Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Solid-State Nanopore Sensors for Nucleic Acid Analysis

verfasst von : Bala Murali Venkatesan, Rashid Bashir

Erschienen in: Nanopores

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid-state nanopores are nm sized apertures formed in thin synthetic membranes. These single molecule sensors have been used in a variety of biophysical and diagnostic applications and serve as a potential candidate in the development of cost-effective, next generation DNA sequencing technologies, critical to furthering our understanding of inheritance, individuality, disease and evolution. The versatility of solid-state nanopore technology allows for both interfacing with biological systems at the nano-scale as well as large scale VLSI integration promising reliable, affordable, mass producible biosensors with single molecule sensing capabilities. In addition, this technology allows for truly parallel, high throughput DNA and protein analysis through the development of nanopore and micropore arrays in ultra-thin synthetic membranes. This chapter is focused on the development of solid-state nanopore sensors in synthetic membranes and the potential benefits and challenges associated with this technology. Biological nanopores, primarily α-hemolysin and the phi29 connector are also reviewed. We conclude with a detailed discussion on chemically modified solid-state nanopores. These surface functionalized nanopore sensors combine the stability and versatility of solid-state nanopores with the sensitivity and selectivity of biological nanopore systems and may play an important role in drug screening and medical diagnostics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995). Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process. Journal of Membrane Science, 102, 123–129.CrossRef Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995). Rejection of mineral salts on a gamma alumina nanofiltration membrane Application to environmental process. Journal of Membrane Science, 102, 123–129.CrossRef
2.
Zurück zum Zitat Benner, Seico, Chen, Roger J. A., Wilson, Noah A., Abu-Shumays, Robin, Hurt, Nicholas, Lieberman, Kate R., et al. (2007). Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nano, 2(11), 718–724.CrossRef Benner, Seico, Chen, Roger J. A., Wilson, Noah A., Abu-Shumays, Robin, Hurt, Nicholas, Lieberman, Kate R., et al. (2007). Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nano, 2(11), 718–724.CrossRef
3.
Zurück zum Zitat Berger, S. D., Salisbury, I. G., Milne, R. H., Imeson, D., & Humphreys, C. J. (1987). Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation. Philosophical Magazine Part B, 55(3), 341–358.CrossRef Berger, S. D., Salisbury, I. G., Milne, R. H., Imeson, D., & Humphreys, C. J. (1987). Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation. Philosophical Magazine Part B, 55(3), 341–358.CrossRef
4.
Zurück zum Zitat Bhakdi, S., & Tranum-Jensen, J. (1991). Alpha-toxin of Staphylococcus aureus. Microbiol. Mol. Biol. Rev., 55(4), 733–751. Bhakdi, S., & Tranum-Jensen, J. (1991). Alpha-toxin of Staphylococcus aureus. Microbiol. Mol. Biol. Rev., 55(4), 733–751.
5.
Zurück zum Zitat Bouchet, Danièle, & Colliex, Christian (2003). Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy, 96(2), 139–152.CrossRef Bouchet, Danièle, & Colliex, Christian (2003). Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy, 96(2), 139–152.CrossRef
6.
Zurück zum Zitat Bourdillon, A. J., El-mashri, S. M., & Forty, A. J. (1984). Application of TEM extended electron energy loss fine structure to the study of aluminium oxide films. Philosophical Magazine A, 49(3), 341–352.CrossRef Bourdillon, A. J., El-mashri, S. M., & Forty, A. J. (1984). Application of TEM extended electron energy loss fine structure to the study of aluminium oxide films. Philosophical Magazine A, 49(3), 341–352.CrossRef
7.
Zurück zum Zitat Bowen, Paul, Carry, Claude, Luxembourg, David, & Hofmann, Heinrich (2005). Colloidal processing and sintering of nanosized transition aluminas. Powder Technology, 157(1–3), 100–107.CrossRef Bowen, Paul, Carry, Claude, Luxembourg, David, & Hofmann, Heinrich (2005). Colloidal processing and sintering of nanosized transition aluminas. Powder Technology, 157(1–3), 100–107.CrossRef
8.
Zurück zum Zitat Brun, L., Pastoriza-Gallego, M., Oukhaled, G., Mathe, J., Bacri, L., Auvray, L., et al. (2008). Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. Physical Review Letters, 100(15). Brun, L., Pastoriza-Gallego, M., Oukhaled, G., Mathe, J., Bacri, L., Auvray, L., et al. (2008). Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. Physical Review Letters, 100(15).
9.
Zurück zum Zitat Cantor, C. R., & Schimmel, P. R. (1980). Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. New York: W.H. Freeman. Cantor, C. R., & Schimmel, P. R. (1980). Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function. New York: W.H. Freeman.
10.
Zurück zum Zitat Chad Harrell, C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape13. Small, 2(2), 194–198.CrossRef Chad Harrell, C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape13. Small, 2(2), 194–198.CrossRef
11.
Zurück zum Zitat Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551–1556.CrossRef Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. (2004). DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett., 4(8), 1551–1556.CrossRef
12.
