Skip to main content

2011 | OriginalPaper | Buchkapitel

5. Solid State Nanopores for Selective Sensing of DNA

verfasst von : Waseem Asghar, Joseph A. Billo, Samir M. Iqbal

Erschienen in: Nanopores

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the functionalized solid state nanopores for the purpose of rapidly and accurately sensing specific sequence of DNA. Fabrication processes are described, consisting of standard photolithography followed by using either a transmission electron microscope or a plasma polymer film to create and shrink the nanopore. The molecular dynamics of DNA-nanopore interactions are also discussed. Smaller pore diameter results in slower translocation of DNA through the nanopore, but increases van der waals force on the DNA and decreases the ionic current. Increase in applied voltage decreases the van der Waals force while increasing the ionic current and translocation velocity. Chemical functionalization of nanopores is then discussed. This allows a nanopore to be selective with translocating specific DNA sequence. This is done by modifying the surface in an attempt to control its surface charges and hydrophobicity. Probe DNA is used to functionalize the pore and achieve selectivity. In terms of sensing, perfect complementary DNA translocates faster than single-base-mismatch DNA. The flux can be measured from the current pulses when the translocating DNA blocks the nanopore under applied voltage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Iqbal, S.M., D. Akin, and R. Bashir, Solid-state nanopore channels with DNA selectivity. nature nanotechnology, 2007. 2(4): p. 243–248. Iqbal, S.M., D. Akin, and R. Bashir, Solid-state nanopore channels with DNA selectivity. nature nanotechnology, 2007. 2(4): p. 243–248.
2.
Zurück zum Zitat Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(6843): p. 166–169.CrossRef Li, J., et al., Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(6843): p. 166–169.CrossRef
3.
Zurück zum Zitat Stein, D., J. Li, and J.A. Golovchenko, Ion-beam sculpting time scales. Physical review letters, 2002. 89(27): p. 276106.CrossRef Stein, D., J. Li, and J.A. Golovchenko, Ion-beam sculpting time scales. Physical review letters, 2002. 89(27): p. 276106.CrossRef
4.
Zurück zum Zitat Storm, A.J., et al., Fabrication of solid-state nanopores with single-nanometre precision. Nature materials, 2003. 2(8): p. 537–540.CrossRef Storm, A.J., et al., Fabrication of solid-state nanopores with single-nanometre precision. Nature materials, 2003. 2(8): p. 537–540.CrossRef
5.
Zurück zum Zitat Wu, S., S.R. Park, and X.S. Ling, Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett, 2006. 6(11): p. 2571–2576.CrossRef Wu, S., S.R. Park, and X.S. Ling, Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett, 2006. 6(11): p. 2571–2576.CrossRef
6.
Zurück zum Zitat Park, S.R., H. Peng, and X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching. Small, 2007. 3(1): p. 116.CrossRef Park, S.R., H. Peng, and X.S. Ling, Fabrication of nanopores in silicon chips using feedback chemical etching. Small, 2007. 3(1): p. 116.CrossRef
7.
Zurück zum Zitat Chang, H., et al., Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Applied Physics Letters, 2006. 88: p. 103109.CrossRef Chang, H., et al., Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Applied Physics Letters, 2006. 88: p. 103109.CrossRef
8.
Zurück zum Zitat Sato, K., et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors & Actuators: A. Physical, 1999. 73(1–2): p. 131–137.CrossRef Sato, K., et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensors & Actuators: A. Physical, 1999. 73(1–2): p. 131–137.CrossRef
9.
Zurück zum Zitat Sundaram, K.B., A. Vijayakumar, and G. Subramanian, Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications. Microelectronic Engineering, 2005. 77(3–4): p. 230–241.CrossRef Sundaram, K.B., A. Vijayakumar, and G. Subramanian, Smooth etching of silicon using TMAH and isopropyl alcohol for MEMS applications. Microelectronic Engineering, 2005. 77(3–4): p. 230–241.CrossRef
10.
