Skip to main content
Erschienen in: Journal of Computational Electronics 2/2020

13.03.2020

Solis: a modular, portable, and high-performance 1D semiconductor device simulator

verfasst von: Sidi Ould Saad Hamady

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents Solis, a new modular, fast, and portable one-dimensional (1D) semiconductor device simulator designed and developed particularly for photovoltaic solar cells. Solis is coded in standard C++, runs natively on Windows and Linux, and is freely available to download. All the physical models and excitation parameters can be fully controlled using the fast embedded Lua scripting engine. Solis includes a useful set of tools coded in C, such as a code editor, graphical device editor, and data plotter. A material parameters database including well-known semiconductors and their alloys is also included. The Solis calculation engine implements the drift–diffusion transport model and takes into account indirect recombination processes (with user-defined deep or shallow levels) as well as radiative and Auger recombination. The anode and cathode parameters, including the refractive index, extinction coefficient, recombination speed, and barrier height for the Schottky contact, are fully included. It natively handles spontaneous and piezoelectric polarization, which is key for the development of devices based on wurtzite materials. The values of all the material parameters can be graded arbitrarily in position, offering flexibility for the simulation of heterostructure solar cells. In addition, Solis offers functionality needed by researchers to analyze the simulation results, including graphing (of the band diagram, carrier concentration, ionized dopant and trap concentrations, current–voltage and capacitance–voltage characteristics, quantum efficiency, etc.) with complete control of the graph and a useful mathematical console. Solis simulation results for a solar cell using Earth-abundant elements are presented herein. One of the main issues in the development of such solar cells, viz. the inhomogeneity due to phase separation in the absorber, is highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
An unofficial release of PC1D named PC1D-mod was developed with minor changes but unfortunately removing the ability to handle heterostructures.
 
2
As for PC1D, there is an unofficial release of AMPS-1D named wxAMPS, with changes mainly related to the user interface.
 
3
For example, the commercial reference simulator Atlas\(^{{\mathrm {\textregistered }}}\) from Silvaco\(^{{\mathrm {\textregistered }}}\) includes a C interpreter that can be used to extend it and develop custom physical models.
 
4
The latest Solis release (extracted total size less than 10 MB) is available to download:
http://​www.​hamady.​org/​download/​solis_​linux_​64bit.​tgz [for Linux (Debian, CentOS, Ubuntu, etc.) 64 bit].
The Solis user manual is also available to download here: http://​www.​hamady.​org/​download/​solis_​simulator.​pdf.​
 