Zurück zum Zitat Chang, H., Venkatesan, B. M., Iqbal, S., Andreadakis, G., Kosari, F., Vasmatzis, G., et al. (2006). DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomedical Microdevices, 8(3), 263–269.CrossRef Chang, H., Venkatesan, B. M., Iqbal, S., Andreadakis, G., Kosari, F., Vasmatzis, G., et al. (2006). DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomedical Microdevices, 8(3), 263–269.CrossRef
13.
Zurück zum Zitat Chen, G. S., Boothroyd, C. B., & Humphreys, C. J. (1998). Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures. Philosophical Magazine A, 78, 491–506.CrossRef Chen, G. S., Boothroyd, C. B., & Humphreys, C. J. (1998). Electron-beam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures. Philosophical Magazine A, 78, 491–506.CrossRef
14.
Zurück zum Zitat Chen, P., Gu, J., Brandin, E., Kim, Y. R., Wang, Q., & Branton, D. (2004). Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters, 4(11), 2293–2298.CrossRef Chen, P., Gu, J., Brandin, E., Kim, Y. R., Wang, Q., & Branton, D. (2004). Probing Single DNA Molecule Transport Using Fabricated Nanopores. Nano Letters, 4(11), 2293–2298.CrossRef
15.
Zurück zum Zitat Chen, P., Mitsui, T., Farmer, D.B., Golovchenko, J., Gordon, R.G., & Branton, D. (2004). Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Lett., 4(7), 1333–1337.CrossRef Chen, P., Mitsui, T., Farmer, D.B., Golovchenko, J., Gordon, R.G., & Branton, D. (2004). Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. Nano Lett., 4(7), 1333–1337.CrossRef
16.
Zurück zum Zitat Chen, Peng, & Gillis, Kevin D. (2000). The Noise of Membrane Capacitance Measurements in the Whole-Cell Recording Configuration. Biophysical Journal, 79(4), 2162–2170.CrossRef Chen, Peng, & Gillis, Kevin D. (2000). The Noise of Membrane Capacitance Measurements in the Whole-Cell Recording Configuration. Biophysical Journal, 79(4), 2162–2170.CrossRef
17.
Zurück zum Zitat Chun, Kyoung-Yong, & Stroeve, Pieter (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653–4658.CrossRef Chun, Kyoung-Yong, & Stroeve, Pieter (2002). Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols. Langmuir, 18(12), 4653–4658.CrossRef
18.
Zurück zum Zitat Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4(4), 265–270.CrossRef Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., & Bayley, H. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4(4), 265–270.CrossRef
19.
Zurück zum Zitat Cockroft, Scott L., Chu, John, Amorin, Manuel, & Ghadiri, M. Reza (2008). A Single-Molecule Nanopore Device Detects DNA Polymerase Activity with Single-Nucleotide Resolution. Journal of the American Chemical Society, 130(3), 818–820.CrossRef Cockroft, Scott L., Chu, John, Amorin, Manuel, & Ghadiri, M. Reza (2008). A Single-Molecule Nanopore Device Detects DNA Polymerase Activity with Single-Nucleotide Resolution. Journal of the American Chemical Society, 130(3), 818–820.CrossRef
20.
Zurück zum Zitat Comer, J., Dimitrov, V., Zhao, Q., Timp, G., & Aksimentiev, A. (2009). Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys J, 96(2), 593–608.CrossRef Comer, J., Dimitrov, V., Zhao, Q., Timp, G., & Aksimentiev, A. (2009). Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys J, 96(2), 593–608.CrossRef
21.
Zurück zum Zitat Coulter, W. H. (1953). Means for counting particles suspended in a fluid, United States Patent 2656508. Coulter, W. H. (1953). Means for counting particles suspended in a fluid, United States Patent 2656508.
23.
Zurück zum Zitat Dimitrov, V., Mirsaidov, U., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., et al. (2009). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502.CrossRef Dimitrov, V., Mirsaidov, U., Mansfield, W., Miner, J., Klemens, F., Cirelli, R., et al. (2009). Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 21(6), 065502.CrossRef
24.
Zurück zum Zitat Egerton, R. F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope (Second Edition ed.). New York: Plenum Press. Egerton, R. F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope (Second Edition ed.). New York: Plenum Press.
25.
Zurück zum Zitat Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H., & Yin, X. (1989). Intrinsic stress and stress gradients at the SiO 2 /Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing. Paper presented at the Proceedings of the 16th annual conference on the physics and chemistry of semiconductor interfaces, Bozeman, Montana, USA. Fitch, J. T., Bjorkman, C. H., Lucovsky, G., Pollak, F. H., & Yin, X. (1989). Intrinsic stress and stress gradients at the SiO 2 /Si interface in structures prepared by thermal oxidation of Si and subjected to rapid thermal annealing. Paper presented at the Proceedings of the 16th annual conference on the physics and chemistry of semiconductor interfaces, Bozeman, Montana, USA.