Zurück zum Zitat Biance, A.L., et al., Focused ion beam sculpted membranes for nanoscience tooling. Microelectronic Engineering, 2006. 83(4–9): p. 1474–1477.CrossRef Biance, A.L., et al., Focused ion beam sculpted membranes for nanoscience tooling. Microelectronic Engineering, 2006. 83(4–9): p. 1474–1477.CrossRef
11.
Zurück zum Zitat Gierak, J., et al., Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 2007. 84(5–8): p. 779–783.CrossRef Gierak, J., et al., Sub-5 nm FIB direct patterning of nanodevices. Microelectronic Engineering, 2007. 84(5–8): p. 779–783.CrossRef
12.
Zurück zum Zitat Gadgil, V.J., et al., Fabrication of nano structures in thin membranes with focused ion beam technology. Surface & Coatings Technology, 2009. 203(17–18): p. 2436–2441.CrossRef Gadgil, V.J., et al., Fabrication of nano structures in thin membranes with focused ion beam technology. Surface & Coatings Technology, 2009. 203(17–18): p. 2436–2441.CrossRef
13.
Zurück zum Zitat Danelon, C., et al., Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Nano Lett, 2005. 5: p. 403–407.CrossRef Danelon, C., et al., Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Nano Lett, 2005. 5: p. 403–407.CrossRef
14.
Zurück zum Zitat Nilsson, J., et al., Localized functionalization of single nanopores. Advanced Materials, 2006. 18(4): p. 427–431.CrossRef Nilsson, J., et al., Localized functionalization of single nanopores. Advanced Materials, 2006. 18(4): p. 427–431.CrossRef
15.
Zurück zum Zitat Harrell, C.C., et al., DNA-nanotube artificial ion channels. Journal of the American Chemical Society, 2004. 126(48): p. 15646.CrossRef Harrell, C.C., et al., DNA-nanotube artificial ion channels. Journal of the American Chemical Society, 2004. 126(48): p. 15646.CrossRef
16.
Zurück zum Zitat Chen, P., et al., Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 2004. 4(7): p. 1333–1337.CrossRef Chen, P., et al., Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 2004. 4(7): p. 1333–1337.CrossRef
17.
Zurück zum Zitat Heng, J.B., et al., Stretching DNA using the electric field in a synthetic nanopore. Nano letters, 2005. 5(10): p. 1883.CrossRef Heng, J.B., et al., Stretching DNA using the electric field in a synthetic nanopore. Nano letters, 2005. 5(10): p. 1883.CrossRef
18.
Zurück zum Zitat Kim, M.J., et al., Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater, 2006. 18(23): p. 3149–3153.CrossRef Kim, M.J., et al., Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv. Mater, 2006. 18(23): p. 3149–3153.CrossRef
19.
Zurück zum Zitat Kim, M.J., et al., Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 2007. 18: p. 205302.CrossRef Kim, M.J., et al., Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology, 2007. 18: p. 205302.CrossRef
20.
Zurück zum Zitat Chapman, C.L., et al., Plasma polymer thin film depositions to regulate gas permeability through nanoporous track etched membranes. Journal of Membrane Science, 2008. 318(1–2): p. 137–144.CrossRef Chapman, C.L., et al., Plasma polymer thin film depositions to regulate gas permeability through nanoporous track etched membranes. Journal of Membrane Science, 2008. 318(1–2): p. 137–144.CrossRef
21.
Zurück zum Zitat Timmons, R.B. and A.J. Griggs, Pulsed plasma polymerizations. Plasma Polymer Films: p. 217–245. Timmons, R.B. and A.J. Griggs, Pulsed plasma polymerizations. Plasma Polymer Films: p. 217–245.
22.
Zurück zum Zitat Han, L.M. and R.B. Timmons, Pulsed-plasma polymerization of 1-vinyl-2-pyrrolidone: Synthesis of a linear polymer. Journal of Polymer Science Part A Polymer Chemistry, 1998. 36: p. 3121–3129.CrossRef Han, L.M. and R.B. Timmons, Pulsed-plasma polymerization of 1-vinyl-2-pyrrolidone: Synthesis of a linear polymer. Journal of Polymer Science Part A Polymer Chemistry, 1998. 36: p. 3121–3129.CrossRef
23.
