Skip to main content

2017 | OriginalPaper | Buchkapitel

Solid Oxide Fuel Cells Modeling

verfasst von : Domenico Ferrero, Andrea Lanzini, Massimo Santarelli

Erschienen in: Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A solid oxide fuel cell (SOFC) is a complex system consisting of different components, in which interconnected physical phenomena occur simultaneously and contribute to determine the global thermo-electrochemical response of the system. The simulation and prediction of the response of an SOFC are of paramount importance for the analysis of possible applications without resorting to extensive experimental investigations. Simulating the SOFC response requires to develop reliable models that can describe the significant phenomena occurring in the system. Different approaches can be followed for the SOFC modeling, depending on the goals of the model. This chapter will provide an introduction to SOFC modeling focusing on a macroscopic, physically based approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Achenbach, E., & Riensche, E. (1994). Methane/steam reforming kinetics for solid oxide fuel cells. Journal of Power Sources, 52(2), 283–288.CrossRef Achenbach, E., & Riensche, E. (1994). Methane/steam reforming kinetics for solid oxide fuel cells. Journal of Power Sources, 52(2), 283–288.CrossRef
Zurück zum Zitat Ahmed, K., & Foger, K. (2000). Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catalysis Today, 63(2), 479–487.CrossRef Ahmed, K., & Foger, K. (2000). Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells. Catalysis Today, 63(2), 479–487.CrossRef
Zurück zum Zitat Amhalhel, G., & Furmański, P. (1997). Problems of modeling flow and heat transfer in porous media. Journal of Power Technologies, 85, 55–88. Amhalhel, G., & Furmański, P. (1997). Problems of modeling flow and heat transfer in porous media. Journal of Power Technologies, 85, 55–88.
Zurück zum Zitat Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.CrossRef Andersson, M., Yuan, J., & Sundén, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy, 87(5), 1461–1476.CrossRef
Zurück zum Zitat Andersson, M., Yuan, J., & Sundén, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer, 55(4), 773–788.MATHCrossRef Andersson, M., Yuan, J., & Sundén, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer, 55(4), 773–788.MATHCrossRef
Zurück zum Zitat Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54.CrossRef Andersson, M., Yuan, J., & Sundén, B. (2013). SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants. Journal of Power Sources, 232, 42–54.CrossRef
Zurück zum Zitat Bagotsky, V. S. (Ed.). (2005). Fundamentals of electrochemistry (2nd ed., Vol. 44). New York: John Wiley & Sons. Bagotsky, V. S. (Ed.). (2005). Fundamentals of electrochemistry (2nd ed., Vol. 44). New York: John Wiley & Sons.
Zurück zum Zitat Bear, J. (1972). Dynamics of fluids in porous media. New York: American Elsevier.MATH Bear, J. (1972). Dynamics of fluids in porous media. New York: American Elsevier.MATH
Zurück zum Zitat Belyaev, V. D., Politova, T. I., Mar’ina, O. A., & Sobyanin, V. A. (1995). Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells. Applied Catalysis, A: General, 133(1), 47–57.CrossRef Belyaev, V. D., Politova, T. I., Mar’ina, O. A., & Sobyanin, V. A. (1995). Internal steam reforming of methane over Ni-based electrode in solid oxide fuel cells. Applied Catalysis, A: General, 133(1), 47–57.CrossRef
Zurück zum Zitat Bertei, A., & Nicolella, C. (2015). Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. Journal of Power Sources, 279, 133–137.CrossRef Bertei, A., & Nicolella, C. (2015). Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law. Journal of Power Sources, 279, 133–137.CrossRef
Zurück zum Zitat Bird, R., Steward, W., & Lightfoot, E. (2006). Transport phenomena. Amsterdam: John Wiley & Sons. (Revised 2nd edn). Bird, R., Steward, W., & Lightfoot, E. (2006). Transport phenomena. Amsterdam: John Wiley & Sons. (Revised 2nd edn).
Zurück zum Zitat Brinkman, H. C. (1949a). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1(1), 27–34.MATH Brinkman, H. C. (1949a). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Applied Scientific Research, 1(1), 27–34.MATH
Zurück zum Zitat Brinkman, H. C. (1949b). On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1(1), 81–86. Brinkman, H. C. (1949b). On the permeability of media consisting of closely packed porous particles. Applied Scientific Research, 1(1), 81–86.
