Skip to main content

2014 | OriginalPaper | Buchkapitel

11. Solutions

verfasst von : João Pedro Morais, Svetlin Georgiev, Wolfgang Sprößig

Erschienen in: Real Quaternionic Calculus Handbook

Verlag: Springer Basel

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

1.
(a) p + q = 3 + i + 5i + j − 2k = 3 + 6i + j − 2k; (b) 3 − 4ij + 2k; (c) 6 − 33i − 7j + 14k; (d) 9 + 23i + 4j − 8k.
 
2.
(a) − 1; (b) 1; (c) 1; (d) − 1; (e) − 1; (f) 1.
 
3.
$$\displaystyle\begin{array}{rcl} (a)\quad pq& =& (1 + i - j - k)(3 + 2i + j + 4k) {}\\ & =& 3 + 2i + j + 4k + 3i - 2 + k - 4j - 3j + 2k + 1 {}\\ & -& 4i - 3k - 2j + i + 4 = 6 + 2i - 8j + 4k; {}\\ \end{array}$$
(b) 3 + 3i − 3j + k; (c) − 1 + 4i + 7j + 12k; (d) 14 − 2i − 8j + 24k; (e) − 2 + 2i − 2j − 2k; (f) − 162 + 12i + 6j + 24k; (g) 14 − 22i + 24j + 68k; (h) − 12 + 24i − 26j − 70k; (i) 1 + 4ij + 2k; (j) − 147 − 9i + 29j + 91k.
 
4.
(a) First we consider \(p(1 + i - j) = 1_{\mathbb{H}}\). We have
$$\displaystyle\begin{array}{rcl} 1_{\mathbb{H}}& =& (a + bi + cj + dk)(1 + i - j) {}\\ & =& (a - b + c) + (a + b + d)i + (-a + c + d)j + (-b - c + d)k. {}\\ \end{array}$$
From here we obtain the following system for a, b, c and d:
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{l} a - b + c = 1, \\ a + b + d = 0, \\ - a + c + d = 0, \\ - b - c + d = 0.\end{array} \right.& & {}\\ \end{array}$$
Its solution is
$$\displaystyle\begin{array}{rcl} a = \frac{1} {3},\;b = -\frac{1} {3},\;c = \frac{1} {3},\;d = 0.& & {}\\ \end{array}$$
Consequently,
$$\displaystyle\begin{array}{rcl} p = \frac{1} {3} -\frac{1} {3}i + \frac{1} {3}j.& & {}\\ \end{array}$$
It is easy to check that
$$\displaystyle\begin{array}{rcl} \left (\frac{1} {3} -\frac{1} {3}i + \frac{1} {3}j\right )(1 + i - j) = 1_{\mathbb{H}}.& & {}\\ \end{array}$$
Now we consider
$$\displaystyle\begin{array}{rcl} (1 + i - j)p = 1_{\mathbb{H}}.& & {}\\ \end{array}$$
We have
$$\displaystyle\begin{array}{rcl} 1_{\mathbb{H}}& =& (1 + i - j)(a + bi + cj + dk) {}\\ & =& a - b + c + (b + a - d)i + (c - a - d)j + (d + c + b)k. {}\\ \end{array}$$
From the last equality we get for a, b, c, d the system
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{l} a - b + c = 1, \\ a + b - d = 0, \\ c - a - d = 0, \\ d + c + b = 0.\end{array} \right.& & {}\\ \end{array}$$
Its solution is
$$\displaystyle\begin{array}{rcl} a = \frac{1} {3},\;b = -\frac{1} {3},\;c = \frac{1} {3},\;d = 0.& & {}\\ \end{array}$$
Therefore,
$$\displaystyle\begin{array}{rcl} p = \frac{1} {3} -\frac{1} {3}\ i + \frac{1} {3}\ j.& & {}\\ \end{array}$$
It is easy to check that
$$\displaystyle\begin{array}{rcl} (1 + i - j)\left (\frac{1} {3} -\frac{1} {3}\ i + \frac{1} {3}\ j\right ) = 1_{\mathbb{H}}.& & {}\\ \end{array}$$
(b) p = −i; (c) p = −j; (d) p = −k.
 
