Skip to main content

2019 | OriginalPaper | Buchkapitel

8. Solubilization and Dispersion of Carbon Allotropes and Their Metal-Complex Composites

verfasst von : Boris Ildusovich Kharisov, Oxana Vasilievna Kharissova

Erschienen in: Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Currently, the area of carbon allotropes, in particular nanocarbons, is one of the most developing fields in chemistry and nanotechnology, where carbon nanotubes and graphene are leaders in the number of publications. Taking into account their existing and potential technical, biological, medical applications (in particular for drug delivery purposes), and many others, we note that the main difficulty to integrate such materials into devices and biological systems derives from their lack of solubility in organic and physiological solutions. Functionalization of carbon allotropes with the assistance of biological molecules remarkably improves their solubility in aqueous or organic environment and, thus, facilitates the development of novel biotechnology, biomedicine, and bioengineering. For example, the nanodiamonds (NDs) have got a series of distinct applications in various areas, in particular medicine, electrochemistry and creation of novel materials. Biomedical applications of NDs are well-developed and related with the recently established fact that carbon NDs are much more biocompatible than most other carbon nanomaterials, including carbon blacks, fullerenes, and carbon nanotubes [1]. Their tiny size, large surface area, and ease functionalization with biomolecules make NDs attractive for various biomedical applications both in vitro and in vivo, for instance, for single particle imaging in cells, drug delivery, protein separation, and biosensing [2, 3]. Similarly, water-soluble carbon nanoonions (CNOs) are used for biological imaging [4] and as promising theranostic agents [5].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Section prepared with participation of M.Sc. César Máximo Oliva González (UANL, México).
 
2
Image reproduced with permission of the American Chemical Society (ACS Nano, 2010, 4, 7193–7204).
 
3
Image below is reproduced with permission of the Elsevier Science (Carbon. 2017, 111, 191–197).
 
4
Phosphate buffer solution.
 
5
Image reproduced with permission of the Elsevier Science (Sensors Actuators, B Chem. 2017, 240, 949–955).
 
6
The nanosponge image above is reproduced with permission of Nature (Scientific Reports, 2012, 2, Article number: 363).
 
7
Further reading: Begum A., Tripathi K.M., Sarkar S. Water-induced formation, characterization, and photoluminescence of carbon nanotube-based composites of gadolinium(III) and platinum(II) dithiolenes. Chemistry: A European Journal. 2014, 20(50), 16,657–16,661
 
8
Image reproduced with permission of the Royal Society of Chemistry (Chem. Commun., 2016, 52, 14,380–14,383).
 
Literatur
1.
Zurück zum Zitat Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRef
2.
Zurück zum Zitat V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRef
3.
Zurück zum Zitat A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences 34(1–2), 18–74 (2009)CrossRef A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences 34(1–2), 18–74 (2009)CrossRef
4.
Zurück zum Zitat M. Frasconi, V. Maffeis, J. Bartelmess, L. Echegoyen, S. Giordani, Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc. 3, 044005 (2015)CrossRef M. Frasconi, V. Maffeis, J. Bartelmess, L. Echegoyen, S. Giordani, Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc. 3, 044005 (2015)CrossRef
5.
Zurück zum Zitat A. Camisasca, S. Giordani, Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorg. Chim. Acta 468, 67–76 (2017)CrossRef A. Camisasca, S. Giordani, Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorg. Chim. Acta 468, 67–76 (2017)CrossRef
6.
Zurück zum Zitat O.V. Kharissova, B. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, New York, 2017), 250 ppCrossRef O.V. Kharissova, B. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, New York, 2017), 250 ppCrossRef
7.
Zurück zum Zitat F. Liang, E.W. Billups, Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658 (2007) F. Liang, E.W. Billups, Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658 (2007)
8.
Zurück zum Zitat J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson, Functionalization of carbon nanotubes in acidic media. WO05113434 (2005) J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson, Functionalization of carbon nanotubes in acidic media. WO05113434 (2005)
9.
Zurück zum Zitat T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)CrossRef T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)CrossRef
10.
Zurück zum Zitat K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)CrossRef K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)CrossRef
11.
Zurück zum Zitat M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)CrossRef M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)CrossRef
12.
Zurück zum Zitat J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of Carbon Nanotubes in Liquids. J. Disp. Sci. Techn. 24(1), 1–41 (2003)CrossRef J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of Carbon Nanotubes in Liquids. J. Disp. Sci. Techn. 24(1), 1–41 (2003)CrossRef
13.
Zurück zum Zitat C. Backes Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses (2016) 220 pp. C. Backes Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses (2016) 220 pp.
14.
Zurück zum Zitat M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, New York, 2007), p. 540 M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, New York, 2007), p. 540
15.
Zurück zum Zitat K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507 K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507
16.
Zurück zum Zitat S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, New York, 2004), p. 418 S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, New York, 2004), p. 418
17.
Zurück zum Zitat S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004), p. 224 S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004), p. 224
18.
Zurück zum Zitat A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, New York, 2008), p. 720 A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, New York, 2008), p. 720
19.
Zurück zum Zitat Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRef Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRef
20.
Zurück zum Zitat Y.Y. Huang, E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 4, 275–295 (2012)CrossRef Y.Y. Huang, E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 4, 275–295 (2012)CrossRef
21.
Zurück zum Zitat J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)CrossRef J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)CrossRef
22.
Zurück zum Zitat A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)CrossRef A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)CrossRef
23.
Zurück zum Zitat X. Xin, G. Xu, H. Li, Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemblies of Amphiphilic Molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, London, UK, 2013), pp. 255–273 X. Xin, G. Xu, H. Li, Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemblies of Amphiphilic Molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, London, UK, 2013), pp. 255–273
24.
Zurück zum Zitat M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, 2016). 536 pp M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, 2016). 536 pp
25.
Zurück zum Zitat G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, Germany, 2013), 128 pp G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, Germany, 2013), 128 pp
26.
Zurück zum Zitat S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)CrossRef S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)CrossRef
28.
Zurück zum Zitat Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRef Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRef
29.
Zurück zum Zitat S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRef S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRef
30.
Zurück zum Zitat Njuguna, J., Arda Vanli, O., Liang, R. A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc., 2015 2015, 463156, 11 pp.CrossRef Njuguna, J., Arda Vanli, O., Liang, R. A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc., 2015 2015, 463156, 11 pp.CrossRef
31.
Zurück zum Zitat M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6(1), 16–27 (2006) M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6(1), 16–27 (2006)
32.
Zurück zum Zitat D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)CrossRef D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)CrossRef
33.
Zurück zum Zitat N. Nakashima, T. Fujigaya, Fundamentals and Applications of Soluble Carbon Nanotubes. Chem. Lett. 36(6), 692 (2007)CrossRef N. Nakashima, T. Fujigaya, Fundamentals and Applications of Soluble Carbon Nanotubes. Chem. Lett. 36(6), 692 (2007)CrossRef
34.
Zurück zum Zitat L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)CrossRef L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)CrossRef
35.
Zurück zum Zitat A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRef
36.
Zurück zum Zitat P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRef
37.
Zurück zum Zitat R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)CrossRef R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)CrossRef
38.
Zurück zum Zitat N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)CrossRef N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)CrossRef
39.
Zurück zum Zitat H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6, 16–27 (2006) H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6, 16–27 (2006)
40.
Zurück zum Zitat Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)CrossRef Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)CrossRef
41.
Zurück zum Zitat F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. Nanosci. 38(12), 1109–1122 (2007)CrossRef F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. Nanosci. 38(12), 1109–1122 (2007)CrossRef
42.
Zurück zum Zitat M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh. Critical review on nanofluids: preparation, characterization, and applications. J. Nanomat. 2016, 6717624, 22 pp. M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh. Critical review on nanofluids: preparation, characterization, and applications. J. Nanomat. 2016, 6717624, 22 pp.
43.
Zurück zum Zitat M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840, 17 pp (2016)CrossRef M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840, 17 pp (2016)CrossRef
44.
Zurück zum Zitat C. Kleinstreuer, Z. Xu, Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. Fluids 1, 16, 33 pp (2016)CrossRef C. Kleinstreuer, Z. Xu, Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. Fluids 1, 16, 33 pp (2016)CrossRef
45.
Zurück zum Zitat S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)CrossRef S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)CrossRef
46.
Zurück zum Zitat S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016) S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016)
47.
Zurück zum Zitat H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci. Rep. 4, 3907 (2014)CrossRef H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci. Rep. 4, 3907 (2014)CrossRef
48.
Zurück zum Zitat O. Byl, J. Jie Liu, J.T. Yates Jr., Etching of Carbon Nanotubes by Ozones - A Surface Area Study. Langmuir 21, 4200–4204 (2005)CrossRef O. Byl, J. Jie Liu, J.T. Yates Jr., Etching of Carbon Nanotubes by Ozones - A Surface Area Study. Langmuir 21, 4200–4204 (2005)CrossRef
49.
Zurück zum Zitat B. Sohrabi, N. Poorgholami-Bejarpasi, N. Nayeri, Dispersion of Carbon Nanotubes Using Mixed Surfactants: Experimental and Molecular Dynamics Simulation Studies. J. Phys. Chem. B 118, 3094–3103 (2014)CrossRef B. Sohrabi, N. Poorgholami-Bejarpasi, N. Nayeri, Dispersion of Carbon Nanotubes Using Mixed Surfactants: Experimental and Molecular Dynamics Simulation Studies. J. Phys. Chem. B 118, 3094–3103 (2014)CrossRef
50.