Zurück zum Zitat Bruggeman, D. A. G. (1935). Calculation of the various physical constants of heterogeneous substances. Dielectric constants and conductivities of mixtures of isotropic substances. Annual Physik, 24, 636–664.CrossRef Bruggeman, D. A. G. (1935). Calculation of the various physical constants of heterogeneous substances. Dielectric constants and conductivities of mixtures of isotropic substances. Annual Physik, 24, 636–664.CrossRef
Zurück zum Zitat Brus, G., Miyawaki, K., Iwai, H., Saito, M., & Yoshida, H. (2014). Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure. Solid State Ionics, 265, 13–21.CrossRef Brus, G., Miyawaki, K., Iwai, H., Saito, M., & Yoshida, H. (2014). Tortuosity of an SOFC anode estimated from saturation currents and a mass transport model in comparison with a real micro-structure. Solid State Ionics, 265, 13–21.CrossRef
Zurück zum Zitat Cai, Q., Adjiman, C. S., & Brandon, N. P. (2011). Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model. Electrochimica Acta, 56(28), 10809–10819.CrossRef Cai, Q., Adjiman, C. S., & Brandon, N. P. (2011). Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model. Electrochimica Acta, 56(28), 10809–10819.CrossRef
Zurück zum Zitat Carman, P. C. (1956). Flow of gases through porous media. Waltham: Academic Press.MATH Carman, P. C. (1956). Flow of gases through porous media. Waltham: Academic Press.MATH
Zurück zum Zitat Cayan, F. N., Pakalapati, S. R., Elizalde-Blancas, F., & Celik, I. (2009). On modeling multi-component diffusion inside the porous anode of solid oxide fuel cells using Fick’s model. Journal of Power Sources, 192(2), 467–474.CrossRef Cayan, F. N., Pakalapati, S. R., Elizalde-Blancas, F., & Celik, I. (2009). On modeling multi-component diffusion inside the porous anode of solid oxide fuel cells using Fick’s model. Journal of Power Sources, 192(2), 467–474.CrossRef
Zurück zum Zitat Chan, S. H., Khor, K. A., & Xia, Z. T. (2001). Journal of Power Sources, 93(1), 130–140.CrossRef Chan, S. H., Khor, K. A., & Xia, Z. T. (2001). Journal of Power Sources, 93(1), 130–140.CrossRef
Zurück zum Zitat Costamagna, P., Costa, P., & Antonucci, V. (1998). Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta, 43(3), 375–394.CrossRef Costamagna, P., Costa, P., & Antonucci, V. (1998). Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta, 43(3), 375–394.CrossRef
Zurück zum Zitat Costamagna, P., & Honegger, K. (1998). Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. Journal of the Electrochemical Society, 145(11), 3995–4007.CrossRef Costamagna, P., & Honegger, K. (1998). Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization. Journal of the Electrochemical Society, 145(11), 3995–4007.CrossRef
Zurück zum Zitat Costamagna, P., Selimovic, A., Del Borghi, M., & Agnew, G. (2004). Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal, 102(1), 61–69.CrossRef Costamagna, P., Selimovic, A., Del Borghi, M., & Agnew, G. (2004). Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC). Chemical Engineering Journal, 102(1), 61–69.CrossRef
Zurück zum Zitat Curtiss, C. F., & Bird, R. B. (1999). Multicomponent diffusion. Industrial and Engineering Chemistry Research, 38(7), 2515–2522.CrossRef Curtiss, C. F., & Bird, R. B. (1999). Multicomponent diffusion. Industrial and Engineering Chemistry Research, 38(7), 2515–2522.CrossRef
Zurück zum Zitat Damm, D. L., & Fedorov, A. G. (2004). Spectral radiative heat transfer analysis of the planar SOFC. In Proceedings of the ASME IMECE, Anaheim, CA, November 13–19, 2004. Paper No. IMECE2004-60142. Damm, D. L., & Fedorov, A. G. (2004). Spectral radiative heat transfer analysis of the planar SOFC. In Proceedings of the ASME IMECE, Anaheim, CA, November 13–19, 2004. Paper No. IMECE2004-60142.
Zurück zum Zitat Damm, D. L., & Fedorov, A. G. (2005). Radiation heat transfer in SOFC materials and components. Journal of Power Sources, 143(1), 158–165.CrossRef Damm, D. L., & Fedorov, A. G. (2005). Radiation heat transfer in SOFC materials and components. Journal of Power Sources, 143(1), 158–165.CrossRef
Zurück zum Zitat Damm, D. L., & Fedorov, A. G. (2006). Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. Journal of Power Sources, 159(2), 1153–1157.CrossRef Damm, D. L., & Fedorov, A. G. (2006). Local thermal non-equilibrium effects in porous electrodes of the hydrogen-fueled SOFC. Journal of Power Sources, 159(2), 1153–1157.CrossRef
Zurück zum Zitat Désilets, M., Proulx, P., & Soucy, G. (1997). Modeling of multicomponent diffusion in high temperature flows. International Journal of Heat and Mass Transfer, 40(18), 4273–4278.MATHCrossRef Désilets, M., Proulx, P., & Soucy, G. (1997). Modeling of multicomponent diffusion in high temperature flows. International Journal of Heat and Mass Transfer, 40(18), 4273–4278.MATHCrossRef
Zurück zum Zitat Dicks, A. L., Pointon, K. D., & Siddle, A. (2000). Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode. Journal of Power Sources, 86(1), 523–530.CrossRef Dicks, A. L., Pointon, K. D., & Siddle, A. (2000). Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode. Journal of Power Sources, 86(1), 523–530.CrossRef
Zurück zum Zitat Drescher, I., Lehnert, W., & Meusinger, J. (1998). Structural properties of SOFC anodes and reactivity. Electrochimica Acta, 43(19), 3059–3068.CrossRef Drescher, I., Lehnert, W., & Meusinger, J. (1998). Structural properties of SOFC anodes and reactivity. Electrochimica Acta, 43(19), 3059–3068.CrossRef
Zurück zum Zitat Elizalde-Blancas, F., Celik, I. B., Rangel-Hernandez, V., Hernandez-Guerrero, A., & Riesco-Avila, J. M. (2013). Numerical modeling of SOFCs operating on biogas from biodigesters. International Journal of Hydrogen Energy, 38(1), 377–384.CrossRef Elizalde-Blancas, F., Celik, I. B., Rangel-Hernandez, V., Hernandez-Guerrero, A., & Riesco-Avila, J. M. (2013). Numerical modeling of SOFCs operating on biogas from biodigesters. International Journal of Hydrogen Energy, 38(1), 377–384.CrossRef
Zurück zum Zitat Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122.CrossRef Ferguson, J. R., Fiard, J. M., & Herbin, R. (1996). Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Journal of Power Sources, 58(2), 109–122.CrossRef
Zurück zum Zitat Ferrero, D., Lanzini, A., Leone, P., & Santarelli, M. (2015). Reversible operation of solid oxide cells under electrolysis and fuel cell modes: Experimental study and model validation. Chemical Engineering Journal, 274, 143–155.CrossRef Ferrero, D., Lanzini, A., Leone, P., & Santarelli, M. (2015). Reversible operation of solid oxide cells under electrolysis and fuel cell modes: Experimental study and model validation. Chemical Engineering Journal, 274, 143–155.CrossRef
Zurück zum Zitat Froment, G. F., Bischoff, K. B., & De Wilde, J. (1990). Chemical reactor analysis and design (Vol. 2). New York: Wiley. Froment, G. F., Bischoff, K. B., & De Wilde, J. (1990). Chemical reactor analysis and design (Vol. 2). New York: Wiley.
