück zum Zitat J.A. Kilner, C.K.M. Shaw, Mass transport in La2Ni1-xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics 154-155, 523–527 (2002)CrossRef J.A. Kilner, C.K.M. Shaw, Mass transport in La2Ni1-xCoxO4+δ oxides with the K2NiF4 structure. Solid State Ionics 154-155, 523–527 (2002)CrossRef
36.
Zurück zum Zitat M. Burriel, S. Wilkins, J.P. Hill, M.A. Munoz-Marquez, H.H. Brongersma, J.A. Kilner, M.P. Ryana, S.J. Skinner, Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 7, 311–316 (2014)CrossRef M. Burriel, S. Wilkins, J.P. Hill, M.A. Munoz-Marquez, H.H. Brongersma, J.A. Kilner, M.P. Ryana, S.J. Skinner, Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals. Energy Environ. Sci. 7, 311–316 (2014)CrossRef
37.
Zurück zum Zitat G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Donner, C.L. Chen, L. Reimus, P. Brodersen, C.A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 1–3 (2006) G. Kim, S. Wang, A.J. Jacobson, Z. Yuan, W. Donner, C.L. Chen, L. Reimus, P. Brodersen, C.A. Mims, Oxygen exchange kinetics of epitaxial PrBaCo2O5+δ thin films. Appl. Phys. Lett. 88, 1–3 (2006)
38.
Zurück zum Zitat J.H. Kim, A. Manthiram, LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155, B385–B390 (2008)CrossRef J.H. Kim, A. Manthiram, LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155, B385–B390 (2008)CrossRef
39.
Zurück zum Zitat J.H. Kim, F. Prado, A. Manthiram, Characterization of GdBa1-xSrxCo2O5+δ (0 ≤ x ≤ 1.0) double perovskites as cathodes for solid oxide fuel cells. J. Electrochem. Soc. 155, B1023–B1028 (2008)CrossRef J.H. Kim, F. Prado, A. Manthiram, Characterization of GdBa1-xSrxCo2O5+δ (0 ≤ x ≤ 1.0) double perovskites as cathodes for solid oxide fuel cells. J. Electrochem. Soc. 155, B1023–B1028 (2008)CrossRef
40.
Zurück zum Zitat F. Mauvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, L. Huo, P. Stevens, Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr): AC impedance and DC polarization studies. J. Electrochem. Soc. 153, A1547–A1553 (2006)CrossRef F. Mauvy, C. Lalanne, J.M. Bassat, J.C. Grenier, H. Zhao, L. Huo, P. Stevens, Electrode properties of Ln2NiO4+δ (Ln=La, Nd, Pr): AC impedance and DC polarization studies. J. Electrochem. Soc. 153, A1547–A1553 (2006)CrossRef
41.
Zurück zum Zitat S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)CrossRef S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)CrossRef
42.
Zurück zum Zitat S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics 135, 709–712 (2000)CrossRef S.J. Skinner, J.A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics 135, 709–712 (2000)CrossRef
43.
Zurück zum Zitat Q. Zhou, T. He, Y. Ji, SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 185, 754–758 (2008)CrossRef Q. Zhou, T. He, Y. Ji, SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 185, 754–758 (2008)CrossRef
44.
Zurück zum Zitat A. Tarancón, S.J. Skinner, R.J. Chater, F.H. Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)CrossRef A. Tarancón, S.J. Skinner, R.J. Chater, F.H. Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)CrossRef
45.
Zurück zum Zitat T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs. Solid State Ionics 177, 1941–1948 (2006)CrossRef T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, Materials and reaction mechanisms at anode/electrolyte interfaces for SOFCs. Solid State Ionics 177, 1941–1948 (2006)CrossRef
46.
Zurück zum Zitat M. Mogensen, S. Skaarup, Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86-88, 1151–1160 (1996)CrossRef M. Mogensen, S. Skaarup, Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 86-88, 1151–1160 (1996)CrossRef
47.
Zurück zum Zitat P. Holtappels, F.W. Poulsen, M. Mogensen, Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 135, 675–679 (2000)CrossRef P. Holtappels, F.W. Poulsen, M. Mogensen, Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications. Solid State Ionics 135, 675–679 (2000)CrossRef
48.
Zurück zum Zitat M. Mogensen, K.V. Jensen, M.J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes. Solid State Ionics 150, 123–129 (2002)CrossRef M. Mogensen, K.V. Jensen, M.J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes. Solid State Ionics 150, 123–129 (2002)CrossRef
49.
Zurück zum Zitat M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63–94 (2000)CrossRef M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63–94 (2000)CrossRef
50.