Zurück zum Zitat A. Amiri, H.Z. Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam, B. Tolueinia, Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater. Lett. 72, 153–156 (2012)CrossRef A. Amiri, H.Z. Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam, B. Tolueinia, Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater. Lett. 72, 153–156 (2012)CrossRef
51.
Zurück zum Zitat A. Ansun-Casaos, L. Grasa, D. Pereboom, et al., In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells. IET Nanobiotechnol. 10(6), 374–381 (2016)CrossRef A. Ansun-Casaos, L. Grasa, D. Pereboom, et al., In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells. IET Nanobiotechnol. 10(6), 374–381 (2016)CrossRef
52.
Zurück zum Zitat Y. Marcus, A.L. Smith, M.V. Korobov, A.L. Mirakyan, N.V. Avramenko, E.B. Stukalin, Solubility of C60 Fullerene. J. Phys. Chem. B 105(13), 2499–2506 (2001)CrossRef Y. Marcus, A.L. Smith, M.V. Korobov, A.L. Mirakyan, N.V. Avramenko, E.B. Stukalin, Solubility of C60 Fullerene. J. Phys. Chem. B 105(13), 2499–2506 (2001)CrossRef
53.
Zurück zum Zitat U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev, N.A. Davidenko, V.V. Cherepanov, A.I. Senenko, O.A. Marchenko, A.G. Naumovets, Structural Features of Highly Stable Reproducible C60 Fullerene Aqueous Colloid Solution Probed by Various Techniques. Fullerenes Nanotub. Carbon Nanostructures 23(6), 530–534 (2015)CrossRef U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev, N.A. Davidenko, V.V. Cherepanov, A.I. Senenko, O.A. Marchenko, A.G. Naumovets, Structural Features of Highly Stable Reproducible C60 Fullerene Aqueous Colloid Solution Probed by Various Techniques. Fullerenes Nanotub. Carbon Nanostructures 23(6), 530–534 (2015)CrossRef
54.
Zurück zum Zitat X. Xu, L. Li, F. Yan, Q. Jia, Q. Wang, P. Ma, Predicting solubility of fullerene C60 in diverse organic solvents using norm indexes. J. Mol. Liq. 223, 603–610 (2016)CrossRef X. Xu, L. Li, F. Yan, Q. Jia, Q. Wang, P. Ma, Predicting solubility of fullerene C60 in diverse organic solvents using norm indexes. J. Mol. Liq. 223, 603–610 (2016)CrossRef
55.
Zurück zum Zitat J.D. Perea, S. Langner, M. Salvador, J. Kontos, G. Jarvas, F. Winkler, F. Machui, A. Görling, A. Dallos, T. Ameri, C.J. Brabec, Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes. J. Phys. Chem. B 120(19), 4431–4438 (2016)CrossRef J.D. Perea, S. Langner, M. Salvador, J. Kontos, G. Jarvas, F. Winkler, F. Machui, A. Görling, A. Dallos, T. Ameri, C.J. Brabec, Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes. J. Phys. Chem. B 120(19), 4431–4438 (2016)CrossRef
56.
Zurück zum Zitat Y.S. Youn, D.S. Kwag, E.S. Lee, Multifunctional nano-sized fullerenes for advanced tumor therapy. J. Pharm. Investig. 47(1), 1–10 (2017)CrossRef Y.S. Youn, D.S. Kwag, E.S. Lee, Multifunctional nano-sized fullerenes for advanced tumor therapy. J. Pharm. Investig. 47(1), 1–10 (2017)CrossRef
57.
Zurück zum Zitat F.Y. Hsieh, A.V. Zhilenkov, I.I. Voronov, E.A. Khakina, D.V. Mischenko, P.A. Troshin, S.H. Hsu, Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl. Mater. Interfaces 9(13), 11482–11492 (2017)CrossRef F.Y. Hsieh, A.V. Zhilenkov, I.I. Voronov, E.A. Khakina, D.V. Mischenko, P.A. Troshin, S.H. Hsu, Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl. Mater. Interfaces 9(13), 11482–11492 (2017)CrossRef
58.
Zurück zum Zitat I.V. Mikheev, E.S. Khimich, A.T. Rebrikova, D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Quasi-equilibrium distribution of pristine fullerenes C60 and C70 in a water–toluene system. Carbon 111, 191–197 (2017)CrossRef I.V. Mikheev, E.S. Khimich, A.T. Rebrikova, D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Quasi-equilibrium distribution of pristine fullerenes C60 and C70 in a water–toluene system. Carbon 111, 191–197 (2017)CrossRef
59.
Zurück zum Zitat N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, S.V. Shekhovtsov, The peculiar behavior of fullerene C60 in mixtures of ‘good’ and polar solvents: Colloidal particles in the toluene–methanol mixtures and some other systems. Colloids Surfaces A Physicochem. Eng. Asp. 509, 631–637 (2016)CrossRef N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, S.V. Shekhovtsov, The peculiar behavior of fullerene C60 in mixtures of ‘good’ and polar solvents: Colloidal particles in the toluene–methanol mixtures and some other systems. Colloids Surfaces A Physicochem. Eng. Asp. 509, 631–637 (2016)CrossRef
60.
Zurück zum Zitat X. Tao, C. Li, B. Zhang, Y. He, Effects of aqueous stable fullerene nanocrystals (nC60) on the food conversion from Daphnia magna to Danio rerio in a simplified freshwater food chain. Chemosphere 145, 157–162 (2016)CrossRef X. Tao, C. Li, B. Zhang, Y. He, Effects of aqueous stable fullerene nanocrystals (nC60) on the food conversion from Daphnia magna to Danio rerio in a simplified freshwater food chain. Chemosphere 145, 157–162 (2016)CrossRef
61.
Zurück zum Zitat M. Siepi, J. Politi, P. Dardano, A. Amoresano, L. De Stefano, D.M. Monti, E. Notomista, Modified denatured lysozyme effectively solubilizes fullerene C60 nanoparticles in water. Nanotechnology 28(33), 335601 (2017)CrossRef M. Siepi, J. Politi, P. Dardano, A. Amoresano, L. De Stefano, D.M. Monti, E. Notomista, Modified denatured lysozyme effectively solubilizes fullerene C60 nanoparticles in water. Nanotechnology 28(33), 335601 (2017)CrossRef
62.
Zurück zum Zitat Y.A.J. Al-Hamadani, K. Hoon Chu, A. Son, et al., Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Sep. Purif. Technol. 156, 861–874 (2015)CrossRef Y.A.J. Al-Hamadani, K. Hoon Chu, A. Son, et al., Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Sep. Purif. Technol. 156, 861–874 (2015)CrossRef
63.
Zurück zum Zitat K.J. Moor, S.D. Snow, J.H. Kim, Environ. Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates. Sci. Technol. 49(10), 5990–5998 (2015)CrossRef K.J. Moor, S.D. Snow, J.H. Kim, Environ. Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates. Sci. Technol. 49(10), 5990–5998 (2015)CrossRef
64.
Zurück zum Zitat C. Chen, C.T. Jafvert, Sorption of Buckminsterfullerene (C60) to Saturated Soils. Eviron. Sci. Techn. 43(19), 7370–7375 (2009)CrossRef C. Chen, C.T. Jafvert, Sorption of Buckminsterfullerene (C60) to Saturated Soils. Eviron. Sci. Techn. 43(19), 7370–7375 (2009)CrossRef
65.
Zurück zum Zitat C.T. Jafvert, P.P. Kulkarni, Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ. Sci. Technol. 42, 5945–5950 (2008)CrossRef C.T. Jafvert, P.P. Kulkarni, Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ. Sci. Technol. 42, 5945–5950 (2008)CrossRef
66.
Zurück zum Zitat Y.J. Marcus, Solubilities of Buckminsterfullerene and Sulfur Hexafluoride in Various Solvents. Phys. Chem. B 101(42), 8617–8623 (1997)CrossRef Y.J. Marcus, Solubilities of Buckminsterfullerene and Sulfur Hexafluoride in Various Solvents. Phys. Chem. B 101(42), 8617–8623 (1997)CrossRef
67.
Zurück zum Zitat S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, New LSER Model Based on Solvent Empirical Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents. J. Solut. Chem. 42(8), 1620–1632 (2013)CrossRef S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, New LSER Model Based on Solvent Empirical Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents. J. Solut. Chem. 42(8), 1620–1632 (2013)CrossRef
68.
Zurück zum Zitat B.A. Kowert, N.C. Dang, K.T. Sobush, L.G.S. Iii, Diffusion of Buckminsterfullerene in n-Alkanes. J. Phys. Chem. A 903, 1253–1257 (2003)CrossRef B.A. Kowert, N.C. Dang, K.T. Sobush, L.G.S. Iii, Diffusion of Buckminsterfullerene in n-Alkanes. J. Phys. Chem. A 903, 1253–1257 (2003)CrossRef
69.