Zurück zum Zitat Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.CrossRef Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.CrossRef
Zurück zum Zitat Funahashi, Y., Shimamori, T., Suzuki, T., Fujishiro, Y., & Awano, M. (2007). Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. Journal of Power Sources, 163(2), 731–736.CrossRef Funahashi, Y., Shimamori, T., Suzuki, T., Fujishiro, Y., & Awano, M. (2007). Fabrication and characterization of components for cube shaped micro tubular SOFC bundle. Journal of Power Sources, 163(2), 731–736.CrossRef
Zurück zum Zitat García-Camprubí, M. (2011). Multiphysics models for the simulation of solid oxide fuel cells. (Ph.D., dissertation). University of Zaragoza. García-Camprubí, M. (2011). Multiphysics models for the simulation of solid oxide fuel cells. (Ph.D., dissertation). University of Zaragoza.
Zurück zum Zitat García-Camprubí, M., Sánchez-Insa, A., & Fueyo, N. (2010). Multimodal mass transfer in solid-oxide fuel-cells. Chemical Engineering Science, 65(5), 1668–1677.CrossRef García-Camprubí, M., Sánchez-Insa, A., & Fueyo, N. (2010). Multimodal mass transfer in solid-oxide fuel-cells. Chemical Engineering Science, 65(5), 1668–1677.CrossRef
Zurück zum Zitat Geisler, H., Kromp, A., Weber, A., & Ivers-Tiffée, E. (2014). Stationary FEM model for performance evaluation of planar solid oxide fuel cells connected by metal interconnectors I. Model framework and validation. Journal of the Electrochemical Society, 161(6), F778–F788.CrossRef Geisler, H., Kromp, A., Weber, A., & Ivers-Tiffée, E. (2014). Stationary FEM model for performance evaluation of planar solid oxide fuel cells connected by metal interconnectors I. Model framework and validation. Journal of the Electrochemical Society, 161(6), F778–F788.CrossRef
Zurück zum Zitat Goldin, G. M., Zhu, H., Kee, R. J., Bierschenk, D., & Barnett, S. A. (2009). Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells. Journal of Power Sources, 187(1), 123–135.CrossRef Goldin, G. M., Zhu, H., Kee, R. J., Bierschenk, D., & Barnett, S. A. (2009). Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells. Journal of Power Sources, 187(1), 123–135.CrossRef
Zurück zum Zitat Goodwin, D. G., Zhu, H., Colclasure, A. M., & Kee, R. J. (2009). Modeling electrochemical oxidation of hydrogen on Ni–YSZ pattern anodes. Journal of the Electrochemical Society, 156(9), B1004–B1021.CrossRef Goodwin, D. G., Zhu, H., Colclasure, A. M., & Kee, R. J. (2009). Modeling electrochemical oxidation of hydrogen on Ni–YSZ pattern anodes. Journal of the Electrochemical Society, 156(9), B1004–B1021.CrossRef
Zurück zum Zitat Greene, E. S., Chiu, W. K., & Medeiros, M. G. (2006). Mass transfer in graded microstructure solid oxide fuel cell electrodes. Journal of Power Sources, 161(1), 225–231.CrossRef Greene, E. S., Chiu, W. K., & Medeiros, M. G. (2006). Mass transfer in graded microstructure solid oxide fuel cell electrodes. Journal of Power Sources, 161(1), 225–231.CrossRef
Zurück zum Zitat Grew, K. N., & Chiu, W. K. (2012). A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. Journal of Power Sources, 199, 1–13.CrossRef Grew, K. N., & Chiu, W. K. (2012). A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. Journal of Power Sources, 199, 1–13.CrossRef
Zurück zum Zitat Gupta, G. K., Hecht, E. S., Zhu, H., Dean, A. M., & Kee, R. J. (2006). Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell. Journal of Power Sources, 156(2), 434–447.CrossRef Gupta, G. K., Hecht, E. S., Zhu, H., Dean, A. M., & Kee, R. J. (2006). Gas-phase reactions of methane and natural-gas with air and steam in non-catalytic regions of a solid-oxide fuel cell. Journal of Power Sources, 156(2), 434–447.CrossRef
Zurück zum Zitat Haberman, B. A., & Young, J. B. (2004). Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer, 47(17), 3617–3629.MATHCrossRef Haberman, B. A., & Young, J. B. (2004). Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. International Journal of Heat and Mass Transfer, 47(17), 3617–3629.MATHCrossRef
Zurück zum Zitat Hajimolana, S. A., Hussain, M. A., Daud, W. A. W., Soroush, M., & Shamiri, A. (2011). Mathematical modeling of solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 15(4), 1893–1917.CrossRef Hajimolana, S. A., Hussain, M. A., Daud, W. A. W., Soroush, M., & Shamiri, A. (2011). Mathematical modeling of solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 15(4), 1893–1917.CrossRef
Zurück zum Zitat Hanna, J., Lee, W. Y., Shi, Y., & Ghoniem, A. F. (2014). Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Progress in Energy and Combustion Science, 40, 74–111.CrossRef Hanna, J., Lee, W. Y., Shi, Y., & Ghoniem, A. F. (2014). Fundamentals of electro-and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Progress in Energy and Combustion Science, 40, 74–111.CrossRef
Zurück zum Zitat Hao, Y., & Goodwin, D. G. (2008). Numerical study of heterogeneous reactions in an SOFC anode with oxygen addition. Journal of the Electrochemical Society, 155(7), B666–B674.CrossRef Hao, Y., & Goodwin, D. G. (2008). Numerical study of heterogeneous reactions in an SOFC anode with oxygen addition. Journal of the Electrochemical Society, 155(7), B666–B674.CrossRef
Zurück zum Zitat He, W., Lu, W., & Dickerson, J. H. (2014a). Chapter 2: Gas diffusion in porous media gas transport in solid oxide fuel cells (1st ed., pp. 9–17). New York: Springer. He, W., Lu, W., & Dickerson, J. H. (2014a). Chapter 2: Gas diffusion in porous media gas transport in solid oxide fuel cells (1st ed., pp. 9–17). New York: Springer.