Zurück zum Zitat Zhang, J., et al., Investigation of the plasma polymer deposited from pyrrole. Thin solid films, 1997. 307(1–2): p. 14–20.CrossRef Zhang, J., et al., Investigation of the plasma polymer deposited from pyrrole. Thin solid films, 1997. 307(1–2): p. 14–20.CrossRef
24.
Zurück zum Zitat Rinsch, C.L., et al., Pulsed radio frequency plasma polymerization of allyl alcohol: Controlled deposition of surface hydroxyl groups. Langmuir, 1996. 12(12): p. 2995–3002.CrossRef Rinsch, C.L., et al., Pulsed radio frequency plasma polymerization of allyl alcohol: Controlled deposition of surface hydroxyl groups. Langmuir, 1996. 12(12): p. 2995–3002.CrossRef
25.
Zurück zum Zitat Cross, J.D., E.A. Strychalski, and H.G. Craighead, Size-dependent DNA mobility in nanochannels. Journal of Applied Physics, 2007. 102: p. 024701.CrossRef Cross, J.D., E.A. Strychalski, and H.G. Craighead, Size-dependent DNA mobility in nanochannels. Journal of Applied Physics, 2007. 102: p. 024701.CrossRef
26.
Zurück zum Zitat Fyta, M.G., et al., Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Arxiv preprint physics/0701029, 2007. Fyta, M.G., et al., Multiscale coupling of molecular dynamics and hydrodynamics: application to DNA translocation through a nanopore. Arxiv preprint physics/0701029, 2007.
27.
Zurück zum Zitat Ramachandran, A., et al., Characterization of DNA-Nanopore Interactions by Molecular Dynamics. American Journal of Biomedical Sciences, 2009. 1(4): p. 344–351.CrossRef Ramachandran, A., et al., Characterization of DNA-Nanopore Interactions by Molecular Dynamics. American Journal of Biomedical Sciences, 2009. 1(4): p. 344–351.CrossRef
28.
Zurück zum Zitat Kalé, L., et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics* 1. Journal of Computational Physics, 1999. 151(1): p. 283–312.MATHCrossRef Kalé, L., et al., NAMD2: Greater Scalability for Parallel Molecular Dynamics* 1. Journal of Computational Physics, 1999. 151(1): p. 283–312.MATHCrossRef
29.
Zurück zum Zitat MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B-Condensed Phase, 1998. 102(18): p. 3586–3616. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B-Condensed Phase, 1998. 102(18): p. 3586–3616.
30.
Zurück zum Zitat Aksimentiev, A., et al., Microscopic kinetics of DNA translocation through synthetic nanopores. Biophysical journal, 2004. 87(3): p. 2086–2097.CrossRef Aksimentiev, A., et al., Microscopic kinetics of DNA translocation through synthetic nanopores. Biophysical journal, 2004. 87(3): p. 2086–2097.CrossRef
31.
Zurück zum Zitat Meller, A., et al., Rapid nanopore discrimination between single polynucleotide molecules. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(3): p. 1079.CrossRef Meller, A., et al., Rapid nanopore discrimination between single polynucleotide molecules. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(3): p. 1079.CrossRef
32.
Zurück zum Zitat Xiao, K.P., et al., A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore. Anal. Chem, 1997. 69(6): p. 1038–1044.CrossRef Xiao, K.P., et al., A chloride ion-selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore. Anal. Chem, 1997. 69(6): p. 1038–1044.CrossRef
33.
Zurück zum Zitat Minami, H., et al., AN EVALUATION OF SIGNAL AMPLIFICATION BY THE ION CHANNEL SEBSIR BASED ON A GLUTAMATE RECEPTOR ION CHANNEL PROTEIN. Analytical Sciences, 1991. 7(Supple): p. 1675–1676. Minami, H., et al., AN EVALUATION OF SIGNAL AMPLIFICATION BY THE ION CHANNEL SEBSIR BASED ON A GLUTAMATE RECEPTOR ION CHANNEL PROTEIN. Analytical Sciences, 1991. 7(Supple): p. 1675–1676.