5.
(a), (b)
$$\displaystyle\begin{array}{rcl} p& =& \frac{a} {{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}} - \frac{b} {{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}}i {}\\ & -& \frac{c} {{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}}j - \frac{d} {{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}}k. {}\\ \end{array}$$
 
6.
(a) We have
$$\displaystyle\begin{array}{rcl} 2p = 1 - i + j + 3k,& & {}\\ \end{array}$$
which implies
$$\displaystyle\begin{array}{rcl} 2a + 2bi + 2cj + 2dk = 1 - i + j + 3k.& & {}\\ \end{array}$$
From here we obtain for a, b, c, d the following system
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{l} 2a = 1,\;2b = -1,\;2c = 1,\;2d = 3.\end{array} \right.& & {}\\ \end{array}$$
Consequently,
$$\displaystyle\begin{array}{rcl} p = \frac{1} {2} -\frac{1} {2}\ i + \frac{1} {2}\ j + \frac{3} {2}\ k.& & {}\\ \end{array}$$
It is easy to check that p satisfies the given equation. (b) \(p = \frac{1\pm \sqrt{5}} {2}\); (c) \(p = a + \frac{1} {2a-1}i\), where a is a solution to the equation
$$\displaystyle\begin{array}{rcl} 4{a}^{4} - 8{a}^{3} + 5{a}^{2} - a - 1 = 0& & {}\end{array}$$
(11.1)
(such solution exists: prove!), \(a\neq \frac{1} {2}\); (d) \(p = a + \frac{1} {2a-1}j\); (e) \(p = a + \frac{1} {2a-1}k\), where a is a solution to the Eq. (11.1); (f) \(p = \frac{1} {2} + \frac{1} {2}i + k\); (g) \(p = \frac{1} {2} + \frac{1} {2}i + j\); (h) \(p = -\frac{3} {7} + \frac{5} {7}i -\frac{5} {7}j + \frac{5} {7}k\); (i) p = bi + cj + dk so that \({b}^{2} + {c}^{2} + {d}^{2} = 1\); (j) \(p = \pm \frac{\sqrt{3}} {2} -\frac{1} {2}i\); (k) \(p = \pm \frac{1} {2} -\frac{1} {2}i \pm \frac{1} {2}j -\frac{1} {2}k\); (l) \(p = \pm \frac{1} {2} -\frac{1} {2}i + \frac{1} {2}j \pm \frac{1} {2}k\).
 
7.
(a) 2 + ij; (b) 1 − ijk; (c) 2 − 2i − 4j; (d) 2 − 2j − 4k; (e) 2 − 2i − 4j; (f) 2 − 2j − 4k.
 
8.
$$\displaystyle\begin{array}{rcl} \mathrm{(a)}& & \left (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}\right ) -\left (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2}\right )i {}\\ & -&\left (a_{1}c_{2} - b_{1}d_{2} + c_{1}a_{2} + d_{1}b_{2}\right )j -\left (a_{1}d_{2} + b_{1}c_{2} - c_{1}b_{2} + d_{1}a_{2}\right )k; {}\\ \mathrm{(b)}& & \left (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}\right ) + \left (-a_{1}b_{2} - b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2}\right )i {}\\ & +& \left (-a_{1}c_{2} - b_{1}d_{2} - c_{1}a_{2} + d_{1}b_{2}\right )j + \left (-a_{1}d_{2} + b_{1}c_{2} - c_{1}b_{2} - d_{1}a_{2}\right )k; {}\\ \mathrm{(c)}& & \left (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2}\right ) -\left (a_{2}b_{1} + a_{1}b_{2} + c_{2}d_{1} - d_{2}c_{1}\right )i {}\\ & -&\left (a_{2}c_{1} - b_{2}d_{1} + c_{2}a_{1} + d_{2}b_{1}\right )j -\left (a_{2}d_{1} + b_{2}c_{1} - c_{2}b_{1} + d_{2}a_{1}\right )k; {}\\ \mathrm{(d)}& & \left (a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2}d_{1}d_{2}\right ) -\left (a_{2}b_{1} + b_{2}a_{1} + c_{2}d_{1} - d_{2}c_{1}\right )i {}\\ & -&\left (a_{2}c_{1} - b_{2}d_{1} + c_{2}a_{1} + d_{2}b_{1}\right )j -\left (a_{2}d_{1} + b_{2}c_{1} - c_{2}b_{1} + d_{2}a_{1}\right )k. {}\\ \end{array}$$
 