Zurück zum Zitat He, W., Lu, W., & Dickerson, J. H. (2014b). Gas transport in solid oxide fuel cells. New York: Springer. He, W., Lu, W., & Dickerson, J. H. (2014b). Gas transport in solid oxide fuel cells. New York: Springer.
Zurück zum Zitat Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J., Maier, L., et al. (2005). Methane reforming kinetics within a Ni–YSZ SOFC anode support. Applied Catalysis, A: General, 295(1), 40–51.CrossRef Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J., Maier, L., et al. (2005). Methane reforming kinetics within a Ni–YSZ SOFC anode support. Applied Catalysis, A: General, 295(1), 40–51.CrossRef
Zurück zum Zitat Hernández-Pacheco, E., Singh, D., Hutton, P. N., Patel, N., & Mann, M. D. (2004). A macro-level model for determining the performance characteristics of solid oxide fuel cells. Journal of Power Sources, 138(1), 174–186.CrossRef Hernández-Pacheco, E., Singh, D., Hutton, P. N., Patel, N., & Mann, M. D. (2004). A macro-level model for determining the performance characteristics of solid oxide fuel cells. Journal of Power Sources, 138(1), 174–186.CrossRef
Zurück zum Zitat Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., & Mayer, M. G. (1954). Molecular theory of gases and liquids (Vol. 26, p. 10). New York: Wiley.MATH Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., & Mayer, M. G. (1954). Molecular theory of gases and liquids (Vol. 26, p. 10). New York: Wiley.MATH
Zurück zum Zitat Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2008). Numerical modeling of solid oxide fuel cells. Chemical Engineering Science, 63(21), 5356–5365.CrossRef Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2008). Numerical modeling of solid oxide fuel cells. Chemical Engineering Science, 63(21), 5356–5365.CrossRef
Zurück zum Zitat Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2009). Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chemical Engineering Science, 64(12), 3000–3009.CrossRef Ho, T. X., Kosinski, P., Hoffmann, A. C., & Vik, A. (2009). Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chemical Engineering Science, 64(12), 3000–3009.CrossRef
Zurück zum Zitat Hofmann, P., Panopoulos, K. D., Fryda, L. E., & Kakaras, E. (2009). Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model. Energy, 34(12), 2151–2157.CrossRef Hofmann, P., Panopoulos, K. D., Fryda, L. E., & Kakaras, E. (2009). Comparison between two methane reforming models applied to a quasi-two-dimensional planar solid oxide fuel cell model. Energy, 34(12), 2151–2157.CrossRef
Zurück zum Zitat Hosoi, T., Yonekura, T., Sunada, K., & Sasaki, K. (2015). Exchange current density of SOFC electrodes: Theoretical relations and partial pressure dependencies rate-determined by electrochemical reactions. Journal of the Electrochemical Society, 162(1), F136–F152.CrossRef Hosoi, T., Yonekura, T., Sunada, K., & Sasaki, K. (2015). Exchange current density of SOFC electrodes: Theoretical relations and partial pressure dependencies rate-determined by electrochemical reactions. Journal of the Electrochemical Society, 162(1), F136–F152.CrossRef
Zurück zum Zitat Hou, K., & Hughes, R. (2001). The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal, 82(1), 311–328.CrossRef Hou, K., & Hughes, R. (2001). The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal, 82(1), 311–328.CrossRef
Zurück zum Zitat Hsu, C. T., & Cheng, P. (1990). Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33(8), 1587–1597.MATHCrossRef Hsu, C. T., & Cheng, P. (1990). Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33(8), 1587–1597.MATHCrossRef
Zurück zum Zitat Hussain, M. M., Li, X., & Dincer, I. (2005). Multi-component mathematical model of solid oxide fuel cell anode. International Journal of Energy Research, 29(12), 1083–1101.CrossRef Hussain, M. M., Li, X., & Dincer, I. (2005). Multi-component mathematical model of solid oxide fuel cell anode. International Journal of Energy Research, 29(12), 1083–1101.CrossRef
Zurück zum Zitat Iwai, H., Shikazono, N., Matsui, T., Teshima, H., Kishimoto, M., Kishida, R., et al. (2010). Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. Journal of Power Sources, 195(4), 955–961.CrossRef Iwai, H., Shikazono, N., Matsui, T., Teshima, H., Kishimoto, M., Kishida, R., et al. (2010). Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique. Journal of Power Sources, 195(4), 955–961.CrossRef
Zurück zum Zitat Janardhanan, V. M., & Deutschmann, O. (2006). CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 162(2), 1192–1202.CrossRef Janardhanan, V. M., & Deutschmann, O. (2006). CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 162(2), 1192–1202.CrossRef
Zurück zum Zitat Janardhanan, V. M., & Deutschmann, O. (2007). Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science, 62(18), 5473–5486.CrossRef Janardhanan, V. M., & Deutschmann, O. (2007). Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane. Chemical Engineering Science, 62(18), 5473–5486.CrossRef
Zurück zum Zitat Janardhanan, V. M., Heuveline, V., & Deutschmann, O. (2008). Three-phase boundary length in solid-oxide fuel cells: A mathematical model. Journal of Power Sources, 178(1), 368–372.CrossRef Janardhanan, V. M., Heuveline, V., & Deutschmann, O. (2008). Three-phase boundary length in solid-oxide fuel cells: A mathematical model. Journal of Power Sources, 178(1), 368–372.CrossRef
Zurück zum Zitat Jiang, Y., & Virkar, A. V. (2003). Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society, 150(7), A942–A951.CrossRef Jiang, Y., & Virkar, A. V. (2003). Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society, 150(7), A942–A951.CrossRef
Zurück zum Zitat Joos, J., Carraro, T., Weber, A., & Ivers-Tiffée, E. (2011). Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. Journal of Power Sources, 196(17), 7302–7307.CrossRef Joos, J., Carraro, T., Weber, A., & Ivers-Tiffée, E. (2011). Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. Journal of Power Sources, 196(17), 7302–7307.CrossRef