26.
Zurück zum Zitat Fologea, Daniel, Uplinger, James, Thomas, Brian, McNabb, David S., & Li, Jiali (2005). Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters, 5(9), 1734–1737.CrossRef Fologea, Daniel, Uplinger, James, Thomas, Brian, McNabb, David S., & Li, Jiali (2005). Slowing DNA Translocation in a Solid-State Nanopore. Nano Letters, 5(9), 1734–1737.CrossRef
27.
Zurück zum Zitat Franks, George V., & Meagher, Laurence (2003). The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1–3), 99–110.CrossRef Franks, George V., & Meagher, Laurence (2003). The isoelectric points of sapphire crystals and alpha-alumina powder. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1–3), 99–110.CrossRef
28.
Zurück zum Zitat Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627–639.CrossRef Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627–639.CrossRef
29.
Zurück zum Zitat Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y. V., Sligar, S., et al. (2006). The electromechanics of DNA in a synthetic nanopore. Biophysical Journal, 90(3), 1098–1106.CrossRef Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y. V., Sligar, S., et al. (2006). The electromechanics of DNA in a synthetic nanopore. Biophysical Journal, 90(3), 1098–1106.CrossRef
30.
Zurück zum Zitat Heng, J. B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y. V., et al. (2004). Sizing DNA Using a Nanometer-Diameter Pore. Biophys. J., 87(4), 2905–2911.CrossRef Heng, J. B., Ho, C., Kim, T., Timp, R., Aksimentiev, A., Grinkova, Y. V., et al. (2004). Sizing DNA Using a Nanometer-Diameter Pore. Biophys. J., 87(4), 2905–2911.CrossRef
31.
Zurück zum Zitat Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., et al. (2005). Stretching DNA Using the Electric Field in a Synthetic Nanopore. Nano Lett., 5(10), 1883–1888.CrossRef Heng, J. B., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y.V., Sligar, S., et al. (2005). Stretching DNA Using the Electric Field in a Synthetic Nanopore. Nano Lett., 5(10), 1883–1888.CrossRef
32.
Zurück zum Zitat Henrickson, Sarah E., Misakian, Martin, Robertson, Baldwin, & Kasianowicz, John J. (2000). Driven DNA Transport into an Asymmetric Nanometer-Scale Pore. Physical Review Letters, 85(14), 3057.CrossRef Henrickson, Sarah E., Misakian, Martin, Robertson, Baldwin, & Kasianowicz, John J. (2000). Driven DNA Transport into an Asymmetric Nanometer-Scale Pore. Physical Review Letters, 85(14), 3057.CrossRef
33.
Zurück zum Zitat Ho, Chuen, Qiao, Rui, Heng, Jiunn B., Chatterjee, Aveek, Timp, Rolf J., Aluru, Narayana R., et al. (2005). Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10445–10450.CrossRef Ho, Chuen, Qiao, Rui, Heng, Jiunn B., Chatterjee, Aveek, Timp, Rolf J., Aluru, Narayana R., et al. (2005). Electrolytic transport through a synthetic nanometer-diameter pore. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10445–10450.CrossRef
34.
Zurück zum Zitat Höfler, Lajos, & Gyurcsányi, Róbert E. (2008). Coarse Grained Molecular Dynamics Simulation of Electromechanically-Gated DNA Modified Conical Nanopores. Electroanalysis, 20(3), 301–307.CrossRef Höfler, Lajos, & Gyurcsányi, Róbert E. (2008). Coarse Grained Molecular Dynamics Simulation of Electromechanically-Gated DNA Modified Conical Nanopores. Electroanalysis, 20(3), 301–307.CrossRef
35.
Zurück zum Zitat Hoogerheide, D. P., Garaj, S., & Golovchenko, J. A. (2009). Probing Surface Charge Fluctuations with Solid-State Nanopores. Physical Review Letters, 102(25). Hoogerheide, D. P., Garaj, S., & Golovchenko, J. A. (2009). Probing Surface Charge Fluctuations with Solid-State Nanopores. Physical Review Letters, 102(25).
36.
Zurück zum Zitat Iqbal, Samir M., Akin, Demir, & Bashir, Rashid (2007). Solid-state nanopore channels with DNA selectivity. Nat Nano, 2(4), 243–248.CrossRef Iqbal, Samir M., Akin, Demir, & Bashir, Rashid (2007). Solid-state nanopore channels with DNA selectivity. Nat Nano, 2(4), 243–248.CrossRef
37.
Zurück zum Zitat Jagerszki, Gyula, Gyurcsanyi, Robert E., Hofler, Lajos, & Pretsch, Erno (2007). Hybridization-Modulated Ion Fluxes through Peptide-Nucleic-Acid- Functionalized Gold Nanotubes. A New Approach to Quantitative Label-Free DNA Analysis. Nano Letters, 7(6), 1609–1612. Jagerszki, Gyula, Gyurcsanyi, Robert E., Hofler, Lajos, & Pretsch, Erno (2007). Hybridization-Modulated Ion Fluxes through Peptide-Nucleic-Acid- Functionalized Gold Nanotubes. A New Approach to Quantitative Label-Free DNA Analysis. Nano Letters, 7(6), 1609–1612.