9.
Hint. Use the previous exercise.
 
10.
We have that \(p{p}^{-1} = 1_{\mathbb{H}}\) and \(\vert p{\vert }^{2} = p\overline{p}\). Consequently,
$$\displaystyle\begin{array}{rcl} \frac{\overline{p}} {\vert p{\vert }^{2}} = \frac{\overline{p}} {p\overline{p}} = {p}^{-1}.& & {}\\ \end{array}$$
 
11.
(a) Here
$$\displaystyle\begin{array}{rcl} a = 1,\quad b = -2,\quad c = 3,\quad d = 4.& & {}\\ \end{array}$$
Then the first matrix representation is
$$\displaystyle\begin{array}{rcl} \left (\begin{array}{rr} 1 - 4i&2 + 3i\\ - 2 + 3i &1 + 4i\end{array} \right );& & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} \mathrm{(b)}\;\left (\begin{array}{cc} 2 &1 + i\\ - 1 + i & 2\end{array} \right );\qquad \mathrm{(c)}\;\left (\begin{array}{cc} \frac{1} {2} - i & -\frac{1} {3} - 2i \\ \frac{1} {3} - 2i& \frac{1} {2} + i\end{array} \right ).& & {}\\ \end{array}$$
 
12.
(a) Let p = a + bi + cj + dk \((a,b,c,d \in \mathbb{R})\) be a quaternion that corresponds to the given matrix. Then
$$\displaystyle\begin{array}{rcl} \left (\begin{array}{cl} \ 1 - i &2 + 4i\\ - 2 + 4i &1 + i\end{array} \right )\; =\; \left (\begin{array}{rr} a - di& - b + ci\\ b + ci & a + di\end{array} \right ),& & {}\\ \end{array}$$
therefore we obtain the system
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{rcl} a - di& =&1 - i,\\ - b + ci & = &2 + 4i.\end{array} \right.& & {}\\ \end{array}$$
Consequently, a = 1, b = −2, c = 4, and d = 1. That is,
$$\displaystyle\begin{array}{rcl} p = 1 - 2i + 4j + k;& & {}\\ \end{array}$$
(b) p = 1 + 2i + j; (c) \(p = 1 - 2i + 8j -\frac{1} {2}k\).
 
13.
(a) Let us suppose that the given matrix corresponds to a quaternion
$$\displaystyle\begin{array}{rcl} p = a + bi + cj + dk,\quad a,b,c,d \in \mathbb{R}.& & {}\\ \end{array}$$
Then
$$\displaystyle\begin{array}{rcl} \left (\begin{array}{cc} 1 + i&1 - i\\ 1 + i &2 + i\end{array} \right )\; =\; \left (\begin{array}{cc} a - di& - b + ci\\ b + ci & a + di\end{array} \right ),& & {}\\ \end{array}$$
whence
$$\displaystyle\begin{array}{rcl} \left \{\begin{array}{rcl} a - di& =&1 + i, \\ - b + ci& =&1 - i, \\ b + ci& =&1 + i, \\ a + di& =&2 + i,\end{array} \right.& & {}\\ \end{array}$$
which is a contradiction. Therefore the given matrix does not correspond to any quaternion; (b) no solution; (c) no solution; (d) p = 1 − 2ij + 2k.
 