Literatur
1.
Zurück zum Zitat Basore, P., Clugston, D.: PC1D version 4 for Windows: from analysis to design. In: Conference Record of the Twenty Fifth IEEE (IEEE) Photovoltaic Specialists Conference, pp. 377–381 (1996) Basore, P., Clugston, D.: PC1D version 4 for Windows: from analysis to design. In: Conference Record of the Twenty Fifth IEEE (IEEE) Photovoltaic Specialists Conference, pp. 377–381 (1996)
2.
Zurück zum Zitat Zhu, H.,Kalkan, A., Hou, J., Fonash, S.: Applications of AMPS-1D for solar cell simulation. In: AIP Conference Proceedings, (AIP), vol. 462, pp. 309–314 (1999) Zhu, H.,Kalkan, A., Hou, J., Fonash, S.: Applications of AMPS-1D for solar cell simulation. In: AIP Conference Proceedings, (AIP), vol. 462, pp. 309–314 (1999)
3.
Zurück zum Zitat Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef
5.
Zurück zum Zitat Dumitrescu, E., Wilkins, M., Krich, J.: Simudo: a device model for intermediate band materials. J. Comput. Electron. 19, 111 (2019) Dumitrescu, E., Wilkins, M., Krich, J.: Simudo: a device model for intermediate band materials. J. Comput. Electron. 19, 111 (2019)
6.
Zurück zum Zitat Alonso-Álvarez, D., Wilson, T., Pearce, P., Führer, M., Farrell, D., Ekins-Daukes, N.: Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials. J. Comput. Electron. 17(3), 1099 (2018)CrossRef Alonso-Álvarez, D., Wilson, T., Pearce, P., Führer, M., Farrell, D., Ekins-Daukes, N.: Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials. J. Comput. Electron. 17(3), 1099 (2018)CrossRef
7.
Zurück zum Zitat Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (2012) Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (2012)
8.
Zurück zum Zitat Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Dev. 16(1), 64 (1969)CrossRef Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron. Dev. 16(1), 64 (1969)CrossRef
9.
Zurück zum Zitat The IUP GUI toolkit, (C) 1994–2017 Tecgraf/PUC-Rio (2017) The IUP GUI toolkit, (C) 1994–2017 Tecgraf/PUC-Rio (2017)
10.
Zurück zum Zitat The Scintilla Component (C) 1998–2016 Neil Hodgson (2016) The Scintilla Component (C) 1998–2016 Neil Hodgson (2016)
11.
Zurück zum Zitat Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K., Kato, T., Sugimoto, H.: New world record Cu(In, Ga)\((\text{Se}, \text{ S })_2\) thin film solar cell efficiency beyond 22%. In: 2017 IEEE 44th (IEEE) Photovoltaic Specialist Conference (PVSC), pp. 1–5 (2017) Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K., Kato, T., Sugimoto, H.: New world record Cu(In, Ga)\((\text{Se}, \text{ S })_2\) thin film solar cell efficiency beyond 22%. In: 2017 IEEE 44th (IEEE) Photovoltaic Specialist Conference (PVSC), pp. 1–5 (2017)
12.
Zurück zum Zitat Woodhouse, M., Goodrich, A., Margolis, R., James, T., Lokanc, M., Eggert, R.: Supply-chain dynamics of tellurium, indium and gallium within the context of PV module manufacturing costs. In: IEEE 38th (IEEE) Photovoltaic Specialists Conference (PVSC), vol. 2, pp. 1–6 (2012) Woodhouse, M., Goodrich, A., Margolis, R., James, T., Lokanc, M., Eggert, R.: Supply-chain dynamics of tellurium, indium and gallium within the context of PV module manufacturing costs. In: IEEE 38th (IEEE) Photovoltaic Specialists Conference (PVSC), vol. 2, pp. 1–6 (2012)
13.
Zurück zum Zitat Jani, O., Ferguson, I., Honsberg, C., Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91(13), 132117 (2007)CrossRef Jani, O., Ferguson, I., Honsberg, C., Kurtz, S.: Design and characterization of GaN/InGaN solar cells. Appl. Phys. Lett. 91(13), 132117 (2007)CrossRef
14.
Zurück zum Zitat Hamady, S Ould Saad, Adaine, A., Fressengeas, N.: Numerical simulation of InGaN Schottky solar cell. Mater. Sci. Semicond. Process. 41, 219 (2016)CrossRef Hamady, S Ould Saad, Adaine, A., Fressengeas, N.: Numerical simulation of InGaN Schottky solar cell. Mater. Sci. Semicond. Process. 41, 219 (2016)CrossRef
15.
Zurück zum Zitat Jiang, M., Yan, X.: Solar Cells-Research and Application Perspectives. InTech (2013) Jiang, M., Yan, X.: Solar Cells-Research and Application Perspectives. InTech (2013)
16.