38.
Zurück zum Zitat Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1997). Nanotubule-Based Molecular-Filtration Membranes. Science, 278(5338), 655–658.CrossRef Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1997). Nanotubule-Based Molecular-Filtration Membranes. Science, 278(5338), 655–658.CrossRef
39.
Zurück zum Zitat Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1999). Effect of Thiol Chemisorption on the Transport Properties of Gold Nanotubule Membranes. Analytical Chemistry, 71(21), 4913–4918.CrossRef Jirage, Kshama B., Hulteen, John C., & Martin, Charles R. (1999). Effect of Thiol Chemisorption on the Transport Properties of Gold Nanotubule Membranes. Analytical Chemistry, 71(21), 4913–4918.CrossRef
40.
Zurück zum Zitat Jonas, D., Walev, I., Berger, T., Liebetrau, M., Palmer, M., & Bhakdi, S. (1994). Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect. Immun., 62(4), 1304–1312. Jonas, D., Walev, I., Berger, T., Liebetrau, M., Palmer, M., & Bhakdi, S. (1994). Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect. Immun., 62(4), 1304–1312.
41.
Zurück zum Zitat Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., et al. (2009). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023–1027.CrossRef Jovanovic-Talisman, T., Tetenbaum-Novatt, J., McKenney, A. S., Zilman, A., Peters, R., Rout, M. P., et al. (2009). Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature, 457(7232), 1023–1027.CrossRef
42.
Zurück zum Zitat Kalman, Eric B., Sudre, Olivier, & Siwy, Zuzanna S. (2009). Control of Ionic Transport through an Ionic Transistor based on Gated Single Conical Nanopores. Biophysical Journal, 96(3, Supplement 1), 648a-648a. Kalman, Eric B., Sudre, Olivier, & Siwy, Zuzanna S. (2009). Control of Ionic Transport through an Ionic Transistor based on Gated Single Conical Nanopores. Biophysical Journal, 96(3, Supplement 1), 648a-648a.
43.
Zurück zum Zitat Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA, 93(24), 13770. Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA, 93(24), 13770.
44.
Zurück zum Zitat Kejian, Ding, Weimin, Sun, Haiyan, Zhang, Xianglei, Peng, & Honggang, Hu (2009). Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore. Applied Physics Letters, 94(1), 014101–014103.CrossRef Kejian, Ding, Weimin, Sun, Haiyan, Zhang, Xianglei, Peng, & Honggang, Hu (2009). Dependence of zeta potential on polyelectrolyte moving through a solid-state nanopore. Applied Physics Letters, 94(1), 014101–014103.CrossRef
45.
Zurück zum Zitat Keshner, M. S. (1982). 1/f noise. Proceedings of the IEEE, 70(3), 212–218.CrossRef Keshner, M. S. (1982). 1/f noise. Proceedings of the IEEE, 70(3), 212–218.CrossRef
46.
Zurück zum Zitat Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 20, 205302CrossRef Kim, M. J., McNally, B., Murata, K., & Meller, A. (2007). Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 20, 205302CrossRef
47.
Zurück zum Zitat Kim, M. J., Wanunu, M., Bell, D. C., & A. Meller (2006). Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Advanced Materials, 18(23), 3149–3153.CrossRef Kim, M. J., Wanunu, M., Bell, D. C., & A. Meller (2006). Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis. Advanced Materials, 18(23), 3149–3153.CrossRef
48.
Zurück zum Zitat Kim, Y. R., Min, J., Lee, I. H., Kim, S., Kim, A. G., Kim, K., et al. (2007). Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 22(12), 2926–2931.CrossRef Kim, Y. R., Min, J., Lee, I. H., Kim, S., Kim, A. G., Kim, K., et al. (2007). Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 22(12), 2926–2931.CrossRef
49.
Zurück zum Zitat Kohli, Punit, Harrell, C. Chad, Cao, Zehui, Gasparac, Rahela, Tan, Weihong, & Martin, Charles R. (2004). DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science, 305(5686), 984–986.CrossRef Kohli, Punit, Harrell, C. Chad, Cao, Zehui, Gasparac, Rahela, Tan, Weihong, & Martin, Charles R. (2004). DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science, 305(5686), 984–986.CrossRef
50.
Zurück zum Zitat Lagerqvist, Johan, Zwolak, Michael, & Di Ventra, Massimiliano (2006). Fast DNA Sequencing via Transverse Electronic Transport. Nano Letters, 6(4), 779–782. Lagerqvist, Johan, Zwolak, Michael, & Di Ventra, Massimiliano (2006). Fast DNA Sequencing via Transverse Electronic Transport. Nano Letters, 6(4), 779–782.
51.