14.
We have that
$$\displaystyle\begin{array}{rcl} \vert z\vert = \sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}.& & {}\\ \end{array}$$
Also
$$\displaystyle\begin{array}{rcl} \det A = \left \vert \begin{array}{rr} a - di& - b + ci\\ b + ci & a + di\end{array} \right \vert & =& (a - di)(a + di) - (-b + ci)(b + ci) {}\\ & =& {a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}, {}\\ \end{array}$$
from here \(\vert z\vert = \sqrt{\det A}\).
 
15.
(a) The first matrix representation of p = 1 − i + 2jk is
$$\displaystyle\begin{array}{rcl} A_{1} = \left (\begin{array}{cl} \ 1 + i &1 + 2i\\ - 1 + 2i &1 - i\end{array} \right ).& & {}\\ \end{array}$$
Next,
$$\displaystyle\begin{array}{rcl} A_{2} = \left (\begin{array}{cc} - i &2 + 3i\\ - 2 + 3i & i\end{array} \right )& & {}\\ \end{array}$$
is the first matrix representation of the quaternion q = −2i + 3j + k. Then
$$\displaystyle\begin{array}{rcl} A_{1}A_{2}& =& \left (\begin{array}{cc} \ 1 + i &\;\ 1 + 2i\\ - 1 + 2i & 1 - i\end{array} \right )\left (\begin{array}{cc} - i &2 + 3i\\ - 2 + 3i & i.\end{array} \right ) {}\\ & =& \left (\begin{array}{rl} - 7 - 2i& - 3 + 6i\\ 3 + 6i & - 7 + 2i\end{array} \right ). {}\\ \end{array}$$
The last matrix corresponds to the quaternion
$$\displaystyle\begin{array}{rcl} pq = -7 + 3i + 6j + 2k;& & {}\\ \end{array}$$
(b) pq = 3 + 3k.
 
16.
− 3 + 5i − 2j + 3k.
 
17.
(a) Here
$$\displaystyle\begin{array}{rcl} a = 1,\quad b = -2,\quad c = \frac{1} {2},\quad d = 1.& & {}\\ \end{array}$$
Then the second matrix representation is
$$\displaystyle\begin{array}{rcl} \left (\begin{array}{rrrr} 1& 2& 1& -\frac{1} {2} \\ - 2& 1& -\frac{1} {2} & - 1 \\ - 1&\frac{1} {2} & 1& 2 \\ \frac{1} {2} & 1& - 2& 1\end{array} \right );& & {}\\ \end{array}$$
$$\displaystyle\begin{array}{rcl} & & \mathrm{(b)}\;\left (\begin{array}{cccc} 0 & - 1&3& 1\\ 1 & 0 &1 & -3 \\ - 3& - 1&0& - 1\\ - 1 & 3 &1 & 0 \end{array} \right );\qquad \mathrm{(c)}\;\left (\begin{array}{cccc} 2 & - 4& - 1& 1\\ 4 & 2 & 1 & 1 \\ 1 & - 1& 2 & - 4\\ - 1 & - 1 & 4 & 2 \end{array} \right ); {}\\ & & \mathrm{(d)}\;\left (\begin{array}{cccc} 0 & - 1& 1 & - 1\\ 1 & 0 & - 1 & - 1 \\ - 1& 1 & 0 & - 1\\ 1 & 1 & 1 & 0\end{array} \right ). {}\\ \end{array}$$
 