Zurück zum Zitat M. Karakawa, T. Nagai, T. Irita, K. Adachi, Y. Ie, Y. Aso, Buckminsterfullerene derivatives bearing a fluoroalkyl group for use in organic photovoltaic cells. J. Fluor. Chem. 144, 51–58 (2012)CrossRef M. Karakawa, T. Nagai, T. Irita, K. Adachi, Y. Ie, Y. Aso, Buckminsterfullerene derivatives bearing a fluoroalkyl group for use in organic photovoltaic cells. J. Fluor. Chem. 144, 51–58 (2012)CrossRef
70.
Zurück zum Zitat N.V. Avramenko, A.L. Mirakyan, M.V. Korobov, Thermal behaviour of the crystals formed in the buckminsterfullerene-toluene, o-xylene and bromobenzene systems. Thermochim. Acta 299(1–2), 141–144 (1997)CrossRef N.V. Avramenko, A.L. Mirakyan, M.V. Korobov, Thermal behaviour of the crystals formed in the buckminsterfullerene-toluene, o-xylene and bromobenzene systems. Thermochim. Acta 299(1–2), 141–144 (1997)CrossRef
71.
Zurück zum Zitat A.L. Balch, D.A. Costa, B.C. Noll, M.M. Olmstead, Oxidation of Buckminsterfullerene with m-Chloroperoxybenzoic Acid. Characterization of a Cs Isomer of the Diepoxide. J. Am. Chem. Soc. 117(35), 8926–8932 (1995)CrossRef A.L. Balch, D.A. Costa, B.C. Noll, M.M. Olmstead, Oxidation of Buckminsterfullerene with m-Chloroperoxybenzoic Acid. Characterization of a Cs Isomer of the Diepoxide. J. Am. Chem. Soc. 117(35), 8926–8932 (1995)CrossRef
72.
Zurück zum Zitat Q. Ying, J. Marecek, B. Chu, Slow aggregation of buckminsterfullerene (C& in benzene solution. Chem. Phys. Lett. 219(3–4), 214–218 (1994)CrossRef Q. Ying, J. Marecek, B. Chu, Slow aggregation of buckminsterfullerene (C& in benzene solution. Chem. Phys. Lett. 219(3–4), 214–218 (1994)CrossRef
73.
Zurück zum Zitat K.N. Semenov, N.A. Charykov, E.R. López, J. Fernández, V.V. Sharoyko, I.V. Murin, Pressure dependence of the solubility of light fullerenes in n-nonane. J. Chem. Thermodyn. 112, 259–266 (2017)CrossRef K.N. Semenov, N.A. Charykov, E.R. López, J. Fernández, V.V. Sharoyko, I.V. Murin, Pressure dependence of the solubility of light fullerenes in n-nonane. J. Chem. Thermodyn. 112, 259–266 (2017)CrossRef
74.
Zurück zum Zitat Á. Buvári-Barcza, T. Braun, L. Barcza, On the formation of water-soluble buckminsterfullerene-7-cyclodextrin complexes. Supramol. Chem. 4(2), 131–133 (1994)CrossRef Á. Buvári-Barcza, T. Braun, L. Barcza, On the formation of water-soluble buckminsterfullerene-7-cyclodextrin complexes. Supramol. Chem. 4(2), 131–133 (1994)CrossRef
75.
Zurück zum Zitat A. BuvariBarcza, L. Barcza, T. Braun, I. KonkolyThege, K. Ludanyi, K. Vekey, The Interaction of Buckminsterfullerene with Gamma-Cyclodextrin. Fuller. Sci. Technol. 5(2), 311–323 (1997)CrossRef A. BuvariBarcza, L. Barcza, T. Braun, I. KonkolyThege, K. Ludanyi, K. Vekey, The Interaction of Buckminsterfullerene with Gamma-Cyclodextrin. Fuller. Sci. Technol. 5(2), 311–323 (1997)CrossRef
76.
Zurück zum Zitat H. Ming Wang, G. Wenz, Molecular solubilization of fullerene C60 in water by γ-cyclodextrin thioethers. Beilstein J. Org. Chem. 8, 1644–1651 (2012)CrossRef H. Ming Wang, G. Wenz, Molecular solubilization of fullerene C60 in water by γ-cyclodextrin thioethers. Beilstein J. Org. Chem. 8, 1644–1651 (2012)CrossRef
77.
Zurück zum Zitat K.N. Semenov, N.A. Charykov, I.V. Murin, Y.V. Pukharenko, Physico-chemical properties of the C60-tris-malonic derivative water solutions. J. Mol. Liq. 201, 50–58 (2015)CrossRef K.N. Semenov, N.A. Charykov, I.V. Murin, Y.V. Pukharenko, Physico-chemical properties of the C60-tris-malonic derivative water solutions. J. Mol. Liq. 201, 50–58 (2015)CrossRef
78.
Zurück zum Zitat G. Jiang, F. Yin, J. Duan, G. Li, Synthesis and properties of novel water-soluble fullerene–glycine derivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med. 26(1), 5348 (2015)CrossRef G. Jiang, F. Yin, J. Duan, G. Li, Synthesis and properties of novel water-soluble fullerene–glycine derivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med. 26(1), 5348 (2015)CrossRef
79.
Zurück zum Zitat G. Raffaini, F. Ganazzoli, A Molecular Dynamics Study of the Inclusion Complexes of C60 with Some Cyclodextrins. J. Phys. Chem. B 114, 7133–7139 (2010)CrossRef G. Raffaini, F. Ganazzoli, A Molecular Dynamics Study of the Inclusion Complexes of C60 with Some Cyclodextrins. J. Phys. Chem. B 114, 7133–7139 (2010)CrossRef
80.
Zurück zum Zitat S.M. Miller, Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environ. Sci. Technol. 40(23), 7394–7401 (2006)CrossRef S.M. Miller, Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environ. Sci. Technol. 40(23), 7394–7401 (2006)CrossRef
81.
Zurück zum Zitat R.D. Maples, M.E. Hilburn, B.S. Murdianti, R.S. Hikkaduwa Koralege, J.S. Williams, S.I. Kuriyavar, K.D. Ausman, Optimized solvent-exchange synthesis method for C60 colloidal dispersions. J. Colloid Interface Sci. 370(1), 27–31 (2012)CrossRef R.D. Maples, M.E. Hilburn, B.S. Murdianti, R.S. Hikkaduwa Koralege, J.S. Williams, S.I. Kuriyavar, K.D. Ausman, Optimized solvent-exchange synthesis method for C60 colloidal dispersions. J. Colloid Interface Sci. 370(1), 27–31 (2012)CrossRef
82.
Zurück zum Zitat Z. Wang, Z. Lu, Y. Zhao, X. Gao, Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: Atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7(7), 2914–2925 (2015)CrossRef Z. Wang, Z. Lu, Y. Zhao, X. Gao, Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: Atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7(7), 2914–2925 (2015)CrossRef
83.
Zurück zum Zitat S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov, Study of Fullerene Aqueous Dispersion Prepared by Novel Dialysis Method: Simple Way to Fullerene Aqueous Solution. Fullerenes Nanotub. Carbon Nanostructures 23(9), 792–800 (2015)CrossRef S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov, Study of Fullerene Aqueous Dispersion Prepared by Novel Dialysis Method: Simple Way to Fullerene Aqueous Solution. Fullerenes Nanotub. Carbon Nanostructures 23(9), 792–800 (2015)CrossRef
84.
Zurück zum Zitat A. Ikeda, T. Iizuka, N. Maekubo, et al., Water Solubilization of Fullerene Derivatives by β-(1,3-1,6)-d-Glucan and Their Photodynamic Activities toward Macrophages. Chem. Asian J. 12(10), 1069–1074 (2017)CrossRef A. Ikeda, T. Iizuka, N. Maekubo, et al., Water Solubilization of Fullerene Derivatives by β-(1,3-1,6)-d-Glucan and Their Photodynamic Activities toward Macrophages. Chem. Asian J. 12(10), 1069–1074 (2017)CrossRef
85.
Zurück zum Zitat S.J. Vance, V. Desai, B.O. Smith, M.W. Kennedy, A. Cooper, Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2. Biophys. Chem. 214-215, 27–32 (2016)CrossRef S.J. Vance, V. Desai, B.O. Smith, M.W. Kennedy, A. Cooper, Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2. Biophys. Chem. 214-215, 27–32 (2016)CrossRef
86.
Zurück zum Zitat K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data 55(1), 13–36 (2010)CrossRef K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data 55(1), 13–36 (2010)CrossRef
87.
Zurück zum Zitat Y. He, G. Zhao, B. Peng, Y. Li, High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct. Adv. Funct. Mater. 20(19), 3383–3389 (2010)CrossRef Y. He, G. Zhao, B. Peng, Y. Li, High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct. Adv. Funct. Mater. 20(19), 3383–3389 (2010)CrossRef
88.
Zurück zum Zitat N. Sivaraman, R. Dhamodaran, I. Kaliappan, T.G. Srinivasan, P.R.P. Vasudeva Rao, C.K.C. Mathews, Solubility of C70 in Organic Solvents. Full. Sci. Technol. 2, 233–246 (1994)CrossRef N. Sivaraman, R. Dhamodaran, I. Kaliappan, T.G. Srinivasan, P.R.P. Vasudeva Rao, C.K.C. Mathews, Solubility of C70 in Organic Solvents. Full. Sci. Technol. 2, 233–246 (1994)CrossRef
89.