Zurück zum Zitat Wang, W., Winkler, M., Gunawan, O., Gokmen, T., Todorov, T., Zhu, Y., Mitzi, D.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 7 (2014) Wang, W., Winkler, M., Gunawan, O., Gokmen, T., Todorov, T., Zhu, Y., Mitzi, D.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 7 (2014)
17.
Zurück zum Zitat Jiang, M., Li, Y., Dhakal, R., Thapaliya, P., Mastro, M., Caldwell, J., Kub, F., Yan, X.: \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) polycrystalline thin films with large densely packed grains prepared by sol–gel method. J. Photonics Energy 1(1), 019501 (2011)CrossRef Jiang, M., Li, Y., Dhakal, R., Thapaliya, P., Mastro, M., Caldwell, J., Kub, F., Yan, X.: \(\text{ Cu }_{2}\text{ ZnSnS }_{4}\) polycrystalline thin films with large densely packed grains prepared by sol–gel method. J. Photonics Energy 1(1), 019501 (2011)CrossRef
18.
Zurück zum Zitat Madelung, O.: Semiconductors: Data Handbook. Springer, Berlin (2012) Madelung, O.: Semiconductors: Data Handbook. Springer, Berlin (2012)
19.
Zurück zum Zitat Simya, O., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248 (2015)CrossRef Simya, O., Mahaboobbatcha, A., Balachander, K.: A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248 (2015)CrossRef
20.
Zurück zum Zitat NREL. Reference Solar Spectral Irradiance: ASTM G-173 (2004) NREL. Reference Solar Spectral Irradiance: ASTM G-173 (2004)
21.
Zurück zum Zitat Hamady, S Ould Saad, Fressengeas, N.: SLALOM: open-source, portable, and easy-to-use solar cell optimizer. Application to the design of InGaN solar cells. EPJ Photovoltaics 9, 13 (2018)CrossRef Hamady, S Ould Saad, Fressengeas, N.: SLALOM: open-source, portable, and easy-to-use solar cell optimizer. Application to the design of InGaN solar cells. EPJ Photovoltaics 9, 13 (2018)CrossRef
22.
Zurück zum Zitat Barkhouse, D., Haight, R., Sakai, N., Hiroi, H., Sugimoto, H., Mitzi, D.: Cd-free buffer layer materials on \(\text{ Cu }_{2}\text{ ZnSn(S }_{{\rm x}}\text{ Se }_{1-{\rm x}})_{4}\): Band alignments with ZnO, ZnS, and In2S3. Appl. Phys. Lett. 100(19), 193904 (2012)CrossRef Barkhouse, D., Haight, R., Sakai, N., Hiroi, H., Sugimoto, H., Mitzi, D.: Cd-free buffer layer materials on \(\text{ Cu }_{2}\text{ ZnSn(S }_{{\rm x}}\text{ Se }_{1-{\rm x}})_{4}\): Band alignments with ZnO, ZnS, and In2S3. Appl. Phys. Lett. 100(19), 193904 (2012)CrossRef
23.
Zurück zum Zitat Nguyen, M., Ernits, K., Tai, K.F., Ng, C., Pramana, S., Sasangka, W., Batabyal, S., Holopainen, T., Meissner, D., Neisser, A.: ZnS buffer layer for \(\text{ Cu } _{2}\text{ ZnSn(SSe) } _{4}\) monograin layer solar cell. Sol. Energy 111, 344 (2015)CrossRef Nguyen, M., Ernits, K., Tai, K.F., Ng, C., Pramana, S., Sasangka, W., Batabyal, S., Holopainen, T., Meissner, D., Neisser, A.: ZnS buffer layer for \(\text{ Cu } _{2}\text{ ZnSn(SSe) } _{4}\) monograin layer solar cell. Sol. Energy 111, 344 (2015)CrossRef
24.
Zurück zum Zitat Walsh, A., Chen, S., Wei, S., Gong, X.: Kesterite thin-film solar cells: advances in materials modelling of \(\text{ Cu } _{2}\text{ ZnSnS } _{4}\). Adv. Energy Mater. 2(4), 400 (2012)CrossRef Walsh, A., Chen, S., Wei, S., Gong, X.: Kesterite thin-film solar cells: advances in materials modelling of \(\text{ Cu } _{2}\text{ ZnSnS } _{4}\). Adv. Energy Mater. 2(4), 400 (2012)CrossRef
25.
Zurück zum Zitat Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N., Chey, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant \(\text{ Cu } _{2}\text{ ZnSnS } _{4}\) absorber. Prog. Photovoltaics Res. Appl. 21(1), 72 (2013)CrossRef Shin, B., Gunawan, O., Zhu, Y., Bojarczuk, N., Chey, S.: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant \(\text{ Cu } _{2}\text{ ZnSnS } _{4}\) absorber. Prog. Photovoltaics Res. Appl. 21(1), 72 (2013)CrossRef
Metadaten
Titel
Solis: a modular, portable, and high-performance 1D semiconductor device simulator
verfasst von
Sidi Ould Saad Hamady
Publikationsdatum
13.03.2020
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01477-7

Weitere Artikel der Ausgabe 2/2020

Journal of Computational Electronics 2/2020 Zur Ausgabe

Neuer Inhalt