Zurück zum Zitat Jung, H. Y., Kim, W. S., Choi, S. H., Kim, H. C., Kim, J., Lee, H. W., et al. (2006). Effect of cathode current-collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 155(2), 145–151.CrossRef Jung, H. Y., Kim, W. S., Choi, S. H., Kim, H. C., Kim, J., Lee, H. W., et al. (2006). Effect of cathode current-collecting layer on unit-cell performance of anode-supported solid oxide fuel cells. Journal of Power Sources, 155(2), 145–151.CrossRef
Zurück zum Zitat Kast, W., & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. International Journal of Heat and Mass Transfer, 43(5), 807–823.MATHCrossRef Kast, W., & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. International Journal of Heat and Mass Transfer, 43(5), 807–823.MATHCrossRef
Zurück zum Zitat Kerkhof, P. J. (1996). A modified Maxwell–Stefan model for transport through inert membranes: The binary friction model. The Chemical Engineering Journal and the Biochemical Engineering Journal, 64(3), 319–343.CrossRef Kerkhof, P. J. (1996). A modified Maxwell–Stefan model for transport through inert membranes: The binary friction model. The Chemical Engineering Journal and the Biochemical Engineering Journal, 64(3), 319–343.CrossRef
Zurück zum Zitat Kim, J. H., Liu, W. K., & Lee, C. (2009). Multi-scale solid oxide fuel cell materials modeling. Computational Mechanics, 44(5), 683–703.MathSciNetMATHCrossRef Kim, J. H., Liu, W. K., & Lee, C. (2009). Multi-scale solid oxide fuel cell materials modeling. Computational Mechanics, 44(5), 683–703.MathSciNetMATHCrossRef
Zurück zum Zitat Kishimoto, M., Iwai, H., Saito, M., & Yoshida, H. (2011). Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials. Journal of Power Sources, 196(10), 4555–4563.CrossRef Kishimoto, M., Iwai, H., Saito, M., & Yoshida, H. (2011). Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion beam and scanning electron microscope technique and prediction of anode overpotentials. Journal of Power Sources, 196(10), 4555–4563.CrossRef
Zurück zum Zitat Klein, J. M., Bultel, Y., Georges, S., & Pons, M. (2007). Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 62(6), 1636–1649.CrossRef Klein, J. M., Bultel, Y., Georges, S., & Pons, M. (2007). Modeling of a SOFC fuelled by methane: From direct internal reforming to gradual internal reforming. Chemical Engineering Science, 62(6), 1636–1649.CrossRef
Zurück zum Zitat Kong, W., Zhu, H., Fei, Z., & Lin, Z. (2012). A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode. Journal of Power Sources, 206, 171–178.CrossRef Kong, W., Zhu, H., Fei, Z., & Lin, Z. (2012). A modified dusty gas model in the form of a Fick’s model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode. Journal of Power Sources, 206, 171–178.CrossRef
Zurück zum Zitat Krishna, R., & Wesselingh, J. A. (1997). The Maxwell–Stefan approach to mass transfer. Chemical Engineering Science, 52(6), 861–911.CrossRef Krishna, R., & Wesselingh, J. A. (1997). The Maxwell–Stefan approach to mass transfer. Chemical Engineering Science, 52(6), 861–911.CrossRef
Zurück zum Zitat Lage, J. L. (1993). Natural convection within a porous medium cavity: Predicting tools for flow regime and heat transfer. International Communications in Heat and Mass Transfer, 20(4), 501–513.CrossRef Lage, J. L. (1993). Natural convection within a porous medium cavity: Predicting tools for flow regime and heat transfer. International Communications in Heat and Mass Transfer, 20(4), 501–513.CrossRef
Zurück zum Zitat Lanzini, A., Leone, P., & Asinari, P. (2009). Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique. Journal of Power Sources, 194(1), 408–422.CrossRef Lanzini, A., Leone, P., & Asinari, P. (2009). Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique. Journal of Power Sources, 194(1), 408–422.CrossRef
Zurück zum Zitat Laurencin, J., Kane, D., Delette, G., Deseure, J., & Lefebvre-Joud, F. (2011). Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production. Journal of Power Sources, 196(4), 2080–2093.CrossRef Laurencin, J., Kane, D., Delette, G., Deseure, J., & Lefebvre-Joud, F. (2011). Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production. Journal of Power Sources, 196(4), 2080–2093.CrossRef
Zurück zum Zitat Lee, A. L., Zabransky, R. F., & Huber, W. J. (1990). Internal reforming development for solid oxide fuel cells. Industrial and Engineering Chemistry Research, 29(5), 766–773.CrossRef Lee, A. L., Zabransky, R. F., & Huber, W. J. (1990). Internal reforming development for solid oxide fuel cells. Industrial and Engineering Chemistry Research, 29(5), 766–773.CrossRef
Zurück zum Zitat Lee, K. T., Vito, N. J., & Wachsman, E. D. (2013). Comprehensive quantification of Ni–Gd0.1Ce0.9O1.95 anode functional layer microstructures by three-dimensional reconstruction using a FIB/SEM dual beam system. Journal of Power Sources, 228, 220–228.CrossRef Lee, K. T., Vito, N. J., & Wachsman, E. D. (2013). Comprehensive quantification of Ni–Gd0.1Ce0.9O1.95 anode functional layer microstructures by three-dimensional reconstruction using a FIB/SEM dual beam system. Journal of Power Sources, 228, 220–228.CrossRef
Zurück zum Zitat Lehnert, W., Meusinger, J., & Thom, F. (2000). Modelling of gas transport phenomena in SOFC anodes. Journal of Power Sources, 87(1), 57–63.CrossRef Lehnert, W., Meusinger, J., & Thom, F. (2000). Modelling of gas transport phenomena in SOFC anodes. Journal of Power Sources, 87(1), 57–63.CrossRef
Zurück zum Zitat Leonide, A. (2010). SOFC modelling and parameter identification by means of impedance spectroscopy (Ph.D. dissertation). Karlsruher Institut für Technologie. Leonide, A. (2010). SOFC modelling and parameter identification by means of impedance spectroscopy (Ph.D. dissertation). Karlsruher Institut für Technologie.
