1.
Lonsane BK, Ghildyal NP, Budiatman S, Ramakrishna SV (1985) Engineering aspects of solid-state fermentation. Enzyme Microb Technol 7:258–265. doi:10.1016/0141-0229(85)90083-3
CrossRef
2.
Pandey A, Scoccol CR, Larrroche C (2007) Introduction. In: Pandey A, Scoccol CR, Larrroche C (eds) Current developments in solid-state fermentation. Asitech Publishers/Springer, New Delhi/Heidelberg/Berlin
3.
Takamine J (1894a) Preparing and making taka-koji. US Patent 525,820
4.
Takamine J (1894b) Process of making diastatic enzyme. US Patent 525,823
5.
Takamine J (1914) Enzymes of
Aspergillus Oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind Eng Chem 6:824–828. doi:10.1021/ie50070a015
CrossRef
6.
Underkofler LA (1938) Production of diastatic material. US Patenet 2,291,009
7.
Underkofler LA, Severson GM, Groening KJ, Christiansen LM (1947) Commercial production and use of mold bran. Cereal Chem 24:122
8.
Hesseltine CW (1972) Biotechnology report: solid state fermentation. Biotechnol Bioeng 14:517–532. doi:10.1002/bit.260140402
CrossRef
9.
Hesseltine CW (1977) Solid state fermentation part 1. Process Biochem 12:24–27
10.
Hesseltine CW (1977) Solid state fermentation part 2. Process Biochem 12:29–32
11.
Singhania RR, Patel AK, Zoclo CR, Pandey A (2008) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. doi:10.1016/j.bej.2008.10.019
CrossRef
12.
Chen H (2013) Modern solid state fermentation. Theory and practice. Springer, The Netherlands. doi:10.1007/978-94-007-6043-1
CrossRef
13.
Singh SK, Szakacs G, Soccol CR, Pandey A (2007) Chapter 14: Production of enzymes by sold-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Asiatech Publishers/Springer, New Delhi/Heidelberg/Berlin
14.
Bello-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid-state fermentation: a review. Process Biochem 38:881–896. doi:10.1016/s0032-9592(02)00093-6
CrossRef
15.
Suryanarayan S (2003) Current industrial practice in solid-state fermentations for secondary metabolite production: the Biocon India experience. Biochem Eng J 13:189–195. doi:10.1016/s1369-703x(02)00131-6
CrossRef
16.
Kalogeris E, Iniotaki F, Topakas E, Christolopoulos P, Kelos D, Macris BJ (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour Technol 86:207–213. doi:10.1016/s0960-8524(02)00175-x
CrossRef
17.
Barrios-González J, Mejía A (2007) Production of antibiotics and other commercially valuable secondary metabolites. In: Pandey A, Larroche C, Soccol CR, Rodríguez-León JA (eds) Current developments in solid-state fermentation. Springer Science/Asiatech Publishers, New York/New Delhi
18.
Barrios-González J, Mejía A (2009) Microbial strains for the production of antibiotics and other commercially valuable secondary metabolites by solid-state fermentation. In: Pandey A, Larroche C, Soccol CR, Dussap CG (eds) New horizons in biotechnology. Asiatech Publishers, New Delhi
19.
Acuña-Arguelles ME, Gutierrez-Rojas M, Viniegra-Gonzalez G, Favela-Torres E (1995) Production and properties of three pectinolytic activities produced by
Aspergillus niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 43:808–814. doi:10.1007/bf02431912
CrossRef
20.
Diaz-Godinez G, Soriano-Santos J, Augur C, Viniegra-Gonzalez G (2001) Exopectinases produced by
Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26:271–275. doi:10.1038/sj.jim.7000113
CrossRef
21.
Ooijkaas LP, Weber FJ, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol 18:356–360. doi:10.1016/s0167-7799(00)01466-9
CrossRef
22.
Rahardjo YSP, Korona D, Haemers S, Weber FJ, Tramper J, Rinzema A (2004) Limitations of membrane cultures as a model solid-state fermentation system. Lett Appl Microbiol 39:504–508. doi:10.1111/j.1472-765X.2004.01614.x
CrossRef
23.
Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. doi:10.1016/j.procbio.2011.11.016
CrossRef
24.
Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 1:283–319. doi:10.1111/j.1751-7915.2007.00015.x
CrossRef
25.
Sauer M, Porro D, Mattanovich D, Branduardi P (2007) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108. doi:10.1016/j.tibtech.2007.11.006
CrossRef
26.
Deker M (2003) SSF: an overview. In: Arora DK (ed) Handbook of fungal biotechnology, 2nd edn. Marcel Dekker, New York
27.