Zurück zum Zitat Lee, Sang Bok, Mitchell, David T., Trofin, Lacramioara, Nevanen, Tarja K., Soderlund, Hans, & Martin, Charles R. (2002). Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations. Science, 296(5576), 2198–2200.CrossRef Lee, Sang Bok, Mitchell, David T., Trofin, Lacramioara, Nevanen, Tarja K., Soderlund, Hans, & Martin, Charles R. (2002). Antibody-Based Bio-Nanotube Membranes for Enantiomeric Drug Separations. Science, 296(5576), 2198–2200.CrossRef
52.
Zurück zum Zitat Li, Jiali, Gershow, Marc, Stein, Derek, Brandin, Eric, & Golovchenko, J. A. (2003). DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater, 2(9), 611–615.CrossRef Li, Jiali, Gershow, Marc, Stein, Derek, Brandin, Eric, & Golovchenko, J. A. (2003). DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater, 2(9), 611–615.CrossRef
53.
Zurück zum Zitat Li, Jiali, Stein, Derek, McMullan, Ciaran, Branton, Daniel, Aziz, Michael J., & Golovchenko, Jene A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166–169.CrossRef Li, Jiali, Stein, Derek, McMullan, Ciaran, Branton, Daniel, Aziz, Michael J., & Golovchenko, Jene A. (2001). Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166–169.CrossRef
54.
Zurück zum Zitat Lo, Chih Jen, Aref, Thomas, & Bezryadin, Alexey (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264–3267.CrossRef Lo, Chih Jen, Aref, Thomas, & Bezryadin, Alexey (2006). Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology, 17(13), 3264–3267.CrossRef
55.
Zurück zum Zitat Love, J. Christopher, Estroff, Lara A., Kriebel, Jennah K., Nuzzo, Ralph G., & Whitesides, George M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103–1170.CrossRef Love, J. Christopher, Estroff, Lara A., Kriebel, Jennah K., Nuzzo, Ralph G., & Whitesides, George M. (2005). Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 105(4), 1103–1170.CrossRef
56.
Zurück zum Zitat Lubensky, D. K., & Nelson, D. R. (1999). Driven Polymer Translocation Through a Narrow Pore. Biophysical Journal, 77(4), 1824–1838. Lubensky, D. K., & Nelson, D. R. (1999). Driven Polymer Translocation Through a Narrow Pore. Biophysical Journal, 77(4), 1824–1838.
57.
Zurück zum Zitat Manning, G. S. (1993). A Condensed Counterion Theory for Polarization of Polyelectrolyte Solutions in High Fields. Journal of Chemical Physics, 99(1), 477–486.CrossRef Manning, G. S. (1993). A Condensed Counterion Theory for Polarization of Polyelectrolyte Solutions in High Fields. Journal of Chemical Physics, 99(1), 477–486.CrossRef
58.
Zurück zum Zitat Mathe, Jerome, Aksimentiev, Aleksei, Nelson, David R., Schulten, Klaus, & Meller, Amit (2005). Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12377–12382.CrossRef Mathe, Jerome, Aksimentiev, Aleksei, Nelson, David R., Schulten, Klaus, & Meller, Amit (2005). Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12377–12382.CrossRef
59.
Zurück zum Zitat McNally, Ben, Wanunu, Meni, & Meller, Amit (2008). Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores. Nano Lett. McNally, Ben, Wanunu, Meni, & Meller, Amit (2008). Electromechanical Unzipping of Individual DNA Molecules Using Synthetic Sub-2 nm Pores. Nano Lett.
60.
Zurück zum Zitat Meller, A., & Branton, D. (2002). Single molecule measurements of DNA transport through a nanopore. Electrophoresis, 23(16), 2583–2591.CrossRef Meller, A., & Branton, D. (2002). Single molecule measurements of DNA transport through a nanopore. Electrophoresis, 23(16), 2583–2591.CrossRef
61.
Zurück zum Zitat Meller, A., Nivon, L., & Branton, D. (2001). Voltage-Driven DNA Translocations through a Nanopore. Physical Review Letters, 86(15), 3435.CrossRef Meller, A., Nivon, L., & Branton, D. (2001). Voltage-Driven DNA Translocations through a Nanopore. Physical Review Letters, 86(15), 3435.CrossRef
62.
Zurück zum Zitat Mitchell, Nick, & Howorka, Stefan (2008). Chemical Tags Facilitate the Sensing of Individual DNA Strands with Nanopores13. Angewandte Chemie International Edition, 47(30), 5565–5568.CrossRef Mitchell, Nick, & Howorka, Stefan (2008). Chemical Tags Facilitate the Sensing of Individual DNA Strands with Nanopores13. Angewandte Chemie International Edition, 47(30), 5565–5568.CrossRef
63.
Zurück zum Zitat Moon, Jeong-Mi, Akin, Demir, Xuan, Yi, Ye, Peide, Guo, Peixuan, & Bashir, Rashid (2009). Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes. Biomedical Microdevices, 11(1), 135–142. Moon, Jeong-Mi, Akin, Demir, Xuan, Yi, Ye, Peide, Guo, Peixuan, & Bashir, Rashid (2009). Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes. Biomedical Microdevices, 11(1), 135–142.