Zurück zum Zitat Li, Y., Gemmen, R., & Liu, X. (2010). Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. Journal of Power Sources, 195(11), 3345–3358.CrossRef Li, Y., Gemmen, R., & Liu, X. (2010). Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes. Journal of Power Sources, 195(11), 3345–3358.CrossRef
Zurück zum Zitat Mason, E. A., & Malinauskas, A. P. (1983). Gas transport in porous media: The dusty-gas model (pp. 1–202). New York: Elsevier. Mason, E. A., & Malinauskas, A. P. (1983). Gas transport in porous media: The dusty-gas model (pp. 1–202). New York: Elsevier.
Zurück zum Zitat Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082.CrossRef Matsuzaki, K., Shikazono, N., & Kasagi, N. (2011). Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope. Journal of Power Sources, 196(6), 3073–3082.CrossRef
Zurück zum Zitat Menon, V., Janardhanan, V. M., Tischer, S., & Deutschmann, O. (2013). Internal multi-physics phenomena of SOFC with direct internal reforming. ECS Transactions, 57(1), 2475–2484.CrossRef Menon, V., Janardhanan, V. M., Tischer, S., & Deutschmann, O. (2013). Internal multi-physics phenomena of SOFC with direct internal reforming. ECS Transactions, 57(1), 2475–2484.CrossRef
Zurück zum Zitat Modest, M. F. (2013). Radiative heat transfer (3rd ed.). New York: Academic Press. Modest, M. F. (2013). Radiative heat transfer (3rd ed.). New York: Academic Press.
Zurück zum Zitat Moon, H., Kim, S. D., Park, E. W., Hyun, S. H., & Kim, H. S. (2008). Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. International Journal of Hydrogen Energy, 33(11), 2826–2833.CrossRef Moon, H., Kim, S. D., Park, E. W., Hyun, S. H., & Kim, H. S. (2008). Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. International Journal of Hydrogen Energy, 33(11), 2826–2833.CrossRef
Zurück zum Zitat Murthy, S., & Fedorov, A. G. (2003). Radiation heat transfer analysis of the monolith type solid oxide fuel cell. Journal of Power Sources, 124(2), 453–458.CrossRef Murthy, S., & Fedorov, A. G. (2003). Radiation heat transfer analysis of the monolith type solid oxide fuel cell. Journal of Power Sources, 124(2), 453–458.CrossRef
Zurück zum Zitat Nagel, F. P., Schildhauer, T. J., Biollaz, S. M., & Stucki, S. (2008). Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases—a sensitivity analysis. Journal of Power Sources, 184(1), 129–142.CrossRef Nagel, F. P., Schildhauer, T. J., Biollaz, S. M., & Stucki, S. (2008). Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases—a sensitivity analysis. Journal of Power Sources, 184(1), 129–142.CrossRef
Zurück zum Zitat Nam, J. H., & Jeon, D. H. (2006). A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51(17), 3446–3460.CrossRef Nam, J. H., & Jeon, D. H. (2006). A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells. Electrochimica Acta, 51(17), 3446–3460.CrossRef
Zurück zum Zitat Ni, M. (2009). Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production. International Journal of Hydrogen Energy, 34(18), 7795–7806.CrossRef Ni, M. (2009). Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production. International Journal of Hydrogen Energy, 34(18), 7795–7806.CrossRef
Zurück zum Zitat Ni, M. (2013). Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Conversion and Management, 70, 116–129.CrossRef Ni, M. (2013). Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Conversion and Management, 70, 116–129.CrossRef
Zurück zum Zitat Ni, M., Leung, M. K., & Leung, D. Y. (2007). Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 48(5), 1525–1535.CrossRef Ni, M., Leung, M. K., & Leung, D. Y. (2007). Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 48(5), 1525–1535.CrossRef
Zurück zum Zitat Nield, D. A., & Bejan, A. (2006). Chapter 1: Mechanics of fluid flow through a porous medium—convection in porous media (3rd ed., pp. 1–26). New York: Springer. Nield, D. A., & Bejan, A. (2006). Chapter 1: Mechanics of fluid flow through a porous medium—convection in porous media (3rd ed., pp. 1–26). New York: Springer.