34.
Zurück zum Zitat Kuramitz, H., et al., Electrochemical immunoassay at a 17-estradiol self-assembled monolayer electrode using a redox marker. The Analyst, 2003. 128(2): p. 182–186.CrossRef Kuramitz, H., et al., Electrochemical immunoassay at a 17-estradiol self-assembled monolayer electrode using a redox marker. The Analyst, 2003. 128(2): p. 182–186.CrossRef
35.
Zurück zum Zitat Aoki, H. and Y. Umezawa, Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 2003. 128(6): p. 681–685.CrossRef Aoki, H. and Y. Umezawa, Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 2003. 128(6): p. 681–685.CrossRef
36.
Zurück zum Zitat Gadzekpo, V.P.Y., et al., Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 2000. 411(1–2): p. 163–173.CrossRef Gadzekpo, V.P.Y., et al., Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 2000. 411(1–2): p. 163–173.CrossRef
37.
Zurück zum Zitat Ali, M., et al., Chemical modification of track-etched single conical nanopores inducing inversed inner wall polarity. GSI Annu. Rep. 2006, 2007. 1: p. 323. Ali, M., et al., Chemical modification of track-etched single conical nanopores inducing inversed inner wall polarity. GSI Annu. Rep. 2006, 2007. 1: p. 323.
38.
Zurück zum Zitat Lee, S.B., et al., Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 2002. 296(5576): p. 2198.CrossRef Lee, S.B., et al., Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science, 2002. 296(5576): p. 2198.CrossRef
39.
Zurück zum Zitat Siwy, Z., et al., Conical-nanotube ion-current rectifiers: the role of surface charge. Journal of the American Chemical Society, 2004. 126(35): p. 10850.CrossRef Siwy, Z., et al., Conical-nanotube ion-current rectifiers: the role of surface charge. Journal of the American Chemical Society, 2004. 126(35): p. 10850.CrossRef
40.
Zurück zum Zitat Siwy, Z., et al., Protein biosensors based on biofunctionalized conical gold nanotubes. Journal of the American Chemical Society, 2005. 127(14): p. 5000.CrossRef Siwy, Z., et al., Protein biosensors based on biofunctionalized conical gold nanotubes. Journal of the American Chemical Society, 2005. 127(14): p. 5000.CrossRef
41.
Zurück zum Zitat Manning, M., et al., A versatile multi-platform biochip surface attachment chemistry. Materials Science & Engineering C, 2003. 23(3): p. 347–351.CrossRef Manning, M., et al., A versatile multi-platform biochip surface attachment chemistry. Materials Science & Engineering C, 2003. 23(3): p. 347–351.CrossRef
42.
Zurück zum Zitat Chen, P., et al., Probing single DNA molecule transport using fabricated nanopores. Nano Letters, 2004. 4(11): p. 2293–2298.CrossRef Chen, P., et al., Probing single DNA molecule transport using fabricated nanopores. Nano Letters, 2004. 4(11): p. 2293–2298.CrossRef
43.
Zurück zum Zitat Meller, A., L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 2001. 86(15): p. 3435–3438.CrossRef Meller, A., L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore. Physical Review Letters, 2001. 86(15): p. 3435–3438.CrossRef
44.
Zurück zum Zitat Fologea, D., et al., Slowing DNA translocation in a solid-state nanopore. Nano Lett., 2005. 5: p. 1734–1737.CrossRef Fologea, D., et al., Slowing DNA translocation in a solid-state nanopore. Nano Lett., 2005. 5: p. 1734–1737.CrossRef
45.
Zurück zum Zitat Kim, Y.R., et al., Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 2007. 22(12): p. 2926–2931.CrossRef Kim, Y.R., et al., Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosensors and Bioelectronics, 2007. 22(12): p. 2926–2931.CrossRef
46.