64.
Zurück zum Zitat Nakane, J., Akeson, M., & Marziali, A. (2002). Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis, 23(16), 2592–2601.CrossRef Nakane, J., Akeson, M., & Marziali, A. (2002). Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis, 23(16), 2592–2601.CrossRef
65.
Zurück zum Zitat Nam, Sung-Wook, Rooks, Michael J., Kim, Ki-Bum, & Rossnagel, Stephen M. (2009). Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 9(5), 2044–2048.CrossRef Nam, Sung-Wook, Rooks, Michael J., Kim, Ki-Bum, & Rossnagel, Stephen M. (2009). Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 9(5), 2044–2048.CrossRef
66.
Zurück zum Zitat Nilsson, J., Lee, J. R. I., Ratto, T. V., & Létant, S. E. (2006). Localized Functionalization of Single Nanopores. Advanced Materials, 18(4), 427–431.CrossRef Nilsson, J., Lee, J. R. I., Ratto, T. V., & Létant, S. E. (2006). Localized Functionalization of Single Nanopores. Advanced Materials, 18(4), 427–431.CrossRef
67.
Zurück zum Zitat O'Keeffe, M., & Stuart, J. A. (2002). Bond energies in solid oxides. Inorganic Chemistry, 22(1), 177–179.CrossRef O'Keeffe, M., & Stuart, J. A. (2002). Bond energies in solid oxides. Inorganic Chemistry, 22(1), 177–179.CrossRef
68.
Zurück zum Zitat Parks, George A. (2002). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews, 65(2), 177–198.CrossRef Parks, George A. (2002). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chemical Reviews, 65(2), 177–198.CrossRef
69.
Zurück zum Zitat Peters, Reiner (2005). Translocation Through the Nuclear Pore Complex: Selectivity and Speed by Reduction-of-Dimensionality. Traffic, 6(5), 421–427.CrossRef Peters, Reiner (2005). Translocation Through the Nuclear Pore Complex: Selectivity and Speed by Reduction-of-Dimensionality. Traffic, 6(5), 421–427.CrossRef
70.
Zurück zum Zitat Petrossian, L., Wilk, S. J., Joshi, P., Hihath, S., Goodnick, S. M., & Thornton, T. J. (2007). Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator Substrates. Journal of Microelectromechanical Systems, 16(6), 1419–1428.CrossRef Petrossian, L., Wilk, S. J., Joshi, P., Hihath, S., Goodnick, S. M., & Thornton, T. J. (2007). Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator Substrates. Journal of Microelectromechanical Systems, 16(6), 1419–1428.CrossRef
71.
Zurück zum Zitat Pivin, Jean Claude (1983). An overview of ion sputtering physics and practical implications. Journal of Materials Science, 18(5), 1267–1290.CrossRef Pivin, Jean Claude (1983). An overview of ion sputtering physics and practical implications. Journal of Materials Science, 18(5), 1267–1290.CrossRef
72.
Zurück zum Zitat Salisbury, I. G., Timsit, R. S., Berger, S. D., & Humphreys, C. J. (1984). Nanometer scale electron beam lithography in inorganic materials. Applied Physics Letters, 45(12), 1289–1291.CrossRef Salisbury, I. G., Timsit, R. S., Berger, S. D., & Humphreys, C. J. (1984). Nanometer scale electron beam lithography in inorganic materials. Applied Physics Letters, 45(12), 1289–1291.CrossRef
73.
Zurück zum Zitat Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467.CrossRef Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5463–5467.CrossRef
74.
Zurück zum Zitat Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., & Persaud, A. (2003). Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(6), 2720–2723.CrossRef Schenkel, T., Radmilovic, V., Stach, E. A., Park, S. J., & Persaud, A. (2003). Formation of a few nanometer wide holes in membranes with a dual beam focused ion beam system. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21(6), 2720–2723.CrossRef
75.
Zurück zum Zitat Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A: Materials Science & Processing, 76(5), 781–785.CrossRef Siwy, Z., Dobrev, D., Neumann, R., Trautmann, C., & Voss, K. (2003). Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal. Applied Physics A: Materials Science & Processing, 76(5), 781–785.CrossRef
76.
Zurück zum Zitat Siwy, Z., & Fulinski, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567–574.CrossRef Siwy, Z., & Fulinski, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567–574.CrossRef
77.
Zurück zum Zitat Siwy, Z., Heins, E., Harrell, C. Chad, Kohli, P., & Martin, C.R. (2004). Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850–10851.CrossRef Siwy, Z., Heins, E., Harrell, C. Chad, Kohli, P., & Martin, C.R. (2004). Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850–10851.CrossRef
78.
Zurück zum Zitat Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735–746.CrossRef Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735–746.CrossRef
79.