Zurück zum Zitat Noren, D. A., & Hoffman, M. A. (2005). Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. Journal of Power Sources, 152, 175–181.CrossRef Noren, D. A., & Hoffman, M. A. (2005). Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. Journal of Power Sources, 152, 175–181.CrossRef
Zurück zum Zitat Novaresio, V., García-Camprubí, M., Izquierdo, S., Asinari, P., & Fueyo, N. (2012). An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells. Computer Physics Communications, 183(1), 125–146.MATHCrossRef Novaresio, V., García-Camprubí, M., Izquierdo, S., Asinari, P., & Fueyo, N. (2012). An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells. Computer Physics Communications, 183(1), 125–146.MATHCrossRef
Zurück zum Zitat Park, E. W., Moon, H., Park, M. S., & Hyun, S. H. (2009). Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. International Journal of Hydrogen Energy, 34(13), 5537–5545.CrossRef Park, E. W., Moon, H., Park, M. S., & Hyun, S. H. (2009). Fabrication and characterization of Cu–Ni–YSZ SOFC anodes for direct use of methane via Cu-electroplating. International Journal of Hydrogen Energy, 34(13), 5537–5545.CrossRef
Zurück zum Zitat Poling, B. E., Prausnitz, J. M., & O’connell, J. P. (2001). The properties of gases and liquids (Vol. 5, pp. 11.5–11.9). New York: McGraw-Hill. Poling, B. E., Prausnitz, J. M., & O’connell, J. P. (2001). The properties of gases and liquids (Vol. 5, pp. 11.5–11.9). New York: McGraw-Hill.
Zurück zum Zitat Pollard, W. G., & Present, R. D. (1948). On gaseous self-diffusion in long capillary tubes. Physical Review, 73(7), 762.CrossRef Pollard, W. G., & Present, R. D. (1948). On gaseous self-diffusion in long capillary tubes. Physical Review, 73(7), 762.CrossRef
Zurück zum Zitat Qu, Z., Aravind, P. V., Boksteen, S. Z., Dekker, N. J. J., Janssen, A. H. H., Woudstra, N., et al. (2011). Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC. International Journal of Hydrogen Energy, 36(16), 10209–10220.CrossRef Qu, Z., Aravind, P. V., Boksteen, S. Z., Dekker, N. J. J., Janssen, A. H. H., Woudstra, N., et al. (2011). Three-dimensional computational fluid dynamics modeling of anode-supported planar SOFC. International Journal of Hydrogen Energy, 36(16), 10209–10220.CrossRef
Zurück zum Zitat Ramshaw, J. D. (1990). Self-consistent effective binary diffusion in multicomponent gas mixtures. Journal of Non-Equilibrium Thermodynamics, 15(3), 295–300.MATHCrossRef Ramshaw, J. D. (1990). Self-consistent effective binary diffusion in multicomponent gas mixtures. Journal of Non-Equilibrium Thermodynamics, 15(3), 295–300.MATHCrossRef
Zurück zum Zitat Sanchez, D., Chacartegui, R., Munoz, A., & Sanchez, T. (2008). On the effect of methane internal reforming modelling in solid oxide fuel cells. International Journal of Hydrogen Energy, 33(7), 1834–1844.CrossRef Sanchez, D., Chacartegui, R., Munoz, A., & Sanchez, T. (2008). On the effect of methane internal reforming modelling in solid oxide fuel cells. International Journal of Hydrogen Energy, 33(7), 1834–1844.CrossRef
Zurück zum Zitat Sánchez, D., Munoz, A., & Sánchez, T. (2007). An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells. Journal of Power Sources, 169(1), 25–34.CrossRef Sánchez, D., Munoz, A., & Sánchez, T. (2007). An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells. Journal of Power Sources, 169(1), 25–34.CrossRef
Zurück zum Zitat Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A., & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments. Journal of Power Sources, 242, 405–414.CrossRef Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A., & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments. Journal of Power Sources, 242, 405–414.CrossRef
Zurück zum Zitat Shi, Y., Cai, N., & Li, C. (2007). Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion. Journal of Power Sources, 164(2), 639–648.CrossRef Shi, Y., Cai, N., & Li, C. (2007). Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion. Journal of Power Sources, 164(2), 639–648.CrossRef
Zurück zum Zitat Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526–5537.CrossRef Shi, Y., Li, C., & Cai, N. (2011). Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell. Journal of Power Sources, 196(13), 5526–5537.CrossRef
Zurück zum Zitat Suwanwarangkul, R., Croiset, E., Fowler, M. W., Douglas, P. L., Entchev, E., & Douglas, M. A. (2003). Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources, 122(1), 9–18.CrossRef Suwanwarangkul, R., Croiset, E., Fowler, M. W., Douglas, P. L., Entchev, E., & Douglas, M. A. (2003). Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode. Journal of Power Sources, 122(1), 9–18.CrossRef
Zurück zum Zitat Tseronis, K., Kookos, I. K., & Theodoropoulos, C. (2008). Modelling mass transport in solid oxide fuel cell anodes: A case for a multidimensional dusty gas-based model. Chemical Engineering Science, 63(23), 5626–5638.CrossRef Tseronis, K., Kookos, I. K., & Theodoropoulos, C. (2008). Modelling mass transport in solid oxide fuel cell anodes: A case for a multidimensional dusty gas-based model. Chemical Engineering Science, 63(23), 5626–5638.CrossRef
Zurück zum Zitat Veldsink, J. W., Van Damme, R. M. J., Versteeg, G. F., & Van Swaaij, W. P. M. (1995). The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. The Chemical Engineering Journal and the Biochemical Engineering Journal, 57(2), 115–125.CrossRef Veldsink, J. W., Van Damme, R. M. J., Versteeg, G. F., & Van Swaaij, W. P. M. (1995). The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media. The Chemical Engineering Journal and the Biochemical Engineering Journal, 57(2), 115–125.CrossRef
Zurück zum Zitat Walters, K. M., Dean, A. M., Zhu, H., & Kee, R. J. (2003). Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas. Journal of Power Sources, 123(2), 182–189.CrossRef Walters, K. M., Dean, A. M., Zhu, H., & Kee, R. J. (2003). Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas. Journal of Power Sources, 123(2), 182–189.CrossRef