Soccol CR, Vandenbergh LPS, Rodríguez C, Bianchi A, Larroche C, Pandey A (2007) Chapter 10: Production of organic acids by solid-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Asiatech Publishers/Springer, Heidelberg/Berlin/New Delhi
29.
Tsai YCh, Huang MC, Lin SF, Su YC (2001) Method for the production of itaconic acid using
Aspergillus terreus solid state fermentation. USA Patent US 6171831 B1
30.
Krishna C (2005) Solid-state fermentation systems – an overview. Crit Rev Biotechnol 25:1–30. doi:10.1080/07388550590925383
CrossRef
31.
Elinbaum S, Ferreyra H, Ellenrieder G, Cuevas C (2002) Production of
Aspergillus terreus alpha-l-rhamnosidase by solid state fermentation. Lett Appl Microbiol 34:67–71. doi:10.1046/j.1472-765x.2002.01039.x
CrossRef
32.
Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by
Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38. doi:10.1038/sj.jim.2900470
CrossRef
33.
Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C et al (1994) High level secretion of calf chymosin using a glucoamylase–prochymosin fusion gene in
Aspergillus oryzae. Biosci Biotechnol Biochem 58:895–899. doi:10.1271/bbb.58.895
CrossRef
34.
Singh SK, Szacaks G, Soccol CR, Pandey A (2008) Production of enzymes by solid-state fermentation. In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Springer, New York. doi:10.1007/978-0-387-75213-6
35.
Hölker U, Lenz J (2005) Solid-state fermentation are there any biotechnological advantages? Curr Opin Microbiol 8:301–306. doi:10.1016/j.mib.2005.04.006
CrossRef
36.
Barrios-González J, Fernández FJ, Tomasini A (2003) Production of microbial secondary metabolites and strain improvement. Indian J Biotecnol Special Issue: Microbial Biotechnology 2:322–333
37.
Barrios-González J, Tomasini A, Fernández FJ, Mejía A (2004) Production of antibiotics. In: Pandey A (ed) Encyclopedia on bioresource technology. The Haworth Press, New York
38.
Barrios-González J, Mejía A (1996) Production of secondary metabolites by solid-state fermentation. Biotecnol Ann Rev 2:85–121. doi:10.1016/s1387-2656(08)70007-3
CrossRef
39.
Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372
40.
Robinson T, Singh D, Nigam P (2001) Solid-state fermentation a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289. doi:10.1007/s002530000565
CrossRef
41.
Liu BL, Tzeng YM (1999) Water content and water activity for the production of cyclodepsipeptides in solid-state fermentation by
Metrhizium anisopliae. Biotechnol Lett 21:657–661. doi:10.1023/A:1005562632616
CrossRef
42.
Segreth MP, Bonnefoy A, Bronstrup M, Kanuf M, Schummer D, Toti L et al (2003) Conisetin a novel tetramic from
Coniochaeta ellipsoidea DSM 13856. J Antibiot 56:114–122. doi:10.7164/antibiotics.56.114
CrossRef
43.
Bigelis R, He H, Yang H, Chang LP, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815–826. doi:10.1007/s10295-006-0126-z
CrossRef
44.
Barrios-González J, Tomasini A, Viniegra-González G, López L (1988) Penicillin production by solid state fermentation. Biotechnol Lett 10:793–798. doi:10.1007/bf01027575
CrossRef
45.
Cuadra T, Fernández FJ, Tomasini A, Barrios-González J (2007) Influence of pH regulation and nutrient content on cephalosporin C production in solidstate fermentation by
Acremonium chrysogenum C10. Lett Appl Microbiol 46:216–220. doi:10.1111/j.1472.765x.2007.02285.x
CrossRef
46.
López-Calleja AC, Cuadra T, Barrios-González J, Fierro F, Fernández FJ (2012) Solid-state and submerged fermentation show different gene expression profiles in Cephalosporin C production by
Acremonium chysogenum. J Mol Microbiol Biotechnol 22:126–134. doi:10.1159/00038987
CrossRef
47.
Domínguez M, Mejía A, Barrios-González J (2000) Respiration studies of penicillin solid-state fermentation. J Biosci Bioeng 89:409–413. doi:10.1016/s1389-1723(00)89099-x
CrossRef
48.
Domínguez M, Mejía A, Revah S, Barrios-González J (2001) Optimization of bagasse, nutrients and initial moisture ratios on the yield of penicillin in solid-state fermentation. World J Microbiol Biotechnol 17:751–756. doi:10.1023/a:10129233814261
CrossRef
49.