Zurück zum Zitat S. Primdahl, B.F. Sørensen, M. Mogensen, Effect of nickel oxide/yttria-stabilized zirconia anode precursor sintering temperature on the properties of solid oxide fuel cells. J. Am. Ceram. Soc. 83, 489–494 (2000)CrossRef S. Primdahl, B.F. Sørensen, M. Mogensen, Effect of nickel oxide/yttria-stabilized zirconia anode precursor sintering temperature on the properties of solid oxide fuel cells. J. Am. Ceram. Soc. 83, 489–494 (2000)CrossRef
51.
Zurück zum Zitat S. Primdahl, M. Mogensen, Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion. Solid State Ionics 152-153, 597–608 (2002)CrossRef S. Primdahl, M. Mogensen, Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion. Solid State Ionics 152-153, 597–608 (2002)CrossRef
52.
Zurück zum Zitat P. Holtappels, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes I. DC polarization characteristics. J. Electrochem. Soc. 146, 1620–1625 (1999)CrossRef P. Holtappels, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes I. DC polarization characteristics. J. Electrochem. Soc. 146, 1620–1625 (1999)CrossRef
53.
Zurück zum Zitat P. Holtappels, I.C. Vinke, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes II. AC polarization characteristics. J. Electrochem. Soc. 146, 2976–2982 (1999)CrossRef P. Holtappels, I.C. Vinke, L.G.J. De Haart, U. Stimming, Reaction of hydrogen/water mixtures on nickel-zirconia cermet electrodes II. AC polarization characteristics. J. Electrochem. Soc. 146, 2976–2982 (1999)CrossRef
54.
Zurück zum Zitat D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132, 241–251 (2000)CrossRef D. Simwonis, F. Tietz, D. Stöver, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics 132, 241–251 (2000)CrossRef
55.
Zurück zum Zitat S.J. Tao, T.S. Irvine, Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc. 151, A252–A259 (2004)CrossRef S.J. Tao, T.S. Irvine, Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs. J. Electrochem. Soc. 151, A252–A259 (2004)CrossRef
56.
Zurück zum Zitat A.V. Virkar, J. Chen, C.W. Tanner, J.W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)CrossRef A.V. Virkar, J. Chen, C.W. Tanner, J.W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)CrossRef
57.
Zurück zum Zitat W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362, 228–239 (2003)CrossRef W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362, 228–239 (2003)CrossRef
58.
Zurück zum Zitat O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123, 199–208 (1999)CrossRef O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance. Solid State Ionics 123, 199–208 (1999)CrossRef
59.
Zurück zum Zitat A. Atkinson, B. Sun, Residual stress and thermal cycling of planar solid oxide fuel cells. Mater. Sci. Technol. 23, 1135–1143 (2007)CrossRef A. Atkinson, B. Sun, Residual stress and thermal cycling of planar solid oxide fuel cells. Mater. Sci. Technol. 23, 1135–1143 (2007)CrossRef
60.
Zurück zum Zitat Q.X. Fu, F. Tietz, Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells 8, 283–293 (2008)CrossRef Q.X. Fu, F. Tietz, Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells 8, 283–293 (2008)CrossRef
61.
Zurück zum Zitat L.J. Gauckler, D. Beckel, B.E. Buergler, J. Eva, U.P. Muecke, M. Prestat, J.L.M. Rupp, R. Jörg, Solid oxide fuel cells: systems and materials. CHIMIA Int. J. Chem. 58, 837–850 (2004)CrossRef L.J. Gauckler, D. Beckel, B.E. Buergler, J. Eva, U.P. Muecke, M. Prestat, J.L.M. Rupp, R. Jörg, Solid oxide fuel cells: systems and materials. CHIMIA Int. J. Chem. 58, 837–850 (2004)CrossRef
62.
Zurück zum Zitat N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, Materials and manufacturing technologies for solid oxide fuel cells. J. Mater. Sci. 45, 3109–3135 (2010)CrossRef N.H. Menzler, F. Tietz, S. Uhlenbruck, H.P. Buchkremer, D. Stöver, Materials and manufacturing technologies for solid oxide fuel cells. J. Mater. Sci. 45, 3109–3135 (2010)CrossRef
63.
Zurück zum Zitat B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors. Solid State Ionics 28-30, 1547–1552 (1988)CrossRef B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors. Solid State Ionics 28-30, 1547–1552 (1988)CrossRef
64.
Zurück zum Zitat S. Tao, J.T.S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 17, 1734–1737 (2005)CrossRef S. Tao, J.T.S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based upon single-phase perovskites. Adv. Mater. 17, 1734–1737 (2005)CrossRef
65.
Zurück zum Zitat A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)CrossRef A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)CrossRef
66.
Zurück zum Zitat S. Tao, J.T.S. Irvine, Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem. Rec. 4, 83–95 (2004)CrossRef S. Tao, J.T.S. Irvine, Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem. Rec. 4, 83–95 (2004)CrossRef
67.
Zurück zum Zitat P. Huang, A. Horky, A. Petric, Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc. 82, 2402–2406 (1999)CrossRef P. Huang, A. Horky, A. Petric, Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity. J. Am. Ceram. Soc. 82, 2402–2406 (1999)CrossRef
68.