Zurück zum Zitat Guo, Z., et al., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 1994. 22(24): p. 5456.CrossRef Guo, Z., et al., Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 1994. 22(24): p. 5456.CrossRef
47.
Zurück zum Zitat Balladur, V., A. Theretz, and B. Mandrand, Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. Journal of colloid and interface science, 1997. 194(2): p. 408–418.CrossRef Balladur, V., A. Theretz, and B. Mandrand, Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. Journal of colloid and interface science, 1997. 194(2): p. 408–418.CrossRef
48.
Zurück zum Zitat Fang, Y. and J.H. Hoh, Early intermediates in spermidine-induced DNA condensation on the surface of mica. J. Am. Chem. Soc, 1998. 120(35): p. 8903–8909.CrossRef Fang, Y. and J.H. Hoh, Early intermediates in spermidine-induced DNA condensation on the surface of mica. J. Am. Chem. Soc, 1998. 120(35): p. 8903–8909.CrossRef
49.
Zurück zum Zitat Umehara, S., et al., Current rectification with poly- l -lysine-coated quartz nanopipettes. Nano Lett, 2006. 6(11): p. 2486–2492.CrossRef Umehara, S., et al., Current rectification with poly- l -lysine-coated quartz nanopipettes. Nano Lett, 2006. 6(11): p. 2486–2492.CrossRef
50.
Zurück zum Zitat Wang, G., et al., Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc, 2006. 128(23): p. 7679–7686.CrossRef Wang, G., et al., Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc, 2006. 128(23): p. 7679–7686.CrossRef
51.
Zurück zum Zitat Wanunu, M. and A. Meller, Chemically modified solid-state nanopores. Nano Letters, 2007. 7(6): p. 1580–1585.CrossRef Wanunu, M. and A. Meller, Chemically modified solid-state nanopores. Nano Letters, 2007. 7(6): p. 1580–1585.CrossRef
52.
Zurück zum Zitat Jang, L.S. and H.K. Keng, Modified fabrication process of protein chips using a short-chain self-assembled monolayer. Biomedical Microdevices, 2008. 10(2): p. 203–211.CrossRef Jang, L.S. and H.K. Keng, Modified fabrication process of protein chips using a short-chain self-assembled monolayer. Biomedical Microdevices, 2008. 10(2): p. 203–211.CrossRef
53.
Zurück zum Zitat Gyurcsányi, R.E., T. Vigassy, and E. Pretsch, Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. Chemical Communications, 2003. 2003(20): p. 2560–2561.CrossRef Gyurcsányi, R.E., T. Vigassy, and E. Pretsch, Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. Chemical Communications, 2003. 2003(20): p. 2560–2561.CrossRef
54.
Zurück zum Zitat Zhao, Q., et al., Detecting SNPs using a synthetic nanopore. Nano letters, 2007. 7(6): p. 1680.CrossRef Zhao, Q., et al., Detecting SNPs using a synthetic nanopore. Nano letters, 2007. 7(6): p. 1680.CrossRef
55.
Zurück zum Zitat Kohli, P., et al., DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science, 2004. 305(5686): p. 984.CrossRef Kohli, P., et al., DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science, 2004. 305(5686): p. 984.CrossRef
56.
Zurück zum Zitat Vlassiouk, I., P. Takmakov, and S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir, 2005. 21(11): p. 4776–4778.CrossRef Vlassiouk, I., P. Takmakov, and S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir, 2005. 21(11): p. 4776–4778.CrossRef
57.
Zurück zum Zitat Pretsch, E., The new wave of ion-selective electrodes. Trends in Analytical Chemistry, 2007. 26(1): p. 46–51.CrossRef Pretsch, E., The new wave of ion-selective electrodes. Trends in Analytical Chemistry, 2007. 26(1): p. 46–51.CrossRef
58.
Zurück zum Zitat Howorka, S., S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores. Nature biotechnology, 2001. 19(7): p. 636–639.CrossRef Howorka, S., S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores. Nature biotechnology, 2001. 19(7): p. 636–639.CrossRef
59.