Zurück zum Zitat S. Martins, A. Fedorov, C.A.M. Afonso, C. Baleizão, M.N. Berberan-Santos, Fluorescence of fullerene C70 in ionic liquids. Chem. Phys. Lett. 497(1–3), 43–47 (2010)CrossRef S. Martins, A. Fedorov, C.A.M. Afonso, C. Baleizão, M.N. Berberan-Santos, Fluorescence of fullerene C70 in ionic liquids. Chem. Phys. Lett. 497(1–3), 43–47 (2010)CrossRef
90.
Zurück zum Zitat K.N. Semenov, N.A. Charykov, O.V. Arapov, V.A. Keskinov, A.K. Pyartman, M.S. Gutenev, O.V. Proskurina, M.Y. Matuzenko, V.V. Klepikov, The solubility of fullerene C70 in monocarboxylic acids Cn−1H2n−1COOH (n = 1–9) over the temperature range 20–80°C. Russ. J. Phys. Chem. A 82(6), 1045–1047 (2008)CrossRef K.N. Semenov, N.A. Charykov, O.V. Arapov, V.A. Keskinov, A.K. Pyartman, M.S. Gutenev, O.V. Proskurina, M.Y. Matuzenko, V.V. Klepikov, The solubility of fullerene C70 in monocarboxylic acids Cn−1H2n−1COOH (n = 1–9) over the temperature range 20–80°C. Russ. J. Phys. Chem. A 82(6), 1045–1047 (2008)CrossRef
91.
Zurück zum Zitat K.N. Semenov, N.A. Charykov, O.V. Arapov, Temperature Dependence of the Light Fullerenes Solubility in Natural Oils and Animal Fats. Fullerenes Nanotubes Carbon Nanostructures 17(3), 230–248 (2009)CrossRef K.N. Semenov, N.A. Charykov, O.V. Arapov, Temperature Dependence of the Light Fullerenes Solubility in Natural Oils and Animal Fats. Fullerenes Nanotubes Carbon Nanostructures 17(3), 230–248 (2009)CrossRef
92.
Zurück zum Zitat Y. Liu, R.L. Vander Wal, V.N. Khabashesku, Functionalization of Carbon Nano-onions by Direct Fluorination. Chem. Mater. 19(4), 778–786 (2007)CrossRef Y. Liu, R.L. Vander Wal, V.N. Khabashesku, Functionalization of Carbon Nano-onions by Direct Fluorination. Chem. Mater. 19(4), 778–786 (2007)CrossRef
93.
Zurück zum Zitat O.V. Kuznetsov, M.X. Pulikkathara, R.F.M. Lobo, V.N. Khabasheskua, Solubilization of carbon nanoparticles, nanotubes, nanoonions, and nanodiamonds through covalent functionalization with sucrose. Russ. Chem. Bull. 59(8), 1495–1505 (2010)CrossRef O.V. Kuznetsov, M.X. Pulikkathara, R.F.M. Lobo, V.N. Khabasheskua, Solubilization of carbon nanoparticles, nanotubes, nanoonions, and nanodiamonds through covalent functionalization with sucrose. Russ. Chem. Bull. 59(8), 1495–1505 (2010)CrossRef
94.
Zurück zum Zitat M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, L. Echegoyen, The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)CrossRef M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, L. Echegoyen, The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)CrossRef
95.
Zurück zum Zitat M. Ghosh, S.K. Sonkar, M. Saxena, S. Sarkar, Carbon Nano-onions for Imaging the Life Cycle of Drosophila Melanogaster. Small 7(22), 3170–3177 (2011)CrossRef M. Ghosh, S.K. Sonkar, M. Saxena, S. Sarkar, Carbon Nano-onions for Imaging the Life Cycle of Drosophila Melanogaster. Small 7(22), 3170–3177 (2011)CrossRef
96.
Zurück zum Zitat M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L. Echegoyen, Preparation and Characterization of Composites that Contain Small Carbon Nano-Onions and Conducting Polyaniline. Chem. - A Eur. J. 18(9), 2600–2608 (2012)CrossRef M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L. Echegoyen, Preparation and Characterization of Composites that Contain Small Carbon Nano-Onions and Conducting Polyaniline. Chem. - A Eur. J. 18(9), 2600–2608 (2012)CrossRef
97.
Zurück zum Zitat E. Wajs, A. Molina-Ontoria, T.T. Nielsen, L. Echegoyen, A. Fragoso, Supramolecular solubilization of cyclodextrin-modified carbon nano-onions by host-guest interactions. Langmuir 31(1), 535–541 (2015)CrossRef E. Wajs, A. Molina-Ontoria, T.T. Nielsen, L. Echegoyen, A. Fragoso, Supramolecular solubilization of cyclodextrin-modified carbon nano-onions by host-guest interactions. Langmuir 31(1), 535–541 (2015)CrossRef
98.
Zurück zum Zitat C. Zhang, J. Li, X. Zeng, Z. Yuan, N. Zhao, Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 11(1), 174–184 (2018)CrossRef C. Zhang, J. Li, X. Zeng, Z. Yuan, N. Zhao, Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 11(1), 174–184 (2018)CrossRef
99.
Zurück zum Zitat V. Sok, A. Fragoso, Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol. 48(2), 136–143 (2018)CrossRef V. Sok, A. Fragoso, Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol. 48(2), 136–143 (2018)CrossRef
100.
Zurück zum Zitat I.D.M. Turullois, B.H. García, E.A.M. Morales, E.M. Bergas, Exfoliation of graphite with deep eutectic solvents. U.S. Patent Application No. 15/078,283 (2016) I.D.M. Turullois, B.H. García, E.A.M. Morales, E.M. Bergas, Exfoliation of graphite with deep eutectic solvents. U.S. Patent Application No. 15/078,283 (2016)
101.
Zurück zum Zitat A. Hadi, J. Karimi-Sabet, S.M.A. Moosavian, S. Ghorbanian, Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. J. Supercrit. Fluids 107, 92–105 (2016)CrossRef A. Hadi, J. Karimi-Sabet, S.M.A. Moosavian, S. Ghorbanian, Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. J. Supercrit. Fluids 107, 92–105 (2016)CrossRef
102.
Zurück zum Zitat J.M. Tour, M. Pasquali, N. Behabtu et al., Dissolution of graphite, graphite and graphene nanoribbons in superacid solutions and manipulation thereof. US Patent 9534319B2 (2009) J.M. Tour, M. Pasquali, N. Behabtu et al., Dissolution of graphite, graphite and graphene nanoribbons in superacid solutions and manipulation thereof. US Patent 9534319B2 (2009)
103.
Zurück zum Zitat G. Zhang, K. Zhou, R. Xu, H. Chen, X. Ma, B. Zhang, Z. Chang, X. Sun, An alternative pathway to water soluble functionalized graphene from the defluorination of graphite fluoride. Carbon 96, 1022–1027 (2016)CrossRef G. Zhang, K. Zhou, R. Xu, H. Chen, X. Ma, B. Zhang, Z. Chang, X. Sun, An alternative pathway to water soluble functionalized graphene from the defluorination of graphite fluoride. Carbon 96, 1022–1027 (2016)CrossRef
104.
Zurück zum Zitat T.B. Gorji, A.A. Ranjbar, A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol. Energy 135, 493–505 (2016)CrossRef T.B. Gorji, A.A. Ranjbar, A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol. Energy 135, 493–505 (2016)CrossRef
105.
Zurück zum Zitat P. Lian, J. Song, Z. Liu, J. Zhang, Y. Zhao, Y. Gao, Z. Tao, Z. He, L. Gao, H. Xia, Q. Guo, P. Huai, X. Zhou, Preparation of ultrafine-grain graphite by liquid dispersion technique for inhibiting the liquid fluoride salt infiltration. Carbon 102, 208–215 (2016)CrossRef P. Lian, J. Song, Z. Liu, J. Zhang, Y. Zhao, Y. Gao, Z. Tao, Z. He, L. Gao, H. Xia, Q. Guo, P. Huai, X. Zhou, Preparation of ultrafine-grain graphite by liquid dispersion technique for inhibiting the liquid fluoride salt infiltration. Carbon 102, 208–215 (2016)CrossRef
106.
Zurück zum Zitat A.P.S. Chauhan, K. Chawla, Comparative studies on Graphite and Carbon Black powders, and their dispersions. J. Mol. Liq. 221, 292–297 (2016)CrossRef A.P.S. Chauhan, K. Chawla, Comparative studies on Graphite and Carbon Black powders, and their dispersions. J. Mol. Liq. 221, 292–297 (2016)CrossRef
107.
Zurück zum Zitat M.H. Tsai, I.H. Tseng, Y.C. Huang, H.P. Yu, P.Y. Chang, Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite. Adv. Eng. Mater. 18(4), 582–590 (2016)CrossRef M.H. Tsai, I.H. Tseng, Y.C. Huang, H.P. Yu, P.Y. Chang, Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite. Adv. Eng. Mater. 18(4), 582–590 (2016)CrossRef
108.
Zurück zum Zitat J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRef J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRef
109.