Zurück zum Zitat B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid-state electrochemical reactors. Solid State Ionics 28, 1547–1552 (1988)CrossRef B.C.H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid-state electrochemical reactors. Solid State Ionics 28, 1547–1552 (1988)CrossRef
69.
Zurück zum Zitat E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)CrossRef E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)CrossRef
70.
Zurück zum Zitat G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gort, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)CrossRef G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gort, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)CrossRef
71.
Zurück zum Zitat M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)CrossRef M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)CrossRef
72.
Zurück zum Zitat R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)CrossRef R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)CrossRef
73.
Zurück zum Zitat S. Park, R.J. Gorte, J.M. Vohs, Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl. Catal. A Gen. 200, 55–61 (2000)CrossRef S. Park, R.J. Gorte, J.M. Vohs, Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl. Catal. A Gen. 200, 55–61 (2000)CrossRef
74.
Zurück zum Zitat S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)CrossRef S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)CrossRef
75.
Zurück zum Zitat X.L. Yue, J.T.S. Irvine, Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. J. Electrochem. Soc. 159, F442–F448 (2012)CrossRef X.L. Yue, J.T.S. Irvine, Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. J. Electrochem. Soc. 159, F442–F448 (2012)CrossRef
76.
Zurück zum Zitat S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni–Fe–La(Sr)Fe(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte. Adv. Energy Mater. 5, 2 (2015) S. Wang, H. Tsuruta, M. Asanuma, T. Ishihara, Ni–Fe–La(Sr)Fe(Mn)O3 as a new active cermet cathode for intermediate-temperature CO2 electrolysis using a LaGaO3-based electrolyte. Adv. Energy Mater. 5, 2 (2015)
77.
Zurück zum Zitat Y. Li, J. Zhou, D. Dong, Y. Wang, J. Jiang, H. Xia, K. Xie, Composite fuel electrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 14, 15547–15553 (2012)CrossRef Y. Li, J. Zhou, D. Dong, Y. Wang, J. Jiang, H. Xia, K. Xie, Composite fuel electrode La0.2Sr0.8TiO3−δ–Ce0.8Sm0.2O2−δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 14, 15547–15553 (2012)CrossRef
78.
Zurück zum Zitat S.W. Lee, G.T. Kim, J.M. Vohsa, R.J. Gortea, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)CrossRef S.W. Lee, G.T. Kim, J.M. Vohsa, R.J. Gortea, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)CrossRef
79.
Zurück zum Zitat S. McIntosh, J.M. Vohs, R. Gorte, J. Electrochim, An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochim. Acta 47, 3815 (2002)CrossRef S. McIntosh, J.M. Vohs, R. Gorte, J. Electrochim, An examination of lanthanide additives on the performance of Cu–YSZ cermet anodes. Electrochim. Acta 47, 3815 (2002)CrossRef
80.
Zurück zum Zitat S. McIntosh, J.M. Vohs, R.J. Gorte, Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Solid-State Lett. 6, A240 (2003)CrossRef S. McIntosh, J.M. Vohs, R.J. Gorte, Effect of precious-metal dopants on SOFC anodes for direct utilization of hydrocarbons. Solid-State Lett. 6, A240 (2003)CrossRef
81.
Zurück zum Zitat S. McIntosha, S.B. Adlerb, J.M. Vohs, R.J. Gortea, Effect of polarization on and implications for characterization of LSM-YSZ composite cathodes J. Electrochem. Solid-State Lett. 7, A111 (2004)CrossRef S. McIntosha, S.B. Adlerb, J.M. Vohs, R.J. Gortea, Effect of polarization on and implications for characterization of LSM-YSZ composite cathodes J. Electrochem. Solid-State Lett. 7, A111 (2004)CrossRef
82.
Zurück zum Zitat S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)CrossRef S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2, 320–323 (2003)CrossRef
83.
Zurück zum Zitat J. Beckers, R. Drost, I.V. Zandvoort, P.F. Collignon, G. Rothenberg, Selective hydrogen oxidation in the presence of C3 hydrocarbons using perovskite oxygen reservoirs. ChemPhysChem 9, 1062–1068 (2008)CrossRef J. Beckers, R. Drost, I.V. Zandvoort, P.F. Collignon, G. Rothenberg, Selective hydrogen oxidation in the presence of C3 hydrocarbons using perovskite oxygen reservoirs. ChemPhysChem 9, 1062–1068 (2008)CrossRef
84.
Zurück zum Zitat K. Kammer, E.M. Skou, LSFM perovskites as cathodes for the electrochemical reduction of NO. Solid State Ionics 176, 915–920 (2005)CrossRef K. Kammer, E.M. Skou, LSFM perovskites as cathodes for the electrochemical reduction of NO. Solid State Ionics 176, 915–920 (2005)CrossRef
85.