Barrios-González J, Castillo TE, Mejía A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11:525–537. doi:10.1016/0734750(93)90021-e
CrossRef
50.
Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–179. doi:10.1016/j.biotecadv.2005.09.002
CrossRef
51.
Oostra J, le Comte EP, van den Heuvel JC, Tramper J, Rinzema A (2001) Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 75:13–24. doi:10.1002/bit.10222
CrossRef
52.
Ruijter GJ, Visser J, Rinzema A (2004) Polyol accumulation by
Aspergillus oryzae at low water activity in solid-state fermentation. Microbiology 150:1095–1101. doi:10.1099/mic.0.26723-0
CrossRef
53.
Barrios-González J, Baños JG, Covarrubias AA, Garay-Arroyo A (2008) Lovastatin biosynthetic genes of
Aspergillus terreus are differentially expressed in solidstate and in liquid submerged fermentation. Appl Microbiol Biotechnol 79:179–186. doi:10.1007/s00253-008-1409-2
CrossRef
54.
Miranda RU, Gómez-Quiroz LE, Mejía A, Barrios-González J (2012) Oxidative sate in idiophase links reactive oxygen species (ROS) and lovastatin biosynthesis: differences and similarities in submerged-and solid-sate fermentations. Fungal Biol 117:85–93. doi:10.1016/j.funbio.2012.12.001
CrossRef
55.
Baños JG, Tomasini A, Szakács G, Barrios-González J (2009) High lovastatin production by
Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110. doi:10.1007/s00253-008-1409-2
CrossRef
56.
Barrios-González J, Banos JG, Tomasini A, Mejfa A (2008). Procedimiento para la producción de lovastatina por fermentación sólida en soporte inerte artificial. Patent PA/a/2004/012778
57.
Ávila N, Barrios-González J (2015) Environmental Cues that induce physiology of solid medium: a study on lovastatin production by
Aspergillus terreus. Submitted for publication
58.
Aguirre J, Ríos-Momberg M, Hewitt M, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 3:111–118. doi:10.1016/j.tim.2005.01.007
CrossRef
59.
Aguirre J, Hansberg W, Navarro R (2006) Fungal responses to reactive oxygen species. Med Mycol 44:101–107. doi:10.1080/13693780600900080
CrossRef
60.
Miranda RU, Gómez-Quiroz LE, Mendoza M, Pérez-Sánchez A, Fierro F, Barrios-González J (2014) Reactive oxygen species regulate lovastatin biosynthesis in
Aspergillus terreus during submerged and solid-state fermentation. Fungal Biol 118:879–989. doi:10.1016/j.funbio.2014.09.002
CrossRef
61.
Pérez T, Mejía A, Barrios-González J (2015) Amplification of laeA gene in
Aspergillus terreus: a strategy to generate lovastatin-overproducing strains for solid-state fermentation. Int J Curr Microbiol App Sci 4:537–555
62.
Ward OP (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139. doi:10.1016/j.biotechadv.2011.09.012
CrossRef
63.
Narahara H, Koyama Y, Yoshida T, Pichanakura S, Ueda R, Taguchi H (1982) Growth and enzyme production in a solid-culture of
Aspergillus oryzae. J Ferment Technol 60:311–319
64.
Hata Y, Ishida H, Kojima Y, Ichikawa E, Kawato A, Suginami K et al (1997) Comparison of two glucoamylases produced by
Aspergillus oryzae in solid-state culture (koji) and submerged culture. J Ferment Bioeng 84:532–537. doi:10.1016/s0922-338x(97)81907
CrossRef
65.
Ishida H, Hata Y, Ichikawa E, Kawato A, Suginami K, Imaysu S (1998) Regulation of the glucoamylase encoding gene (glaB), expressed in solid state culture (koji) of
Aspergillus oryzae. J Ferment Bioeng 86:301–307. doi:10.1016/s0922-338x(98)80134-7
CrossRef
66.
Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glaB) expressed in solid state culture of
Aspergillus oryzae. Curr Genet 37:373–379. doi:10.1007/s002940000118
CrossRef
67.
Kitano H, Kataoka Furukawa K, Hara S (2002) Specific expression and temperature dependent expression of the acid protease-encoding gene (pepA) in
Aspergillus oryzae in solid-state culture (rice-koji). J Biosci Bioeng 93:563–567. doi:10.1016/s1389-1723(02)80238-9
CrossRef
68.
Te Biesebeke R, Levin A, Sagt C, Bartels J, Goosen T, Ram A et al (2005) Identification of growth phenotype-related genes in
Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization in solid-state and submerged cultivated
Aspergillus oryzae. Mol Genet Genomics 273:33–42. doi:10.1007/s00438-004-1082-9
CrossRef
69.
Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y et al (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus
Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65:74–83. doi:10.1016/s1389-1723(02)80238-9
CrossRef
70.
Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K et al (2007) Analysis of expressed sequence tags from the fungus
Aspergillus oryzae cultured under different conditions. DNA Res 14:47–57. doi:10.1093/dnares/dsm008
CrossRef
71.
Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from
Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457. doi:10.1128/aem.72.5.3448-2457.2006
CrossRef
72.
Wang B, Guo G, Wang C, Lin Y, Wang Y, Zhao M et al (2010) Survey of the transcriptome of
Aspergillus oryzae via massively parallel mRNA sequencing. Nucl Acids Res 38:5075–5087. doi:10.1093/nar/gkq256
CrossRef
73.
Maruyama JI, Ohnuma H, Yoshikawa A, Kadokura H, Nakajima H, Kitamoto K (2000) Production and product quality assessment of human Hepatitis B virus Pre- S2 antigen in submerged and solid-state cultures of
Aspergillus oryzae. J Biosci Bioeng 90:118–120. doi:10.1016/s1389(00)80045-6
CrossRef
74.
Li Y, Peng X, Chen H (2013) Comparative characterization of proteins secreted by
Neurospora sitophila in solid-state and submerged fermentation. J Biosci Bioeng 116:493–498. doi:10.1016/j.jbiosc.2013.04.001
CrossRef
75.
Shoji H, Sugimoto T, Hosoi K, Shibata K, Tanabe M, Kawatsura K (2007) Simultaneous production of glucoamylase and acid-stable a-amylase using novel submerged culture of
Aspergillus kawachii NBRC4308. J Biosci Bioeng 103:203–205. doi:10.1263/jbb.103.203
CrossRef
76.
Yasuhara A, Ogawa A, Tanaka T, Sakiyama T, Nakanishi K (1994) Production of neutral protease from
Aspergillus oryzae by a novel cultivation method on a microporous membrane. Biotechnol Tech 8:249–254. doi:10.1007/bf00155416
CrossRef
77.
Wakisaka Y, Segawa T, Imamura K, Sakiyama T, Nakanishi K (1998) Development of a cylindrical apparatus for membrane-surface liquid culture and production of Kojic acid using
Aspergillus oryzae NRRI484. J Ferment Bioeng 85:488–494. doi:10.1016/s0922-338x(98)80067-6
CrossRef
78.
Imanaka H, Tanaka S, Fena B, Imamura K, Nakanishi K (2010) Cultivation characteristics and gene expression profiles of
Aspergillus oryzae by membrane-surface liquid culture, shaking-flask culture, and agar-plate culture. J Biosci Bioeng 109:267–273. doi:10.1016/j.jbiosc.2009.09.004
CrossRef
79.
Gamarra NN, Villena GK, Gutiérrez-Correa M (2010) Cellulose production by
Aspergillus niger in biofilm, solid-state, and submerged fermentations. Appl Biochem Biotechnol 87:545–551. doi:10.1007/s00253-010-2540-4
80.
Gutiérrez-Correa M, Ludena Y, Ramage G, Villena GK (2012) Recent advances on filamentous fungal biofilms for industrial uses. Appl Biochem Biotechnol 167:1235–1253. doi:10.1007/s12010-012-9555-5
CrossRef
81.
Zune Q, Delepierre A, Gofflot S, Bauwens J, Twizere JC, Punt PJ et al (2015) A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by
Aspergillus oryzae. Appl Microbiol Biotechnol 99:6241–6254. doi:10.1007/s00253-015-6608-z
CrossRef
82.
Xu Y, Wang D, Mu XQ, Zhao GA, Zhang KC (2002) Biosynthesis of ethyl esters of shot-chain fatty acids using whole-cell lipase from
Rhizopus chinensis CCTCC M201021 in non-aqueous phase. J Mol Catal B Enzyme 18:29–37. doi:10.1016/s1381-1177(02)00056-5
CrossRef
83.
Sun SY, Xu Y (2009) Membrane bound “synthetic lipase” specifically cultured under solid-state fermentation and submerged fermentation by
Rhizopus chinensis: a comparative investigation. Bioresour Technol 100:1336–1342. doi:10.1016/j.biotech.2008.07.051
CrossRef
84.
Sun SY, Xu Y, Wang D (2009) Regulation of environmental factors on expression of a solid-state specific lipase (Lip1) with
Rhizopus chinensis by western blot and indirect Elisa. Bioresour Technol 100:3152–3156. doi:10.1016/j.biortech.2008.11.006
CrossRef