Zurück zum Zitat Berezhkovskii, A.M. and S.M. Bezrukov, Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophysical journal, 2005. 88(3): p. 17–19.CrossRef Berezhkovskii, A.M. and S.M. Bezrukov, Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophysical journal, 2005. 88(3): p. 17–19.CrossRef
60.
Zurück zum Zitat Bauer, W.R. and W. Nadler, Molecular transport through channels and pores: Effects of in-channel interactions and blocking. Proceedings of the National Academy of Sciences, 2006. 103(31): p. 11446.CrossRef Bauer, W.R. and W. Nadler, Molecular transport through channels and pores: Effects of in-channel interactions and blocking. Proceedings of the National Academy of Sciences, 2006. 103(31): p. 11446.CrossRef
61.
Zurück zum Zitat Chaara, M. and R.D. Noble, Effect of convective flow across a film on facilitated transport. Separation Science and Technology, 1989. 24(11): p. 893–903.CrossRef Chaara, M. and R.D. Noble, Effect of convective flow across a film on facilitated transport. Separation Science and Technology, 1989. 24(11): p. 893–903.CrossRef
62.
Zurück zum Zitat Noble, R.D., Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes. Journal of membrane science, 1992. 75(1–2): p. 121–129.CrossRef Noble, R.D., Generalized microscopic mechanism of facilitated transport in fixed site carrier membranes. Journal of membrane science, 1992. 75(1–2): p. 121–129.CrossRef
63.
Zurück zum Zitat Liu, Y. and S.M. Iqbal, A mesoscale model of DNA interaction with functionalized nanopore. Applied Physics Letters, 2009. 95: p. 223701.CrossRef Liu, Y. and S.M. Iqbal, A mesoscale model of DNA interaction with functionalized nanopore. Applied Physics Letters, 2009. 95: p. 223701.CrossRef
64.
Zurück zum Zitat Brogan, K.L., et al., Direct oriented immobilization of F (ab) antibody fragments on gold. Analytica Chimica Acta, 2003. 496(1–2): p. 73–80.CrossRef Brogan, K.L., et al., Direct oriented immobilization of F (ab) antibody fragments on gold. Analytica Chimica Acta, 2003. 496(1–2): p. 73–80.CrossRef
65.
Zurück zum Zitat Kim, B.Y., et al., Direct Immobilization of Fabin Nanocapillaries for Manipulating Mass-Limited Samples. J. Am. Chem. Soc, 2007. 129(24): p. 7620–7626.CrossRef Kim, B.Y., et al., Direct Immobilization of Fabin Nanocapillaries for Manipulating Mass-Limited Samples. J. Am. Chem. Soc, 2007. 129(24): p. 7620–7626.CrossRef
66.
Zurück zum Zitat Benson, D.E., et al., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science, 2001. 293(5535): p. 1641.CrossRef Benson, D.E., et al., Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science, 2001. 293(5535): p. 1641.CrossRef
67.
Zurück zum Zitat Tripathi, A., et al., Nanobiosensor Design Utilizing a Periplasmic E. coli Receptor Protein Immobilized within Au/Polycarbonate Nanopores. Biosens. Bioelectron, 2003. 19: p. 249–259.CrossRefMathSciNet Tripathi, A., et al., Nanobiosensor Design Utilizing a Periplasmic E. coli Receptor Protein Immobilized within Au/Polycarbonate Nanopores. Biosens. Bioelectron, 2003. 19: p. 249–259.CrossRefMathSciNet
68.
Zurück zum Zitat Uram, J.D., et al., Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2006. 2(8–9): p. 967. Uram, J.D., et al., Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small (Weinheim an der Bergstrasse, Germany), 2006. 2(8–9): p. 967.
Metadaten
Titel
Solid State Nanopores for Selective Sensing of DNA
verfasst von
Waseem Asghar
Joseph A. Billo
Samir M. Iqbal
Copyright-Jahr
2011
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-8252-0_5

Neuer Inhalt