Zurück zum Zitat Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501. Smeets, R. M. M., Dekker, N. H., & Dekker, C. (2009). Low-frequency noise in solid-state nanopores. Nanotechnology, 20(9), 095501.
80.
Zurück zum Zitat Smeets, R. M. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417–421.CrossRef Smeets, R. M. M., Keyser, U. F., Dekker, N. H., & Dekker, C. (2008). Noise in solid-state nanopores. Proceedings of the National Academy of Sciences, 105(2), 417–421.CrossRef
81.
Zurück zum Zitat Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett., 6(1), 89–95.CrossRef Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., & Dekker, C. (2006). Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett., 6(1), 89–95.CrossRef
82.
Zurück zum Zitat Smeets, R. M. M., Kowalczyk, S. W., Hall, A. R., Dekker, N. H., & Dekker, C. (2008). Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores. Nano Letters. Smeets, R. M. M., Kowalczyk, S. W., Hall, A. R., Dekker, N. H., & Dekker, C. (2008). Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores. Nano Letters.
83.
Zurück zum Zitat Stoddart, David, Heron, Andrew J., Mikhailova, Ellina, Maglia, Giovanni, & Bayley, Hagan (2009). Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences, 106(19), 7702–7707.CrossRef Stoddart, David, Heron, Andrew J., Mikhailova, Ellina, Maglia, Giovanni, & Bayley, Hagan (2009). Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proceedings of the National Academy of Sciences, 106(19), 7702–7707.CrossRef
84.
Zurück zum Zitat Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2(8), 537–540.CrossRef Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., & Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater, 2(8), 537–540.CrossRef
85.
Zurück zum Zitat Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., & Dekker, C. (2005). Fast DNA Translocation through a Solid-State Nanopore. Nano Lett., 5(7), 1193–1197.CrossRef Storm, A. J., Storm, C., Chen, J., Zandbergen, H., Joanny, J.-F., & Dekker, C. (2005). Fast DNA Translocation through a Solid-State Nanopore. Nano Lett., 5(7), 1193–1197.CrossRef
86.
Zurück zum Zitat Tabard-Cossa, Vincent, Trivedi, Dhruti, Wiggin, Matthew, Jetha, Nahid N., & Marziali, Andre (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505.CrossRef Tabard-Cossa, Vincent, Trivedi, Dhruti, Wiggin, Matthew, Jetha, Nahid N., & Marziali, Andre (2007). Noise analysis and reduction in solid-state nanopores. Nanotechnology, 18(30), 305505.CrossRef
87.
Zurück zum Zitat Uram, Jeffrey D., Ke, Kevin, & Mayer, Michael (2008). Noise and Bandwidth of Current Recordings from Submicrometer Pores and Nanopores. ACS Nano, 2(5), 857–872.CrossRef Uram, Jeffrey D., Ke, Kevin, & Mayer, Michael (2008). Noise and Bandwidth of Current Recordings from Submicrometer Pores and Nanopores. ACS Nano, 2(5), 857–872.CrossRef
88.
Zurück zum Zitat Veeramasuneni, S., Yalamanchili, M. R., & Miller, J. D. (1996). Measurement of Interaction Forces between Silica and [alpha]-Alumina by Atomic Force Microscopy. Journal of Colloid and Interface Science, 184(2), 594–600.CrossRef Veeramasuneni, S., Yalamanchili, M. R., & Miller, J. D. (1996). Measurement of Interaction Forces between Silica and [alpha]-Alumina by Atomic Force Microscopy. Journal of Colloid and Interface Science, 184(2), 594–600.CrossRef
89.
Zurück zum Zitat Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Advanced Materials, 21(27), 2771–2776.CrossRef Venkatesan, B. M., Dorvel, B., Yemenicioglu, S., Watkins, N., Petrov, I., & Bashir, R. (2009). Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Advanced Materials, 21(27), 2771–2776.CrossRef
90.
Zurück zum Zitat Venkatesan, B. M., Shah, A. B., Zuo, J. M., & Bashir, R. (2010). DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Advanced Functional Materials, 20(8), 1266–1275.CrossRef Venkatesan, B. M., Shah, A. B., Zuo, J. M., & Bashir, R. (2010). DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Advanced Functional Materials, 20(8), 1266–1275.CrossRef
91.
Zurück zum Zitat Venkatesan, B. M., Polans, J., Comer, J., Sridhar, S., Wendell, D., Aksimentiev, A., & Bashir, R. (2011). Lipid Bilayer Coated Al2O3 Nanopore Sensors: Towards a Hybrid Biological Solid-State Nanopore. Biomedical Microdevices, DOI: 10.1007/s10544-011-9537-3.CrossRef Venkatesan, B. M., Polans, J., Comer, J., Sridhar, S., Wendell, D., Aksimentiev, A., & Bashir, R. (2011). Lipid Bilayer Coated Al2O3 Nanopore Sensors: Towards a Hybrid Biological Solid-State Nanopore. Biomedical Microdevices, DOI: 10.1007/s10544-011-9537-3.CrossRef
92.