18.
For p = 1 − i + jk we have the representation
$$\displaystyle\begin{array}{rcl} A_{1} = \left (\begin{array}{rrrr} 1&1& 1& - 1\\ - 1 &1 & - 1 & - 1 \\ - 1&1& 1& 1\\ 1 &1 & - 1 & 1 \end{array} \right ),& & {}\\ \end{array}$$
while for q = 2 − ijk we have
$$\displaystyle\begin{array}{rcl} A_{2} = \left (\begin{array}{rrrr} 2& 1& - 1&1\\ - 1 & 2 & 1 &1 \\ 1& - 1& 2&1\\ - 1 & - 1 & - 1 &2 \end{array} \right ).& & {}\\ \end{array}$$
Then
$$\displaystyle\begin{array}{rcl} A_{1}A_{2} = \left (\begin{array}{rrrr} 3& 3& 3& 1\\ - 3 & 3 & 1 & - 3 \\ - 3& - 1& 3& 3\\ - 1 & 3 & - 3 & 3 \end{array} \right )\ =\ \left (\begin{array}{rrrr} a& - b& d& - c \\ b& a& - c& - d \\ - d& c& a& - b \\ c& d& b& a\end{array} \right ),& & {}\\ \end{array}$$
which yields
$$\displaystyle\begin{array}{rcl} a = 3,\quad b = -3,\quad c = -1,\quad d = 3,& & {}\\ \end{array}$$
i.e. pq = 3 − 3ij + 3k.
 
19.
(a) Let p = a + bi + cj + dk, with \(a,b,c,d \in \mathbb{R}\) be the quaternion that corresponds to the given matrix. For its second matrix representation we have
$$\displaystyle\begin{array}{rcl} \left (\begin{array}{rrrr} a& - b& d& - c \\ b& a& - c& - d \\ - d& c& a& - b \\ c& d& b& a\end{array} \right ).& & {}\\ \end{array}$$
It follows that
$$\displaystyle\begin{array}{rcl} a = \frac{1} {2},\quad b = -2,\quad c = -3,\quad d = -9,& & {}\\ \end{array}$$
i.e.
$$\displaystyle\begin{array}{rcl} p = \frac{1} {2} - 2i - 3j - 9k;& & {}\\ \end{array}$$
(b) p = 7 + i + 9k; (c) p = 1 − i + j + k; (d) p = 2 − 2i + jk; (e) \(p = 3 -\frac{1} {2}i + j + k\); (f) \(p = 1 -\frac{1} {3}i + \frac{2} {3}j + 4k\).
 
20.
(a) no solution; (b) no solution; (c) has a solution; (d) no solution; (e) no solution; (f) no solution.
 
21.
2 − 5i + 5j + 5k.
 
22.
(a) Here p 0 = 0, p = (1, 0, 0), q 0 = 0, \(\mathbf{q} = (1,0,0)\). Then
$$\displaystyle\begin{array}{rcl} p \cdot q = p_{0}q_{0} + \mathbf{p}\mathbf{q} = 0 + (1,0,0)(1,0,0) = 1;& & {}\\ \end{array}$$
(b) 1; (c) 1; (d) 0; (e) 0; (f) 0; (g) 0; (h) 0; (i) 0; (j) \(-\frac{2} {3}\); (k) − 3; (l) 1.
 
23.
(a) We have
$$\displaystyle\begin{array}{rcl} pq& =& (1 - i - j - k)(2 + i + j) = 4 - 2j - 2k, {}\\ p_{0}& =& 1,\quad q_{0} = 2, {}\\ \mathbf{p}& =& (-1,-1,-1), {}\\ \mathbf{q}& =& (1,1,0), {}\\ p \cdot q& =& p_{0}q_{0} + \mathbf{p}\mathbf{q} = 2 + (-1,-1,-1)(1,1,0) = 0, {}\\ p \cdot q + 2q& =& 4 + 2i + 2j, {}\\ p(p \cdot q + 2q)& =& (1 - i - j - k)(4 + 2i + 2j) = 8 - 4j - 4k, {}\\ p - q& =& -1 - 2i - 2j - k, {}\\ \mathrm{Sc}(p - q)& =& -1,\quad \mathrm{Vec}(p - q) = (-2,-2,-1), {}\\ q \cdot (p - q)& =& q_{0}\mathrm{Sc}(p - q) + \mathbf{q}\mathrm{Vec}(p - q) {}\\ & =& -2 + (1,1,0)(-2,-2,-1) = -6. {}\\ \end{array}$$
Therefore
$$\displaystyle\begin{array}{rcl} pq - p(p \cdot q + 2q) + q \cdot (p - q)& =& 4 - 2j - 2k - (8 - 4j - 4k) - 6 {}\\ & =& -10 + 2j + 2k; {}\\ \end{array}$$
(b) − 18; (c) − 10 − 2j − 2k.
 