Zurück zum Zitat S. Yumin, P. June, J.K. Yu, S. Maeng-Je, H. Seunghun, Synthesis of Graphene Layers Using Graphite Dispersion in Aqueous Surfactant Solutions. J. Korean Phys. Soc. 58(41), 938–942 (2011) S. Yumin, P. June, J.K. Yu, S. Maeng-Je, H. Seunghun, Synthesis of Graphene Layers Using Graphite Dispersion in Aqueous Surfactant Solutions. J. Korean Phys. Soc. 58(41), 938–942 (2011)
110.
Zurück zum Zitat M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, M. Blighe, S. De, Z. Wang, I.T. Mcgovern, G.S. Duesberg, J.N. Coleman, F.M. Blighe, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRef M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, M. Blighe, S. De, Z. Wang, I.T. Mcgovern, G.S. Duesberg, J.N. Coleman, F.M. Blighe, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRef
111.
Zurück zum Zitat A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Sterioti, A.K. Stubos, Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 5(16), 1841–1845 (2009)CrossRef A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Sterioti, A.K. Stubos, Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 5(16), 1841–1845 (2009)CrossRef
112.
Zurück zum Zitat J. Xu, D.K. Dang, V.T. Tran, X. Liu, J.S. Chung, S.H. Hur, W.M. Choi, E.J. Kim, P.A. Kohl, Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J. Colloid Interface Sci. 418, 37–42 (2014)CrossRef J. Xu, D.K. Dang, V.T. Tran, X. Liu, J.S. Chung, S.H. Hur, W.M. Choi, E.J. Kim, P.A. Kohl, Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J. Colloid Interface Sci. 418, 37–42 (2014)CrossRef
113.
Zurück zum Zitat A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, S.A. Moshkalev, Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 69, 525–535 (2014)CrossRef A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, S.A. Moshkalev, Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 69, 525–535 (2014)CrossRef
114.
Zurück zum Zitat M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Carbon 41, 2141–2148 (2003)CrossRef M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Carbon 41, 2141–2148 (2003)CrossRef
115.
Zurück zum Zitat L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)CrossRef L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)CrossRef
116.
Zurück zum Zitat Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010)CrossRef Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010)CrossRef
117.
Zurück zum Zitat S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. Mcwilliams, M.A. Hamon, R.C. Haddon, Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRef S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. Mcwilliams, M.A. Hamon, R.C. Haddon, Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRef
118.
Zurück zum Zitat R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal Percolation in Stable Graphite Suspensions. Nano Lett. 12(1), 188–192 (2012)CrossRef R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal Percolation in Stable Graphite Suspensions. Nano Lett. 12(1), 188–192 (2012)CrossRef
119.
Zurück zum Zitat J. Liu, H. Jeong, J. Liu, K. Lee, J.-Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48, 2282–2289 (2010)CrossRef J. Liu, H. Jeong, J. Liu, K. Lee, J.-Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48, 2282–2289 (2010)CrossRef
120.
Zurück zum Zitat J.H. Lee, Y.M. Choi, U. Paik, J.G. Park, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Electroceram. 17(2–4), 657–660 (2006)CrossRef J.H. Lee, Y.M. Choi, U. Paik, J.G. Park, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Electroceram. 17(2–4), 657–660 (2006)CrossRef
121.
Zurück zum Zitat J.H. Lee, S. Lee, U. Paik, Y.M. Choi, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Power Sources 147(1–2), 249–255 (2005)CrossRef J.H. Lee, S. Lee, U. Paik, Y.M. Choi, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Power Sources 147(1–2), 249–255 (2005)CrossRef
122.
Zurück zum Zitat M.R. Azani, A. Hassanpour, V. Carcelén, C. Gibaja, D. Granados, R. Mas-Ballesté, F. Zamora, Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Appl. Mater. Today 2, 17–23 (2016)CrossRef M.R. Azani, A. Hassanpour, V. Carcelén, C. Gibaja, D. Granados, R. Mas-Ballesté, F. Zamora, Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Appl. Mater. Today 2, 17–23 (2016)CrossRef
123.
Zurück zum Zitat W. Yang, A. Lucotti, M. Tommasini, W.A. Chalifoux, Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. J. Am. Chem. Soc. 138(29), 9137–9144 (2016)CrossRef W. Yang, A. Lucotti, M. Tommasini, W.A. Chalifoux, Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. J. Am. Chem. Soc. 138(29), 9137–9144 (2016)CrossRef
124.
Zurück zum Zitat R.T.M. Ahmad, S.H. Hong, T.Z. Shen, J.K. Song, Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98, 188–194 (2016)CrossRef R.T.M. Ahmad, S.H. Hong, T.Z. Shen, J.K. Song, Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98, 188–194 (2016)CrossRef
125.
Zurück zum Zitat J. Yang, Y. Xia, H. Song, B. Chen, Z. Zhang, Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 2017(105), 118–124 (July 2016) J. Yang, Y. Xia, H. Song, B. Chen, Z. Zhang, Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 2017(105), 118–124 (July 2016)
126.
Zurück zum Zitat Y. Zhang, L. Ji, W. Li, Z. Zhang, L. Lu, L. Zhou, J. Liu, Y. Chen, L. Liu, W. Chen, Y. Zhang, Highly defective graphite for scalable synthesis of nitrogen doped holey graphene with high volumetric capacitance. J. Power Sources 334, 104–111 (2016)CrossRef Y. Zhang, L. Ji, W. Li, Z. Zhang, L. Lu, L. Zhou, J. Liu, Y. Chen, L. Liu, W. Chen, Y. Zhang, Highly defective graphite for scalable synthesis of nitrogen doped holey graphene with high volumetric capacitance. J. Power Sources 334, 104–111 (2016)CrossRef
127.
Zurück zum Zitat K. Lellala, K. Namratha, K. Byrappa, Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. Microporous Mesoporous Mater. 226, 522–529 (2016)CrossRef K. Lellala, K. Namratha, K. Byrappa, Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. Microporous Mesoporous Mater. 226, 522–529 (2016)CrossRef
128.
Zurück zum Zitat S. Park, J. An, I. Jung, et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 9, 1593–1597 (2009)CrossRef S. Park, J. An, I. Jung, et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 9, 1593–1597 (2009)CrossRef
129.
Zurück zum Zitat J. Texter, Graphene dispersions. Curr. Opin. Colloid Interface Sci. 19(2), 163–174 (2014)CrossRef J. Texter, Graphene dispersions. Curr. Opin. Colloid Interface Sci. 19(2), 163–174 (2014)CrossRef
130.
Zurück zum Zitat J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, M.J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, et al., Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. J. Alloys Compd. 536S, S450–S455 (2012)CrossRef J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, M.J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, et al., Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. J. Alloys Compd. 536S, S450–S455 (2012)CrossRef
131.
Zurück zum Zitat X. Cui, C. Zhang, R. Hao, Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011)CrossRef X. Cui, C. Zhang, R. Hao, Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011)CrossRef
132.
Zurück zum Zitat U. Khan, H. Porwal, A. O'Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011)CrossRef U. Khan, H. Porwal, A. O'Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011)CrossRef
133.
Zurück zum Zitat R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)CrossRef R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)CrossRef
134.
Zurück zum Zitat M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)CrossRef M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)CrossRef
135.
Zurück zum Zitat D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRef D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRef
136.
Zurück zum Zitat J.-H. Ding, H.-R. Zhao, H.-B. Yu, A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci. Rep. 8(1), 5567 (2018)CrossRef J.-H. Ding, H.-R. Zhao, H.-B. Yu, A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci. Rep. 8(1), 5567 (2018)CrossRef
137.
Zurück zum Zitat L. Dong, Z. Chen, X. Zhao, J. Ma, S. Lin, M. Li, Y. Bao, L. Chu, K. Leng, H. Lu, K.P. Loh, A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat. Commun. 9(1), 76 (2018)CrossRef L. Dong, Z. Chen, X. Zhao, J. Ma, S. Lin, M. Li, Y. Bao, L. Chu, K. Leng, H. Lu, K.P. Loh, A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat. Commun. 9(1), 76 (2018)CrossRef
138.
Zurück zum Zitat L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5), 1653–1662 (2011)CrossRef L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5), 1653–1662 (2011)CrossRef
139.
Zurück zum Zitat K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1–3), 51–56 (2007)CrossRef K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1–3), 51–56 (2007)CrossRef
140.
Zurück zum Zitat J.M. Englert, J. Röhrl, C.D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, A. Hirsch, Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile. Adv. Mater. 21(42), 4265–4269 (2009)CrossRef J.M. Englert, J. Röhrl, C.D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, A. Hirsch, Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile. Adv. Mater. 21(42), 4265–4269 (2009)CrossRef
141.
Zurück zum Zitat A. Ghosh, K.V. Rao, S.J. George, C.N.R. Rao, Noncovalent Functionalization, Exfoliation, and Solubilization of Graphene in Water by Employing a Fluorescent Coronene Carboxylate. Chem. - A Eur. J. 16(9), 2700–2704 (2010)CrossRef A. Ghosh, K.V. Rao, S.J. George, C.N.R. Rao, Noncovalent Functionalization, Exfoliation, and Solubilization of Graphene in Water by Employing a Fluorescent Coronene Carboxylate. Chem. - A Eur. J. 16(9), 2700–2704 (2010)CrossRef
142.