Zurück zum Zitat T.H. Shin, P. Vanalabhpatana, T. Ishihara, Oxide composite of Ce(Mn,Fe)O2 and La(Sr)Fe(Mn)O3 for anode of intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte. J. Electrochem. Soc. 157, B1896–B1901 (2010)CrossRef T.H. Shin, P. Vanalabhpatana, T. Ishihara, Oxide composite of Ce(Mn,Fe)O2 and La(Sr)Fe(Mn)O3 for anode of intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte. J. Electrochem. Soc. 157, B1896–B1901 (2010)CrossRef
86.
Zurück zum Zitat T.H. Shin, S. Ida, T. Ishihara, Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 133, 19399–19407 (2011)CrossRef T.H. Shin, S. Ida, T. Ishihara, Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 133, 19399–19407 (2011)CrossRef
87.
Zurück zum Zitat Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006)CrossRef Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006)CrossRef
88.
Zurück zum Zitat S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju, H.Y. Jeong, J.Y. Shin, J.T.S. Irvine, G.T. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)CrossRef S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.W. Ju, H.Y. Jeong, J.Y. Shin, J.T.S. Irvine, G.T. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)CrossRef
89.
Zurück zum Zitat T.H. Shin, J.H. Myung, M. Verbraeken, G.T. Kim, J.T.S. Irvine, Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday Discuss. 182, 227–239 (2015)CrossRef T.H. Shin, J.H. Myung, M. Verbraeken, G.T. Kim, J.T.S. Irvine, Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday Discuss. 182, 227–239 (2015)CrossRef
90.
Zurück zum Zitat M. Burriel, H. Tellez, R.J. Chater, R. Castaing, P. Veber, M. Zaghrioui, T. Ishihara, J.A. Kilner, J.M. Bassat, Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 120, 17927–17938 (2016)CrossRef M. Burriel, H. Tellez, R.J. Chater, R. Castaing, P. Veber, M. Zaghrioui, T. Ishihara, J.A. Kilner, J.M. Bassat, Influence of crystal orientation and annealing on the oxygen diffusion and surface exchange of La2NiO4+δ. J. Phys. Chem. C 120, 17927–17938 (2016)CrossRef
91.
Zurück zum Zitat K. Zheng, A. Gorzkowska-Sobaś, K. Świerczek, Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs. Mater. Res. Bull. 47, 4089–4095 (2012)CrossRef K. Zheng, A. Gorzkowska-Sobaś, K. Świerczek, Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs. Mater. Res. Bull. 47, 4089–4095 (2012)CrossRef
92.
Zurück zum Zitat Y.N. Kim, Y.N.A. Manthiram, La1.85Sr1.15Cu2−xCoxO6+δ intergrowth oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochim. Acta 70, 375–381 (2012)CrossRef Y.N. Kim, Y.N.A. Manthiram, La1.85Sr1.15Cu2−xCoxO6+δ intergrowth oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochim. Acta 70, 375–381 (2012)CrossRef
93.
Zurück zum Zitat E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1−xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef
94.
Zurück zum Zitat X. Huang, T.H. Shin, J. Zhoua, J.T.S. Irvine, Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3Ni x Cu1−x O4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs. J. Mater. Chem. A 3, 13468–13475 (2015)CrossRef X. Huang, T.H. Shin, J. Zhoua, J.T.S. Irvine, Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3Ni x Cu1−x O4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs. J. Mater. Chem. A 3, 13468–13475 (2015)CrossRef
95.
Zurück zum Zitat F. Tonus, M. Bahout, V. Dorcet, G.H. Gauthier, S. Paofai, R.I. Smithd, S.J. Skinner, Redox behavior of the SOFC electrode candidate NdBaMn2O5+ d investigated by high-temperature in situ neutron diffraction: first characterisation in real time of an LnBaMn2O5.5 intermediate phase. J. Mater. Chem. A 4, 11635–11647 (2016)CrossRef F. Tonus, M. Bahout, V. Dorcet, G.H. Gauthier, S. Paofai, R.I. Smithd, S.J. Skinner, Redox behavior of the SOFC electrode candidate NdBaMn2O5+ d investigated by high-temperature in situ neutron diffraction: first characterisation in real time of an LnBaMn2O5.5 intermediate phase. J. Mater. Chem. A 4, 11635–11647 (2016)CrossRef
96.
Zurück zum Zitat I. Hamada, A. Uozumi, Y. Morikawa, A. Yanase, H.K. Yoshida, A density functiona2l theory study of self-regenerating catalysts LaFe1–xMxO3–y (M = Pd, Rh, Pt). J. Am. Chem. Soc. 133, 18506–18509 (2011)CrossRef I. Hamada, A. Uozumi, Y. Morikawa, A. Yanase, H.K. Yoshida, A density functiona2l theory study of self-regenerating catalysts LaFe1–xMxO3–y (M = Pd, Rh, Pt). J. Am. Chem. Soc. 133, 18506–18509 (2011)CrossRef
97.