24.
We have
$$\displaystyle\begin{array}{rcl} p_{0}& =& a_{1},\quad q_{0} = a_{2}, {}\\ \mathbf{p}& =& (b_{1},c_{1},d_{1}),\quad \mathbf{q} = (b_{2},c_{2},d_{2}), {}\\ p \cdot q& =& p_{0}q_{0} + \mathbf{p}\mathbf{q} = a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2}. {}\\ \end{array}$$
 
25.
We have
$$\displaystyle\begin{array}{rcl} \overline{p}& =& a_{1} - b_{1}i - c_{1}j - d_{1}k, {}\\ \overline{p}q& =& (a_{1} - b_{1}i - c_{1}j - d_{1}k)(a_{2} + b_{2}i + c_{2}j + d_{2}k) {}\\ & =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2} + (a_{1}b_{2} - b_{1}a_{2} - c_{1}d_{2} + d_{1}c_{2})i {}\\ & +& (a_{1}c_{2} + b_{1}d_{2} - c_{1}a_{2} - d_{1}b_{2})j + (a_{1}d_{2} - b_{1}c_{2} + c_{1}b_{2} - d_{1}a_{2})k, {}\\ \overline{q}& =& a_{2} - b_{2}i = c_{2}j - d_{2}k, {}\\ \end{array}$$
and, moreover
$$\displaystyle\begin{array}{rcl} \overline{q}p& =& (a_{2} - b_{2}i - c_{2}j - d_{2}k)(a_{1} + b_{1}i + c_{1}j + d_{1}k) {}\\ & =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2} + (a_{2}b_{1} - b_{2}a_{1} - c_{2}d_{1} + d_{2}c_{1})i {}\\ & +& (a_{2}c_{1} + b_{2}d_{1} - c_{2}a_{1} - d_{2}b_{1})j + (a_{2}d_{1} - b_{2}c_{1} + c_{2}b_{1} - d_{2}a_{1})k, {}\\ \frac{1} {2}\left (\overline{p}q + \overline{q}p\right )& =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2}. {}\\ \end{array}$$
From here and from the previous exercise we obtain our equality.
 
26.
(a) We have
$$\displaystyle\begin{array}{rcl} \overline{p}& =& 1 + i - j, {}\\ \overline{p}q& =& (1 + i - j)(i - j - k)\, =\, -2 + 2i - k, {}\\ \overline{q}& =& -i + j + k, {}\\ \overline{q}p& =& (-i + j + k)(1 - i + j)\, =\, -2 - 2i + k, {}\\ p \cdot q& =& \frac{1} {2}\left (\overline{p}q + \overline{q}p\right ) = -2; {}\\ \end{array}$$
(b) 0; (c) − 2.
 
27.
It is easy to find
$$\displaystyle\begin{array}{rcl} \mathrm{Sc}(1_{\mathbb{H}})& =& 1,\quad p_{0} = a, {}\\ \mathrm{Vec}(1)& =& (0,0,0),\quad \mathbf{p} = (b,c,d), {}\\ 1_{\mathbb{H}} \cdot p& =& \mathrm{Sc}(1_{\mathbb{H}})p_{0} + (0,0,0)(b,c,d) = a = p_{0}. {}\\ \end{array}$$
 
28.
(a) Here p 0 = 1, q 0 = 0, p = (−1, 0, 0), q = (0, 1, 1). Then
$$\displaystyle\begin{array}{rcl} (p,q)& =& p_{0}\mathbf{q} - q_{0}\mathbf{p} -\mathbf{p} \times \mathbf{q} {}\\ & =& (0,1,1) - (0,1,-1) = (0,0,2), {}\\ \end{array}$$
i.e. (p, q) = 2k; (b) − 3ijk; (c) − ij + k.
 