Zurück zum Zitat A. Ghosh, K.V. Rao, R. Voggu, S.J. George, Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules. Chem. Phys. Lett. 488(4–6), 198–201 (2010)CrossRef A. Ghosh, K.V. Rao, R. Voggu, S.J. George, Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules. Chem. Phys. Lett. 488(4–6), 198–201 (2010)CrossRef
143.
Zurück zum Zitat J. Zhang, J. Lei, R. Pan, Y. Xue, H. Ju, Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens. Bioelectron. 26(2), 371–376 (2010)CrossRef J. Zhang, J. Lei, R. Pan, Y. Xue, H. Ju, Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens. Bioelectron. 26(2), 371–376 (2010)CrossRef
144.
Zurück zum Zitat D. Ager, V.A. Vasantha, R. Crombez, J. Texter, J. Accepted, Aqueous Graphene Dispersions–Optical Properties and Stimuli-Responsive Phase Transfer. ACS Nano 8(11), 11191–11205 (2014)CrossRef D. Ager, V.A. Vasantha, R. Crombez, J. Texter, J. Accepted, Aqueous Graphene Dispersions–Optical Properties and Stimuli-Responsive Phase Transfer. ACS Nano 8(11), 11191–11205 (2014)CrossRef
145.
Zurück zum Zitat D. Young Lee, Z. Khatun, J.-H. Lee, Y.-k. Lee, I. In, Blood compatible Graphene/Heparin conjugate through noncovalent chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRef D. Young Lee, Z. Khatun, J.-H. Lee, Y.-k. Lee, I. In, Blood compatible Graphene/Heparin conjugate through noncovalent chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRef
146.
Zurück zum Zitat N. Abdullah, K. Hatano, D. Ando, M. Kubo, A. Koshio, F. Kokai, Solubilization of graphene flakes through covalent modification with well-defined azido-terminated poly(ε-caprolactone), J. Appl. Polym. Sci. 132(9), 6, 41569 (2015) N. Abdullah, K. Hatano, D. Ando, M. Kubo, A. Koshio, F. Kokai, Solubilization of graphene flakes through covalent modification with well-defined azido-terminated poly(ε-caprolactone), J. Appl. Polym. Sci. 132(9), 6, 41569 (2015)
147.
Zurück zum Zitat L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Ionizable Star Copolymer-Assisted Graphene Phase Transfer between Immiscible Liquids: Organic Solvent/Water/Ionic Liquid. Carbon N. Y. 49(5), 1653–1662 (2011)CrossRef L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Ionizable Star Copolymer-Assisted Graphene Phase Transfer between Immiscible Liquids: Organic Solvent/Water/Ionic Liquid. Carbon N. Y. 49(5), 1653–1662 (2011)CrossRef
148.
Zurück zum Zitat A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams, B. Ghalei, Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: Preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018)CrossRef A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams, B. Ghalei, Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: Preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018)CrossRef
149.
Zurück zum Zitat D.Y. Lee, Z. Khatun, J.H. Lee, Y.K. Lee, I. In, Blood Compatible Graphene/Heparin Conjugate through Noncovalent Chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRef D.Y. Lee, Z. Khatun, J.H. Lee, Y.K. Lee, I. In, Blood Compatible Graphene/Heparin Conjugate through Noncovalent Chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRef
151.
Zurück zum Zitat C. Desai, S. Mitra, Microwave induced carboxylation of nanodiamonds. Diam. Relat. Mater. 34, 65–69 (2013)CrossRef C. Desai, S. Mitra, Microwave induced carboxylation of nanodiamonds. Diam. Relat. Mater. 34, 65–69 (2013)CrossRef
152.
Zurück zum Zitat P.C. In, C.H. Kuo, C.S. Chiang, Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. J. Am. Chem. Soc. 130(46), 15476–15481 (2008)CrossRef P.C. In, C.H. Kuo, C.S. Chiang, Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. J. Am. Chem. Soc. 130(46), 15476–15481 (2008)CrossRef
153.
Zurück zum Zitat A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Appl. Mater. Interfaces 2(11), 3289–3294 (2010)CrossRef A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Appl. Mater. Interfaces 2(11), 3289–3294 (2010)CrossRef
154.
Zurück zum Zitat C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surfaces A Physicochem. Eng. Asp. 353(1), 52–56 (2010)CrossRef C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surfaces A Physicochem. Eng. Asp. 353(1), 52–56 (2010)CrossRef
155.
Zurück zum Zitat V.N. Mochalin, Y. Gogotsi, Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)CrossRef V.N. Mochalin, Y. Gogotsi, Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)CrossRef
156.
Zurück zum Zitat Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRef Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRef
157.
Zurück zum Zitat W.S. Yeap, S. Chen, K.P. Loh, Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules. Langmuir 25(1), 185–191 (2009)CrossRef W.S. Yeap, S. Chen, K.P. Loh, Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules. Langmuir 25(1), 185–191 (2009)CrossRef
158.
Zurück zum Zitat G.-J. Lee, J.-J. Park, M.-K. Lee, C.K. Rhee, Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Appl. Surf. Sci. 415, 24–27 (2017)CrossRef G.-J. Lee, J.-J. Park, M.-K. Lee, C.K. Rhee, Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Appl. Surf. Sci. 415, 24–27 (2017)CrossRef
159.
Zurück zum Zitat R.-M. Chin, S.-J. Chang, C.-C. Li, C.-W. Chang, R.-H. Yu, Preparation of highly dispersed and concentrated aqueous suspensions of nanodiamonds using novel diblock dispersants. J. Colloid Interface Sci. 520, 119–126 (2018)CrossRef R.-M. Chin, S.-J. Chang, C.-C. Li, C.-W. Chang, R.-H. Yu, Preparation of highly dispersed and concentrated aqueous suspensions of nanodiamonds using novel diblock dispersants. J. Colloid Interface Sci. 520, 119–126 (2018)CrossRef
160.
Zurück zum Zitat R. Edgington, K.M. Spillane, G. Papageorgiou, W. Wray, et al., Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration. Sci. Rep. 8(1), 728 (2018)CrossRef R. Edgington, K.M. Spillane, G. Papageorgiou, W. Wray, et al., Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration. Sci. Rep. 8(1), 728 (2018)CrossRef
161.
Zurück zum Zitat Y. Zhu, X. Xu, B. Wang, Z. Feng, Surface modification and dispersion of nanodiamond in clean oil. China Particuology 2(3), 132–134 (2004)CrossRef Y. Zhu, X. Xu, B. Wang, Z. Feng, Surface modification and dispersion of nanodiamond in clean oil. China Particuology 2(3), 132–134 (2004)CrossRef
162.
Zurück zum Zitat L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chemie – Int Ed. 50(6), 1388–1392 (2011)CrossRef L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chemie – Int Ed. 50(6), 1388–1392 (2011)CrossRef
163.
Zurück zum Zitat J. Cheng, J. He, C. Li, Y. Yang, Facile approach to functionalize Nanodiamond particles with V-Shaped polymer brushes. Chem. Mater. 20(13), 4224–4230 (2008)CrossRef J. Cheng, J. He, C. Li, Y. Yang, Facile approach to functionalize Nanodiamond particles with V-Shaped polymer brushes. Chem. Mater. 20(13), 4224–4230 (2008)CrossRef
164.
Zurück zum Zitat H. Kato, A. Nakamura, M. Horie, S. Endoh, K. Fujita, H. Iwahashi, S. Kinugasa, Preparation and characterization of stable dispersions of carbon black and nanodiamond in culture medium for in vitro toxicity assessment. Carbon N. Y. 49(12), 3989–3997 (2011)CrossRef H. Kato, A. Nakamura, M. Horie, S. Endoh, K. Fujita, H. Iwahashi, S. Kinugasa, Preparation and characterization of stable dispersions of carbon black and nanodiamond in culture medium for in vitro toxicity assessment. Carbon N. Y. 49(12), 3989–3997 (2011)CrossRef
165.
Zurück zum Zitat A. Ito, T. Kondo, T. Aikawa, M. Yuasa, Hydrophobic/lipophilic nanodiamond particles fabricated by surface modification with 1-octadecene. Phys. Status Solidi Appl. Mater. Sci. 213(8), 2112–2116 (2016)CrossRef A. Ito, T. Kondo, T. Aikawa, M. Yuasa, Hydrophobic/lipophilic nanodiamond particles fabricated by surface modification with 1-octadecene. Phys. Status Solidi Appl. Mater. Sci. 213(8), 2112–2116 (2016)CrossRef
166.
Zurück zum Zitat M. Khan, L. Tiehu, A.A. Khurram, T.K. Zhao, C. Xiong, Z. Ali, T.A. Abbas, Asmatullah, I. Ahmad, A.L. Lone, S. Iqbal, A. Khan, Active sites determination and De-aggregation of detonation nanodiamond particles. Chiang Mai J. Sci. 44(3), 1113–1126 (2017) M. Khan, L. Tiehu, A.A. Khurram, T.K. Zhao, C. Xiong, Z. Ali, T.A. Abbas, Asmatullah, I. Ahmad, A.L. Lone, S. Iqbal, A. Khan, Active sites determination and De-aggregation of detonation nanodiamond particles. Chiang Mai J. Sci. 44(3), 1113–1126 (2017)
167.