Zurück zum Zitat D.M. Bierschenk, E. Potter-Nelson, C. Hoelb, Y. Liao, L. Marks, K.R. Poeppelmeier, S.A. Barnett, Pd-substituted (La,Sr)CrO3-δ-Ce0.9Gd0.1O2-δ solid oxide fuel cell anodes exhibiting regenerative behavior. J. Power Sources 196, 3089–3094 (2011)CrossRef D.M. Bierschenk, E. Potter-Nelson, C. Hoelb, Y. Liao, L. Marks, K.R. Poeppelmeier, S.A. Barnett, Pd-substituted (La,Sr)CrO3-δ-Ce0.9Gd0.1O2-δ solid oxide fuel cell anodes exhibiting regenerative behavior. J. Power Sources 196, 3089–3094 (2011)CrossRef
98.
Zurück zum Zitat T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chem. Eur. J. 18, 11695 (2012)CrossRef T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chem. Eur. J. 18, 11695 (2012)CrossRef
99.
Zurück zum Zitat D. Neagu, T.S. Oh, D.N. Miller, H. Ménard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J.M. Vohs, J.T.S. Irvine, Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015)CrossRef D. Neagu, T.S. Oh, D.N. Miller, H. Ménard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J.M. Vohs, J.T.S. Irvine, Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015)CrossRef
100.
Zurück zum Zitat D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013)CrossRef D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013)CrossRef
101.
Zurück zum Zitat Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002)CrossRef Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418, 164–167 (2002)CrossRef
102.
Zurück zum Zitat H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, J.H. Mizuki, The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal. Today 117, 321–328 (2006)CrossRef H. Tanaka, M. Uenishi, M. Taniguchi, I. Tan, K. Narita, M. Kimura, K. Kaneko, Y. Nishihata, J.H. Mizuki, The intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal. Today 117, 321–328 (2006)CrossRef
103.
Zurück zum Zitat T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chemistry 18, 11695–11702 (2012)CrossRef T.H. Shin, Y. Okamoto, S. Ida, T. Ishihara, Self-recovery of pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells. Chemistry 18, 11695–11702 (2012)CrossRef
104.
Zurück zum Zitat J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016)CrossRef J.H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016)CrossRef
105.
Zurück zum Zitat J.J. Choi, S.H. Oha, H.S. Nohb, H.R. Kimb, J.W. Sonb, D.S. Parka, J.H. Choi, J.H. Ryua, B.D. Hahna, W.H. Yoon, H.W. Lee, Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J. Alloys Compd. 509, 2627–2630 (2011)CrossRef J.J. Choi, S.H. Oha, H.S. Nohb, H.R. Kimb, J.W. Sonb, D.S. Parka, J.H. Choi, J.H. Ryua, B.D. Hahna, W.H. Yoon, H.W. Lee, Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J. Alloys Compd. 509, 2627–2630 (2011)CrossRef
106.
Zurück zum Zitat J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Low-temperature fabrication of nano-structured porous (La,Sr)(Co,Fe)O3−δ cathodes by aerosol deposition. J. Alloys Compd. 545, 186–189 (2012)CrossRef J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Low-temperature fabrication of nano-structured porous (La,Sr)(Co,Fe)O3−δ cathodes by aerosol deposition. J. Alloys Compd. 545, 186–189 (2012)CrossRef
107.
Zurück zum Zitat H. Tu, U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells. J. Power Sources 127, 284 (2004)CrossRef H. Tu, U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells. J. Power Sources 127, 284 (2004)CrossRef
108.
Zurück zum Zitat Z. Yang, G. Xia, Z. Templeton, J. Nie, J.W. Stevenson, Ce-Modified ( Mn , Co )3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Electrochem. Solid-State Lett. 11, B140 (2008)CrossRef Z. Yang, G. Xia, Z. Templeton, J. Nie, J.W. Stevenson, Ce-Modified ( Mn , Co )3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Electrochem. Solid-State Lett. 11, B140 (2008)CrossRef
109.
Zurück zum Zitat J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn, W.H. Yoon, H.T. Lim, Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process. J. Am. Ceram. Soc. 90, 1926–1929 (2007)CrossRef J.J. Choi, J.H. Lee, D.S. Park, B.D. Hahn, W.H. Yoon, H.T. Lim, Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process. J. Am. Ceram. Soc. 90, 1926–1929 (2007)CrossRef
110.
Zurück zum Zitat J.J. Choi, D.S. Park, B.D. Hahn, J.H. Ryu, W.H. Yoon, Oxidation behavior of ferritic steel alloy coated with highly dense conducting ceramics by aerosol deposition. J. Am. Ceram. Soc. 91, 2601–2606 (2008)CrossRef J.J. Choi, D.S. Park, B.D. Hahn, J.H. Ryu, W.H. Yoon, Oxidation behavior of ferritic steel alloy coated with highly dense conducting ceramics by aerosol deposition. J. Am. Ceram. Soc. 91, 2601–2606 (2008)CrossRef
111.