29.
(a) We have
$$\displaystyle\begin{array}{rcl} & & p_{0} = 1,\quad q_{0} = 1,\quad \mathbf{p} = (-1,-1,-1),\quad \mathbf{q} = (1,1,-1), {}\\ & & p \cdot q = p_{0}q_{0} + \mathbf{p}\mathbf{q}\, =\, 0, {}\\ & & -2p + q = -1 + 3i + 3j + k,\quad pq = 2 + 2i - 2j - 2k, {}\\ & & (p,q) = p_{0}\mathbf{q} - q_{0}\mathbf{p} -\mathbf{p} \times \mathbf{q} {}\\ & & =\; (1,1,-1) - (-1,-1,-1) - (2,-2,0) = (0,4,0)\, =\, 4j, {}\\ \end{array}$$
and also
$$\displaystyle\begin{array}{rcl} & & \mathrm{Sc}(p,q) = 0,\quad \mathrm{Vec}(p,q) = (0,4,0), {}\\ & & q \cdot (p,q) = q_{0}\mathrm{Sc}(p,q) + \mathbf{q}\mathrm{Vec}(p,q) = 4. {}\\ \end{array}$$
Consequently
$$\displaystyle\begin{array}{rcl} p \cdot q - 2p + q - pq + q \cdot (p,q) = 1 + i + 5j + 3k;& & {}\\ \end{array}$$
(b) 4 − 2i − 6j + 4k.
 
30.
We have
$$\displaystyle\begin{array}{rcl} & & p_{0} = a_{1},\quad q_{0} = a_{2}, {}\\ & & V ec(p) = (b_{1},c_{1},d_{1}),\quad \mathbf{q} = (b_{2},c_{2},d_{2}), {}\\ & & (p,q) = p_{0}\mathbf{q} - q\mathbf{p} -\mathbf{p} \times \mathbf{q} = {}\\ & & = a_{1}(b_{2},c_{2},d_{2}) - a_{2}(b_{1},c_{1},d_{1}) - (b_{1},c_{1},d_{1}) \times (b_{2},c_{2},d_{2}) {}\\ & & = (a_{1}b_{2},a_{1}c_{2},a_{1}d_{2}) - (a_{2}b_{1},a_{2}c_{1},a_{2}d_{1}) {}\\ & & -\;(c_{1}d_{2} - c_{2}d_{1},b_{2}d_{1} - b_{1}d_{2},b_{1}c_{2} - b_{2}c_{1}) {}\\ & & = (a_{1}b_{2} - a_{2}b_{1} - c_{1}d_{2} + c_{2}d_{1},a_{1}c_{2} - a_{2}c_{1} - b_{2}d_{1} + b_{1}d_{2}, {}\\ & & a_{1}d_{2} - a_{2}d_{1} - b_{1}c_{2} + b_{2}c_{1}), {}\\ \end{array}$$
i.e.
$$\displaystyle\begin{array}{rcl} & & \mathbf{p} = (b_{1},c_{1},d_{1}),\quad \mathbf{q} = (b_{2},c_{2},d_{2}), {}\\ & & (p,q) = (a_{1}b_{2} - a_{2}b_{1} - c_{1}d_{2} + c_{2}d_{1})i {}\\ & & +(a_{1}c_{2} - a_{2}c_{1} - b_{2}d_{1} + b_{1}d_{2})j + (a_{1}d_{2} - a_{2}d_{1} - b_{1}c_{2} + b_{2}c_{1})k. {}\\ \end{array}$$
 