Zurück zum Zitat T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, M. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H. Girard, J.C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121(9), 5185–5194 (2017)CrossRef T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, M. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H. Girard, J.C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121(9), 5185–5194 (2017)CrossRef
168.
Zurück zum Zitat G.A. Inel, E.M. Ungureau, T.S. Varley, M. Hirani, K.B. Holt, Solvent–surface interactions between nanodiamond and ethanol studied with in situ infrared spectroscopy. Diam. Relat. Mater. 61, 7–13 (2016)CrossRef G.A. Inel, E.M. Ungureau, T.S. Varley, M. Hirani, K.B. Holt, Solvent–surface interactions between nanodiamond and ethanol studied with in situ infrared spectroscopy. Diam. Relat. Mater. 61, 7–13 (2016)CrossRef
169.
Zurück zum Zitat G.M. Mikheev, R.Y. Krivenkov, T.N. Mogileva, K.G. Mikheev, N. Nunn, O.A. Shenderova, Saturable absorption in suspensions of single-digit detonation nanodiamonds. J. Phys. Chem. C 121(15), 8630–8635 (2017)CrossRef G.M. Mikheev, R.Y. Krivenkov, T.N. Mogileva, K.G. Mikheev, N. Nunn, O.A. Shenderova, Saturable absorption in suspensions of single-digit detonation nanodiamonds. J. Phys. Chem. C 121(15), 8630–8635 (2017)CrossRef
170.
Zurück zum Zitat T. Petit, Interactions with solvent, Nanodiamonds. Advanced Material Analysis, Properties and Applications. A volume in Micro and Nano Technologies, 6th edn. (Elsevier Inc., 2017), pp. 301–321 T. Petit, Interactions with solvent, Nanodiamonds. Advanced Material Analysis, Properties and Applications. A volume in Micro and Nano Technologies, 6th edn. (Elsevier Inc., 2017), pp. 301–321
171.
Zurück zum Zitat R. Sekiya, Y. Uemura, H. Naito, K. Naka, T. Haino, Chemical functionalisation and photoluminescence of Graphene Quantum Dots. Chem. - A Eur. J. 22(24), 8198–8206 (2016)CrossRef R. Sekiya, Y. Uemura, H. Naito, K. Naka, T. Haino, Chemical functionalisation and photoluminescence of Graphene Quantum Dots. Chem. - A Eur. J. 22(24), 8198–8206 (2016)CrossRef
172.
Zurück zum Zitat Y.Z. Fan, Y. Zhang, N. Li, S.G. Liu, T. Liu, N.B. Li, H.Q. Luo, A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B Chem. 240, 949–955 (2017)CrossRef Y.Z. Fan, Y. Zhang, N. Li, S.G. Liu, T. Liu, N.B. Li, H.Q. Luo, A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B Chem. 240, 949–955 (2017)CrossRef
173.
Zurück zum Zitat L. Deng, X. Wang, Y. Kuang, C. Wang, L. Luo, F. Wang, X. Sun, Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8(9), 2810–2821 (2015)CrossRef L. Deng, X. Wang, Y. Kuang, C. Wang, L. Luo, F. Wang, X. Sun, Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8(9), 2810–2821 (2015)CrossRef
174.
Zurück zum Zitat M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, Z. Li, B. Jiang, J. Qiu, Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480–489 (2014)CrossRef M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, Z. Li, B. Jiang, J. Qiu, Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480–489 (2014)CrossRef
175.
Zurück zum Zitat Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Direct solvent-derived polymer-coated Nitrogen-Doped Carbon Nanodots with high water solubility for targeted fluorescence imaging of Glioma. Small 11(29), 3575–3581 (2015)CrossRef Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Direct solvent-derived polymer-coated Nitrogen-Doped Carbon Nanodots with high water solubility for targeted fluorescence imaging of Glioma. Small 11(29), 3575–3581 (2015)CrossRef
176.
Zurück zum Zitat F. Arcudi, L. Dordevic, M. Prato, Synthesis, separation, and characterization of small and highly fluorescent Nitrogen-Doped Carbon NanoDots. Angew. Chemie – Int Ed. 55(6), 2107–2112 (2016)CrossRef F. Arcudi, L. Dordevic, M. Prato, Synthesis, separation, and characterization of small and highly fluorescent Nitrogen-Doped Carbon NanoDots. Angew. Chemie – Int Ed. 55(6), 2107–2112 (2016)CrossRef
177.
Zurück zum Zitat J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014)CrossRef J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014)CrossRef
178.
Zurück zum Zitat A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., Laser chemistry synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., Laser chemistry synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRef
179.
Zurück zum Zitat Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRef Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRef
180.
Zurück zum Zitat C.W. Tucker, Aqueous dispersion of carbon black. US Patent 2046758 (1936) C.W. Tucker, Aqueous dispersion of carbon black. US Patent 2046758 (1936)
181.
Zurück zum Zitat R.A. Forrester, P.P. Ells, Preparation of carbon black dispersions. US Patent 3118844A (1964) R.A. Forrester, P.P. Ells, Preparation of carbon black dispersions. US Patent 3118844A (1964)
183.
Zurück zum Zitat M. Sharif, S.F. Golestani, F.E. Khatibi, H. Sarpoolaky, Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy. J. Taiwan Inst. Chem. Eng. 40(5), 524–527 (2009)CrossRef M. Sharif, S.F. Golestani, F.E. Khatibi, H. Sarpoolaky, Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy. J. Taiwan Inst. Chem. Eng. 40(5), 524–527 (2009)CrossRef
184.
Zurück zum Zitat J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible Mesoporous Nitrogen-Doped Hollow Carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8, 29628–29636 (2016)CrossRef J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible Mesoporous Nitrogen-Doped Hollow Carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8, 29628–29636 (2016)CrossRef
185.
Zurück zum Zitat P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis (Catalysis by Metal Complexes) (Springer, 2012), p. 200 P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis (Catalysis by Metal Complexes) (Springer, 2012), p. 200
186.
Zurück zum Zitat W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Riga, Latvia, 2010), p. 64 W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Riga, Latvia, 2010), p. 64
187.
Zurück zum Zitat N. Hadjiliadis, E. Sletten (eds.), Metal Complex - DNA Interactions (Wiley-Blackwell, 2009), p. 544 N. Hadjiliadis, E. Sletten (eds.), Metal Complex - DNA Interactions (Wiley-Blackwell, 2009), p. 544
188.
Zurück zum Zitat A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA,1999), p. 424 A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA,1999), p. 424
189.
Zurück zum Zitat B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, New York, 2007), p. 316CrossRef B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, New York, 2007), p. 316CrossRef
190.
Zurück zum Zitat H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, vol 6 (Interface Science and Technology, Elsevier Science, New York, 2005), p. 282CrossRef H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, vol 6 (Interface Science and Technology, Elsevier Science, New York, 2005), p. 282CrossRef
191.
Zurück zum Zitat D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRef D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRef
192.
Zurück zum Zitat X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRef X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRef
193.
Zurück zum Zitat J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRef J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRef
194.
Zurück zum Zitat M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRef M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRef
195.
Zurück zum Zitat V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRef V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRef
196.
Zurück zum Zitat B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46(1), 55–76 (2016)CrossRef B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46(1), 55–76 (2016)CrossRef
197.
Zurück zum Zitat D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRef D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRef
198.
Zurück zum Zitat C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, 2012), p. 260 C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, 2012), p. 260
199.
Zurück zum Zitat P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, 2011), p. 314 P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, 2011), p. 314
200.
Zurück zum Zitat L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRef L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRef
201.
Zurück zum Zitat L. Henao-Holguín, V. Meza-Laguna, T.Y. Gromovoy, E. Basiuk, M. Rivera, V.A. Basiuk, Solvent-free covalent functionalization of Fullerene C60 and Pristine multi-walled carbon nanotubes with Crown Ethers. J. Nanosci. Nanotechnol. 16(6), 6173–6184 (2016)CrossRef L. Henao-Holguín, V. Meza-Laguna, T.Y. Gromovoy, E. Basiuk, M. Rivera, V.A. Basiuk, Solvent-free covalent functionalization of Fullerene C60 and Pristine multi-walled carbon nanotubes with Crown Ethers. J. Nanosci. Nanotechnol. 16(6), 6173–6184 (2016)CrossRef
202.
Zurück zum Zitat E. Khaled, H.N.A. Hassan, M.A. Ahmed, R.O. El-Attar, Crown Ether/Carbon nanotubes based Biperiden disposable potentiometric sensor. Electroanalysis 29(4), 975–982 (2017)CrossRef E. Khaled, H.N.A. Hassan, M.A. Ahmed, R.O. El-Attar, Crown Ether/Carbon nanotubes based Biperiden disposable potentiometric sensor. Electroanalysis 29(4), 975–982 (2017)CrossRef
203.