Zurück zum Zitat J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. J. Mater. Sci. 44, 843–848 (2009)CrossRef J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, D.S. Park, Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. J. Mater. Sci. 44, 843–848 (2009)CrossRef
112.
Zurück zum Zitat J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, J.H. Choi, D.S. Park, Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition. J. Am. Ceram. Soc. 93, 1614–1618 (2010) J.J. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, J.H. Choi, D.S. Park, Ni-containing conducting ceramic as an oxidation protective coating on metallic interconnects by aerosol deposition. J. Am. Ceram. Soc. 93, 1614–1618 (2010)
113.
Zurück zum Zitat J. Akedo, M. Lebedev, U.S. Patent. Pub. No. US2005/0181208 A1 (2005) J. Akedo, M. Lebedev, U.S. Patent. Pub. No. US2005/0181208 A1 (2005)
114.
Zurück zum Zitat D.S. Park, B.D. Hahn, J.J. Choi, W.H. Yoon, J. Ryu, Ceramics coating process technology by aerosol deposition. Machin. Mater. 18, 6–20 (2006) D.S. Park, B.D. Hahn, J.J. Choi, W.H. Yoon, J. Ryu, Ceramics coating process technology by aerosol deposition. Machin. Mater. 18, 6–20 (2006)
115.
Zurück zum Zitat J. Choi, B. Han, D. Park, Machin. Mater. 18, 21–38 (2006) J. Choi, B. Han, D. Park, Machin. Mater. 18, 21–38 (2006)
116.
Zurück zum Zitat J.J. Choi, B.D. Hahn, J.H. Ryu, W.H. Yoon, D.S. Park, Effects of Pb(Zn1∕3Nb2∕3)O3Pb(Zn1∕3Nb2∕3)O3 addition and postannealing temperature on the electrical properties of Pb(ZrxTi1−x)O3Pb(ZrxTi1−x)O3 thick films prepared by aerosol deposition method. J. Appl. Phys. 102, 044101 (2007)CrossRef J.J. Choi, B.D. Hahn, J.H. Ryu, W.H. Yoon, D.S. Park, Effects of Pb(Zn1∕3Nb2∕3)O3Pb(Zn1∕3Nb2∕3)O3 addition and postannealing temperature on the electrical properties of Pb(ZrxTi1−x)O3Pb(ZrxTi1−x)O3 thick films prepared by aerosol deposition method. J. Appl. Phys. 102, 044101 (2007)CrossRef
117.
Zurück zum Zitat J.J. Choi, J.H. Jang, B.D. Hahn, D.S. Park, W.H. Yoon, J.H. Ryu, C. Park, Preparation of highly dense PZN–PZT thick films by the aerosol deposition method using excess-PbO powder. J. Am. Ceram. Soc. 90, 3389–3394 (2007)CrossRef J.J. Choi, J.H. Jang, B.D. Hahn, D.S. Park, W.H. Yoon, J.H. Ryu, C. Park, Preparation of highly dense PZN–PZT thick films by the aerosol deposition method using excess-PbO powder. J. Am. Ceram. Soc. 90, 3389–3394 (2007)CrossRef
118.
Zurück zum Zitat J.H. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, K.H. Kim, Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3(K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007)CrossRef J.H. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, K.H. Kim, Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3(K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 90, 152901 (2007)CrossRef
119.
Zurück zum Zitat B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5, 3205–3214 (2009)CrossRef B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5, 3205–3214 (2009)CrossRef
120.
Zurück zum Zitat B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J. Am. Ceram. Soc. 92, 683–687 (2009)CrossRef B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J. Am. Ceram. Soc. 92, 683–687 (2009)CrossRef
121.
Zurück zum Zitat B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature. Appl. Catal. B Environ. 83, 1–7 (2008)CrossRef B.D. Hahn, D.S. Park, J.J. Choi, J.H. Ryu, W.H. Yoon, K.H. Kim, C. Park, H.E. Kim, Photocatalytic TiO2 thin films by aerosol-deposition: from micron-sized particles to nano-grained thin film at room temperature. Appl. Catal. B Environ. 83, 1–7 (2008)CrossRef
122.
Zurück zum Zitat J.H. Ryu, K.Y. Kim, B.D. Hahn, J.J. Choi, W.H. Yoon, B.K. Lee, D.S. Park, C. Park, Photocatalytic nanocomposite thin films of TiO2-β-calcium phosphate by aerosol-deposition. Catal. Commun. 10, 596–599 (2009)CrossRef J.H. Ryu, K.Y. Kim, B.D. Hahn, J.J. Choi, W.H. Yoon, B.K. Lee, D.S. Park, C. Park, Photocatalytic nanocomposite thin films of TiO2-β-calcium phosphate by aerosol-deposition. Catal. Commun. 10, 596–599 (2009)CrossRef
123.