Zurück zum Zitat Vercoutere, Wenonah, Winters-Hilt, Stephen, Olsen, Hugh, Deamer, David, Haussler, David, & Akeson, Mark (2001). Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotech, 19(3), 248–252.CrossRef Vercoutere, Wenonah, Winters-Hilt, Stephen, Olsen, Hugh, Deamer, David, Haussler, David, & Akeson, Mark (2001). Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotech, 19(3), 248–252.CrossRef
93.
Zurück zum Zitat Wanunu, Meni, & Meller, Amit (2007). Chemically Modified Solid-State Nanopores. Nano Letters, 7(6), 1580–1585.CrossRef Wanunu, Meni, & Meller, Amit (2007). Chemically Modified Solid-State Nanopores. Nano Letters, 7(6), 1580–1585.CrossRef
94.
Zurück zum Zitat Wanunu, Meni, Sutin, Jason, McNally, Ben, Chow, Andrew, & Meller, Amit (2008). DNA Translocation Governed by Interactions with Solid State Nanopores. Biophys. J., biophysj.108.140475. Wanunu, Meni, Sutin, Jason, McNally, Ben, Chow, Andrew, & Meller, Amit (2008). DNA Translocation Governed by Interactions with Solid State Nanopores. Biophys. J., biophysj.108.140475.
95.
Zurück zum Zitat Wendell, David, Jing, Peng, Geng, Jia, Subramaniam, Varuni, Lee, Tae Jin, Montemagno, Carlo, et al. (2009). Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nano, 4(11), 765–772.CrossRef Wendell, David, Jing, Peng, Geng, Jia, Subramaniam, Varuni, Lee, Tae Jin, Montemagno, Carlo, et al. (2009). Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nano, 4(11), 765–772.CrossRef
96.
Zurück zum Zitat Winters-Hilt, Stephen (2007). The alpha-Hemolysin nanopore transduction detector - single-molecule binding studies and immunological screening of antibodies and aptamers. BMC Bioinformatics, 8(Suppl 7), S9.CrossRef Winters-Hilt, Stephen (2007). The alpha-Hemolysin nanopore transduction detector - single-molecule binding studies and immunological screening of antibodies and aptamers. BMC Bioinformatics, 8(Suppl 7), S9.CrossRef
97.
Zurück zum Zitat Wu, M. Y., Krapf, D., Zandbergen, M., Zandbergen, H. W., & Batson, P. E. (2005). Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Applied Physics Letters, 87(11), 113106–113103.CrossRef Wu, M. Y., Krapf, D., Zandbergen, M., Zandbergen, H. W., & Batson, P. E. (2005). Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Applied Physics Letters, 87(11), 113106–113103.CrossRef
98.
Zurück zum Zitat Wu, M. Y., Smeets, R. M. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., et al. (2009). Control of Shape and Material Composition of Solid-State Nanopores. Nano Letters, 9(1), 479–484.CrossRef Wu, M. Y., Smeets, R. M. M., Zandbergen, M., Ziese, U., Krapf, D., Batson, P. E., et al. (2009). Control of Shape and Material Composition of Solid-State Nanopores. Nano Letters, 9(1), 479–484.CrossRef
99.
Zurück zum Zitat Wu, Shanshan, Park, Sang Ryul, & Ling, Xinsheng Sean (2006). Lithography-Free Formation of Nanopores in Plastic Membranes Using Laser Heating. Nano Letters, 6(11), 2571–2576.CrossRef Wu, Shanshan, Park, Sang Ryul, & Ling, Xinsheng Sean (2006). Lithography-Free Formation of Nanopores in Plastic Membranes Using Laser Heating. Nano Letters, 6(11), 2571–2576.CrossRef
100.
Zurück zum Zitat Xiang, Ye, Morais, Marc C., Battisti, Anthony J., Grimes, Shelley, Jardine, Paul J., Anderson, Dwight L., et al. (2006). Structural changes of bacteriophage [phi]29 upon DNA packaging and release. EMBO J, 25(21), 5229–5239.CrossRef Xiang, Ye, Morais, Marc C., Battisti, Anthony J., Grimes, Shelley, Jardine, Paul J., Anderson, Dwight L., et al. (2006). Structural changes of bacteriophage [phi]29 upon DNA packaging and release. EMBO J, 25(21), 5229–5239.CrossRef
101.
Zurück zum Zitat Yu, Minrui, Kim, Hyun-Seok, & Blick, Robert H. (2009). Laser drilling of nano-pores in sandwiched thin glass membranes. Opt. Express, 17(12), 10044–10049.CrossRef Yu, Minrui, Kim, Hyun-Seok, & Blick, Robert H. (2009). Laser drilling of nano-pores in sandwiched thin glass membranes. Opt. Express, 17(12), 10044–10049.CrossRef
Metadaten
Titel
Solid-State Nanopore Sensors for Nucleic Acid Analysis
verfasst von
Bala Murali Venkatesan
Rashid Bashir
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-8252-0_1

Neuer Inhalt