Zurück zum Zitat Wang, K., Hissel, D., Péra, M. C., Steiner, N., Marra, D., Sorrentino, M., et al. (2011a). A review on solid oxide fuel cell models. International Journal of Hydrogen Energy, 36(12), 7212–7228.CrossRef Wang, K., Hissel, D., Péra, M. C., Steiner, N., Marra, D., Sorrentino, M., et al. (2011a). A review on solid oxide fuel cell models. International Journal of Hydrogen Energy, 36(12), 7212–7228.CrossRef
Zurück zum Zitat Wang, S., Worek, W. M., & Minkowycz, W. J. (2012). Performance comparison of the mass transfer models with internal reforming for solid oxide fuel cell anodes. International Journal of Heat and Mass Transfer, 55(15), 3933–3945.CrossRef Wang, S., Worek, W. M., & Minkowycz, W. J. (2012). Performance comparison of the mass transfer models with internal reforming for solid oxide fuel cell anodes. International Journal of Heat and Mass Transfer, 55(15), 3933–3945.CrossRef
Zurück zum Zitat Wang, Y., Weng, S., & Weng, Y. (2011b). Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming. Frontiers in Energy, 5(2), 195–206.CrossRef Wang, Y., Weng, S., & Weng, Y. (2011b). Numerical investigation of the chemical and electrochemical characteristics of planar solid oxide fuel cell with direct internal reforming. Frontiers in Energy, 5(2), 195–206.CrossRef
Zurück zum Zitat Webb, S. W., & Pruess, K. (2003). The use of Fick’s law for modeling trace gas diffusion in porous media. Transport in Porous Media, 51(3), 327–341.CrossRef Webb, S. W., & Pruess, K. (2003). The use of Fick’s law for modeling trace gas diffusion in porous media. Transport in Porous Media, 51(3), 327–341.CrossRef
Zurück zum Zitat Welty, J. R., Wicks, C. E., Rorrer, G., & Wilson, R. E. (2001). Fundamentals of momentum, heat, and mass transfer (4th ed.). New York: John Wiley & Sons. Welty, J. R., Wicks, C. E., Rorrer, G., & Wilson, R. E. (2001). Fundamentals of momentum, heat, and mass transfer (4th ed.). New York: John Wiley & Sons.
Zurück zum Zitat Wilke, C. R. (1950a). A viscosity equation for gas mixtures. The Journal of Chemical Physics, 18(4), 517–519.CrossRef Wilke, C. R. (1950a). A viscosity equation for gas mixtures. The Journal of Chemical Physics, 18(4), 517–519.CrossRef
Zurück zum Zitat Wilke, C. R. (1950b). Diffusional properties of multicomponent gases. Chemical Engineering Progress, 46, 95–104. Wilke, C. R. (1950b). Diffusional properties of multicomponent gases. Chemical Engineering Progress, 46, 95–104.
Zurück zum Zitat Wilson, J. R., Cronin, J. S., & Barnett, S. A. (2011). Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam–scanning electron microscopy imaging. Scripta Materialia, 65(2), 67–72.CrossRef Wilson, J. R., Cronin, J. S., & Barnett, S. A. (2011). Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam–scanning electron microscopy imaging. Scripta Materialia, 65(2), 67–72.CrossRef
Zurück zum Zitat Wu, W., Wang, G. L., Guan, W. B., Zhen, Y. F., & Wang, W. G. (2013). Effect of contact method between interconnects and electrodes on area specific resistance in planar solid oxide fuel cells. Fuel Cells, 13(5), 743–750. Wu, W., Wang, G. L., Guan, W. B., Zhen, Y. F., & Wang, W. G. (2013). Effect of contact method between interconnects and electrodes on area specific resistance in planar solid oxide fuel cells. Fuel Cells, 13(5), 743–750.
Zurück zum Zitat Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water–gas shift: I. Intrinsic kinetics. AIChE Journal, 35(1), 88–96.CrossRef Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water–gas shift: I. Intrinsic kinetics. AIChE Journal, 35(1), 88–96.CrossRef
Zurück zum Zitat Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., & Yasuda, I. (2000). Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 86(1), 423–431.CrossRef Yakabe, H., Hishinuma, M., Uratani, M., Matsuzaki, Y., & Yasuda, I. (2000). Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Journal of Power Sources, 86(1), 423–431.CrossRef
Zurück zum Zitat Yakabe, H., Ogiwara, T., Hishinuma, M., & Yasuda, I. (2001). 3-D model calculation for planar SOFC. Journal of Power Sources, 102(1), 144–154.CrossRef Yakabe, H., Ogiwara, T., Hishinuma, M., & Yasuda, I. (2001). 3-D model calculation for planar SOFC. Journal of Power Sources, 102(1), 144–154.CrossRef
Zurück zum Zitat Zheng, K., Sun, Q., & Ni, M. (2013). Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels. Energy Technology, 1(1), 35–41.CrossRef Zheng, K., Sun, Q., & Ni, M. (2013). Local non-equilibrium thermal effects in solid oxide fuel cells with various fuels. Energy Technology, 1(1), 35–41.CrossRef
Zurück zum Zitat Zhu, H., & Kee, R. J. (2003). A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 117(1), 61–74.CrossRef Zhu, H., & Kee, R. J. (2003). A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies. Journal of Power Sources, 117(1), 61–74.CrossRef
Zurück zum Zitat Zhu, H., & Kee, R. J. (2008). Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies. Journal of the Electrochemical Society, 155(7), B715–B729.CrossRef Zhu, H., & Kee, R. J. (2008). Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies. Journal of the Electrochemical Society, 155(7), B715–B729.CrossRef
Zurück zum Zitat Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., & Goodwin, D. G. (2005). Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society, 152(12), A2427–A2440.CrossRef Zhu, H., Kee, R. J., Janardhanan, V. M., Deutschmann, O., & Goodwin, D. G. (2005). Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. Journal of the Electrochemical Society, 152(12), A2427–A2440.CrossRef
Metadaten
Titel
Solid Oxide Fuel Cells Modeling
verfasst von
Domenico Ferrero
Andrea Lanzini
Massimo Santarelli
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-46146-5_8