Zurück zum Zitat J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, J.D. Yun, D.S. Park, Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition. J. Eur. Ceram. Soc. 32, 115–121 (2012)CrossRef J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, J.D. Yun, D.S. Park, Low temperature preparation and characterization of LSGMC based IT-SOFC cell by aerosol deposition. J. Eur. Ceram. Soc. 32, 115–121 (2012)CrossRef
124.
Zurück zum Zitat J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO-YSZ. J. Eur. Ceram. Soc. 32, 3249–3254 (2012)CrossRef J.J. Choi, J.H. Choi, J.H. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, D.S. Park, Microstructural evolution of YSZ electrolyte aerosol-deposited on porous NiO-YSZ. J. Eur. Ceram. Soc. 32, 3249–3254 (2012)CrossRef
125.
Zurück zum Zitat J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, D.S. Park, J.D. Yun, Electrochemical effects of cobalt doping on (La,Sr)(Ga,Mg)O3−δ electrolyte prepared by aerosol deposition. Int. J. Hydrog. Energy 37, 6830–6835 (2012)CrossRef J.J. Choi, K.S. Cho, J.H. Choi, J.H. Ryu, B.D. Hahn, W.H. Yoon, J.W. Kim, C.W. Ahn, D.S. Park, J.D. Yun, Electrochemical effects of cobalt doping on (La,Sr)(Ga,Mg)O3−δ electrolyte prepared by aerosol deposition. Int. J. Hydrog. Energy 37, 6830–6835 (2012)CrossRef
126.
Zurück zum Zitat J.J. Choi, K.S. Cho, J.H. Choi, J. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, J. Yun, D.S. Park, Effects of annealing temperature on solid oxide fuel cells containing (La,Sr)(Ga,Mg,Co)O3-δ electrolyte prepared by aerosol deposition. Mater. Lett. 70, 44–47 (2012)CrossRef J.J. Choi, K.S. Cho, J.H. Choi, J. Ryu, B.D. Hahn, J.W. Kim, C.W. Ahn, W.H. Yoon, J. Yun, D.S. Park, Effects of annealing temperature on solid oxide fuel cells containing (La,Sr)(Ga,Mg,Co)O3-δ electrolyte prepared by aerosol deposition. Mater. Lett. 70, 44–47 (2012)CrossRef
127.
Zurück zum Zitat S.F. Wang, Y.F. Hsu, C.H. Wang, C.T. Yeh, Solid oxide fuel cells with Sm0.2Ce0.8O2−δ electrolyte film deposited by novel aerosol deposition method. J. Power Sources 196, 5064–5069 (2011)CrossRef S.F. Wang, Y.F. Hsu, C.H. Wang, C.T. Yeh, Solid oxide fuel cells with Sm0.2Ce0.8O2−δ electrolyte film deposited by novel aerosol deposition method. J. Power Sources 196, 5064–5069 (2011)CrossRef
128.
Zurück zum Zitat J.J. Choi, D.S. Park, B.G. Seong, H.Y. Bae, Low-temperature preparation of dense (Gd,Ce)O2−δ–Gd2O3 composite buffer layer by aerosol deposition for YSZ electrolyte-based SOFC. Int. J. Hydrog. Energy 37, 9809–9815 (2012)CrossRef J.J. Choi, D.S. Park, B.G. Seong, H.Y. Bae, Low-temperature preparation of dense (Gd,Ce)O2−δ–Gd2O3 composite buffer layer by aerosol deposition for YSZ electrolyte-based SOFC. Int. J. Hydrog. Energy 37, 9809–9815 (2012)CrossRef
129.
Zurück zum Zitat H. Bae, J. Choi, G.M. Choi, Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method. Solid State Ionics 236, 16–21 (2013)CrossRef H. Bae, J. Choi, G.M. Choi, Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method. Solid State Ionics 236, 16–21 (2013)CrossRef
130.
Zurück zum Zitat C.J. Li, C.X. Li, Y.Z. Xing, M. Gao, G.J. Yang, Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics 177, 2065–2069 (2006)CrossRef C.J. Li, C.X. Li, Y.Z. Xing, M. Gao, G.J. Yang, Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC. Solid State Ionics 177, 2065–2069 (2006)CrossRef
131.
Zurück zum Zitat Y. Jiang, H. Song, J. Gao, G. Meng, Formation and rate processes of Y2O3 stabilized ZrO2 thin films from Zr(DPM)4 and Y(DPM)3 by cold-wall aerosol-assisted MOCVD. J. Electrochem. Soc. 152, C498–C503 (2005)CrossRef Y. Jiang, H. Song, J. Gao, G. Meng, Formation and rate processes of Y2O3 stabilized ZrO2 thin films from Zr(DPM)4 and Y(DPM)3 by cold-wall aerosol-assisted MOCVD. J. Electrochem. Soc. 152, C498–C503 (2005)CrossRef
132.