Zurück zum Zitat E. Khaled, M.S. Kamel, H.N.A. Hassan, Novel multi walled carbon nanotubes/Crown Ether based disposable sensors for determination of Lead in water samples. Analytical Chemistry Letters 5(6), 329–337 (2015)CrossRef E. Khaled, M.S. Kamel, H.N.A. Hassan, Novel multi walled carbon nanotubes/Crown Ether based disposable sensors for determination of Lead in water samples. Analytical Chemistry Letters 5(6), 329–337 (2015)CrossRef
204.
Zurück zum Zitat R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechn. 7(10), 3646–3640 (2007)CrossRef R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechn. 7(10), 3646–3640 (2007)CrossRef
205.
Zurück zum Zitat G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRef G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRef
206.
Zurück zum Zitat C. Jiang, A. Saha, C. Xiang, et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7(5), 4503–4510 (2013)CrossRef C. Jiang, A. Saha, C. Xiang, et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7(5), 4503–4510 (2013)CrossRef
207.
Zurück zum Zitat A.A. Marti-Arbona, C. Jiang, A. Saha, M. Pasquali, C. Young, Liquid crystals from single-walled carbon nanotube polyelectrolytes and their use for making various materials. US 9,249,023 B2 (2016) A.A. Marti-Arbona, C. Jiang, A. Saha, M. Pasquali, C. Young, Liquid crystals from single-walled carbon nanotube polyelectrolytes and their use for making various materials. US 9,249,023 B2 (2016)
208.
Zurück zum Zitat A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRef A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRef
209.
Zurück zum Zitat K. Huang, A. Saha, K. Dirian, C. Jiang, P.-L. Chu, J.M. Tour, D.M. Guldi, A.A. Martí, Carbon nanotubes dispersed in aqueous solution by ruthenium(II) polypyridyl complexes. Nanoscale 8, 13488–13497 (2016)CrossRef K. Huang, A. Saha, K. Dirian, C. Jiang, P.-L. Chu, J.M. Tour, D.M. Guldi, A.A. Martí, Carbon nanotubes dispersed in aqueous solution by ruthenium(II) polypyridyl complexes. Nanoscale 8, 13488–13497 (2016)CrossRef
210.
Zurück zum Zitat D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRef D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRef
211.
Zurück zum Zitat R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in Ruthenium 2,2′-Bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRef R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in Ruthenium 2,2′-Bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRef
212.
Zurück zum Zitat S.A.V. Jannuzzi, B. Marins, L.E.S.C. Huamani, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged Iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017) S.A.V. Jannuzzi, B. Marins, L.E.S.C. Huamani, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged Iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017)
213.
Zurück zum Zitat H. Murakami, T. Nomura, N. Nakashima, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378(5), 481–485 (2003)CrossRef H. Murakami, T. Nomura, N. Nakashima, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378(5), 481–485 (2003)CrossRef
214.
Zurück zum Zitat E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: a linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, 745202, 12 pp (2011) E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: a linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, 745202, 12 pp (2011)
215.
Zurück zum Zitat Z. Guo, J. Mao, Q. Ouyang, Y. Zhu, L. He, X. Lv, L. Liang, D. Ren, Y. Chen, J. Zheng, Noncovalent functionalization of single-walled carbon nanotube by porphyrin: dispersion of carbon nanotubes in water and formation of self-assembly donor-acceptor nanoensemble. J. Dispers. Sci. Technol. 31(1), 57–61 (2010)CrossRef Z. Guo, J. Mao, Q. Ouyang, Y. Zhu, L. He, X. Lv, L. Liang, D. Ren, Y. Chen, J. Zheng, Noncovalent functionalization of single-walled carbon nanotube by porphyrin: dispersion of carbon nanotubes in water and formation of self-assembly donor-acceptor nanoensemble. J. Dispers. Sci. Technol. 31(1), 57–61 (2010)CrossRef
216.
Zurück zum Zitat Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes. US Patent 20130030175 (2013) Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes. US Patent 20130030175 (2013)
217.
Zurück zum Zitat O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRef O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRef
218.
Zurück zum Zitat L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRef L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRef
219.
Zurück zum Zitat J. Chen, P.C. Collier, Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109(16), 7605–7609 (2005)CrossRef J. Chen, P.C. Collier, Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109(16), 7605–7609 (2005)CrossRef
220.
Zurück zum Zitat C.Z. Huang, Q.G. Liao, Y.F. Li, Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta 75(1), 163–166 (2008) C.Z. Huang, Q.G. Liao, Y.F. Li, Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta 75(1), 163–166 (2008)
221.
Zurück zum Zitat E.M.N. Mhuircheartaigh, W.J. Blau, M. Prato, S. Giordani, Spectroscopic changes induced by sonication of porphyrin-carbon nanotube composites in chlorinated solvents. Carbon 45(13), 2665–2671 (2007)CrossRef E.M.N. Mhuircheartaigh, W.J. Blau, M. Prato, S. Giordani, Spectroscopic changes induced by sonication of porphyrin-carbon nanotube composites in chlorinated solvents. Carbon 45(13), 2665–2671 (2007)CrossRef
222.
Zurück zum Zitat D.M. Guldi, G.M. Aminur Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRef D.M. Guldi, G.M. Aminur Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRef
223.
Zurück zum Zitat F. Cheng, A. Adronov, Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chemistry 12(19), 5053–5059 (2006)CrossRef F. Cheng, A. Adronov, Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chemistry 12(19), 5053–5059 (2006)CrossRef
224.
Zurück zum Zitat N. Komatsu, A. Osuka, S. Isoda, N. Nakashima, H. Murakami, Carbon nanotube and method of purifying the same. EP1702885 (2006) N. Komatsu, A. Osuka, S. Isoda, N. Nakashima, H. Murakami, Carbon nanotube and method of purifying the same. EP1702885 (2006)
225.
Zurück zum Zitat Y. Du, N. Dong, M. Zhang, Porphyrin–poly(arylene ether sulfone) covalently functionalized multi-walled carbon nanotubes: synthesis and enhanced broadband nonlinear optical properties. RSC Adv. 6, 75530–75540 (2016)CrossRef Y. Du, N. Dong, M. Zhang, Porphyrin–poly(arylene ether sulfone) covalently functionalized multi-walled carbon nanotubes: synthesis and enhanced broadband nonlinear optical properties. RSC Adv. 6, 75530–75540 (2016)CrossRef
226.
Zurück zum Zitat D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci, S. Qin, M. Prato, Donor-acceptor nanoensembles of soluble carbon nanotubes. Chem. Commun. 18, 2034–2035 (2004)CrossRef D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci, S. Qin, M. Prato, Donor-acceptor nanoensembles of soluble carbon nanotubes. Chem. Commun. 18, 2034–2035 (2004)CrossRef
227.
Zurück zum Zitat D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) Porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRef D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) Porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRef
228.
Zurück zum Zitat R.A. Hatton, N.P. Blanchard, A.J. Miller, S.R.P. Silva, A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells. Physica E 37(1), 124–127 (2007)CrossRef R.A. Hatton, N.P. Blanchard, A.J. Miller, S.R.P. Silva, A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells. Physica E 37(1), 124–127 (2007)CrossRef
229.
Zurück zum Zitat H. Wu, Z. Chen, J. Zhang, et al., Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb-level H2S sensing at room temperature. J. Mater. Chem. A 4, 1096–1104 (2016)CrossRef H. Wu, Z. Chen, J. Zhang, et al., Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb-level H2S sensing at room temperature. J. Mater. Chem. A 4, 1096–1104 (2016)CrossRef
230.
Zurück zum Zitat M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Org. Electron. 21, 86–91 (2015)CrossRef M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Org. Electron. 21, 86–91 (2015)CrossRef
231.
Zurück zum Zitat A.H. Ross, S.S. Ravi, Production of carbon nanotube-molecular semiconductor thin film. GB2428135 (2007) A.H. Ross, S.S. Ravi, Production of carbon nanotube-molecular semiconductor thin film. GB2428135 (2007)
232.
Zurück zum Zitat R.A. Hatton, S.R. Silva, Improvements in thin film production. WO07007061 (2007) R.A. Hatton, S.R. Silva, Improvements in thin film production. WO07007061 (2007)
233.
Zurück zum Zitat K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRef K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRef
234.
Zurück zum Zitat D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated Titanium-Mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRef D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated Titanium-Mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRef
235.
Zurück zum Zitat J. Chen, C. Xue, A new method for the preparation of stable carbon nanotube organogels. Carbon 44(11), 2142–2146 (2006)CrossRef J. Chen, C. Xue, A new method for the preparation of stable carbon nanotube organogels. Carbon 44(11), 2142–2146 (2006)CrossRef
236.
Zurück zum Zitat N. Tagmatarchis, M. Prato, D.M. Guldi, Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E 29(3), 546–550 (2005)CrossRef N. Tagmatarchis, M. Prato, D.M. Guldi, Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E 29(3), 546–550 (2005)CrossRef
237.
Zurück zum Zitat A.V. Ellis, Functionalised carbon nanotubes and methods of preparation. WO07067079 (2007) A.V. Ellis, Functionalised carbon nanotubes and methods of preparation. WO07067079 (2007)
Metadaten
Titel
Solubilization and Dispersion of Carbon Allotropes and Their Metal-Complex Composites
verfasst von
Boris Ildusovich Kharisov
Oxana Vasilievna Kharissova
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-03505-1_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.