Zurück zum Zitat M. Liu, J. Gao, D. Dong, X. Liu, G. Meng, Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. Int. J. Hydrog. Energy 35, 10489–10494 (2010)CrossRef M. Liu, J. Gao, D. Dong, X. Liu, G. Meng, Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. Int. J. Hydrog. Energy 35, 10489–10494 (2010)CrossRef
133.
Zurück zum Zitat M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J. Power Sources 202, 47–55 (2012)CrossRef M.V.F. Schlupp, M. Prestat, J. Martynczuk, J.L.M. Rupp, A. Bieberle-Hütter, L.J. Gauckler, Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition. J. Power Sources 202, 47–55 (2012)CrossRef
134.
Zurück zum Zitat M. Haydn, K. Ortner, T. Franco, S. Uhlenbruck, N.H. Menzler, D. Stöver, G. Bräuer, A. Venskutonis, L.S. Sigl, H.P. Buchkremer, R. Vaßen, Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells. J. Power Sources 256, 52–60 (2014)CrossRef M. Haydn, K. Ortner, T. Franco, S. Uhlenbruck, N.H. Menzler, D. Stöver, G. Bräuer, A. Venskutonis, L.S. Sigl, H.P. Buchkremer, R. Vaßen, Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells. J. Power Sources 256, 52–60 (2014)CrossRef
135.
Zurück zum Zitat A.C. Johnson, A. Baclig, D.V. Harburg, B.K. Lai, S. Ramanathan, Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195, 1149–1155 (2010)CrossRef A.C. Johnson, A. Baclig, D.V. Harburg, B.K. Lai, S. Ramanathan, Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195, 1149–1155 (2010)CrossRef
136.
Zurück zum Zitat K. Kerman, B.K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656–661 (2012)CrossRef K. Kerman, B.K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656–661 (2012)CrossRef
137.
Zurück zum Zitat J. Yanz, H. Matsumoto, M. Enoki, T. Ishihara, High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ composite film. Electrochem. Solid-State Lett. 8, A389–A391 (2005)CrossRef J. Yanz, H. Matsumoto, M. Enoki, T. Ishihara, High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ composite film. Electrochem. Solid-State Lett. 8, A389–A391 (2005)CrossRef
138.
Zurück zum Zitat D. Berndt, U. Teutsch, Float charging of valve-regulated lead-acid batteries: a balancing act between secondary reactions. J. Electrochem. Soc. 143, 790–798 (1996)CrossRef D. Berndt, U. Teutsch, Float charging of valve-regulated lead-acid batteries: a balancing act between secondary reactions. J. Electrochem. Soc. 143, 790–798 (1996)CrossRef
139.
Zurück zum Zitat H.-T. Lim, A.V. Virkar, A study of solid oxide fuel cell stack failure by inducing abnormal behavior in a single cell test. J. Power Sources 185, 790–800 (2008)CrossRef H.-T. Lim, A.V. Virkar, A study of solid oxide fuel cell stack failure by inducing abnormal behavior in a single cell test. J. Power Sources 185, 790–800 (2008)CrossRef
140.
Zurück zum Zitat H.-T. Lim, A.V. Virkar, Electrochemical degradation of fuel cell: effect of electrolyte composition. ECS Trans. 25, 447–456 (2009)CrossRef H.-T. Lim, A.V. Virkar, Electrochemical degradation of fuel cell: effect of electrolyte composition. ECS Trans. 25, 447–456 (2009)CrossRef
141.
Zurück zum Zitat M.Y. Park, Y.G. Jung, H.-T. Lim, Delamination-resistant bi-layer electrolyte for anode-supported solid oxide fuel cells. Solid State Ionics 262, 438–443 (2014)CrossRef M.Y. Park, Y.G. Jung, H.-T. Lim, Delamination-resistant bi-layer electrolyte for anode-supported solid oxide fuel cells. Solid State Ionics 262, 438–443 (2014)CrossRef
142.
Zurück zum Zitat M.Y. Park, H. Bae, H.-T. Lim, Bi-layer electrolyte for preventing solid oxide fuel cell stack degradation. J. Kor. Ceram. Soc. 51, 289–294 (2014)CrossRef M.Y. Park, H. Bae, H.-T. Lim, Bi-layer electrolyte for preventing solid oxide fuel cell stack degradation. J. Kor. Ceram. Soc. 51, 289–294 (2014)CrossRef
Metadaten
Titel
Solid Oxide Fuel Cell Materials
verfasst von
Tae Ho Shin
Jong-Jin Choi
Hyung-Tae Lim
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-59906-9_6

Neuer Inhalt