31.
We have
$$\displaystyle\begin{array}{rcl} \overline{p}& =& a_{1} - b_{1}i - c_{1}j - d_{1}k, {}\\ \overline{p}q& =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2} + (a_{1}b_{2} - b_{1}a_{2} - c_{1}d_{2} + d_{1}c_{2})i + {}\\ & +& \!(a_{1}c_{2} + b_{1}d_{2} - c_{1}a_{2} - d_{1}b_{2})j + (a_{1}d_{2} - b_{1}c_{2} + c_{1}b_{2} - d_{1}a_{2})k, {}\\ \overline{q}& =& a_{2} - b_{2}i - c_{2}j - d_{2}k, {}\\ \overline{q}p& =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2} + (a_{2}b_{1} - b_{2}a_{1} - c_{2}d_{1} + d_{2}c_{1})i + {}\\ & +& (a_{2}c_{1} + b_{2}d_{1} - c_{2}a_{1} - d_{2}b_{1})j + (a_{2}d_{1} - b_{2}c_{1} + c_{2}b_{1} - d_{2}a_{1})k, {}\\ \frac{1} {2}\left (\overline{p}q -\overline{q}p\right )& =& (a_{1}b_{2} - b_{1}a_{2} - c_{1}d_{2} + c_{2}d_{1})i + {}\\ & +& (a_{1}c_{2} - a_{2}c_{1} + b_{1}d_{2} - b_{2}d_{1})j + (a_{1}d_{2} - a_{2}d_{1} - b_{1}c_{2} + c_{1}b_{2})k. {}\\ \end{array}$$
From the previous exercise we obtain
$$\displaystyle\begin{array}{rcl} (p,q) = \frac{\overline{p}q -\overline{q}p} {2}.& & {}\\ \end{array}$$
 
32.
(a) We have
$$\displaystyle\begin{array}{rcl} \overline{p}& =& -i - j, {}\\ \overline{p}q& =& (-i - j)(i + j + k) = 2 - i + j, {}\\ \overline{q}& =& -i - j - k, {}\\ \overline{q}p& =& (-i - j - k)(i + j) = 2 + i - j, {}\\ (p,q)& =& \frac{1} {2}\left (\overline{p}q -\overline{q}p\right ) = -i + j; {}\\ \end{array}$$
(b) i + 6j + 4k; (c) − 3i − 10j + 8k; (d) 3ij + 2k; (e) 2i + j + 4k; (f) 3j; (g) k; (h) j; (i) − i.
 
33.
One has that
$$\displaystyle\begin{array}{rcl} (p,q)& =& \frac{1} {2}\left (\overline{p}q -\overline{q}p\right ), {}\\ (q,p)& =& \frac{1} {2}\left (\overline{q}p -\overline{p}q\right )\, =\, -\frac{1} {2}\left (\overline{p}q -\overline{q}p\right )\, =\, -(p,q). {}\\ \end{array}$$
 
34.
Let \(p = a_{1} + b_{1}i + c_{1}j + d_{1}k\) and \(q = a_{2} + b_{2}i + c_{2}j + d_{2}k\), where \(a_{i},b_{i},c_{i},d_{i} \in \mathbb{R}\) (i = 1, 2). Then we have
$$\displaystyle\begin{array}{rcl} \overline{p}q& =& a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} + d_{1}d_{2} + (a_{1}b_{2} - b_{1}a_{2} - c_{1}d_{2} + d_{1}c_{2})i + {}\\ & +& (a_{1}c_{2} + b_{1}d_{2} - c_{1}a_{2} - d_{1}b_{2})j + (a_{1}d_{2} - b_{1}c_{2} + c_{1}b_{2} - d_{1}a_{2})k, {}\\ \end{array}$$
and
$$\displaystyle\begin{array}{rcl} \mathrm{Vec}(\overline{p},q)& =& (a_{1}b_{2} - b_{1}a_{2} - c_{1}d_{2} + d_{1}c_{2}, {}\\ & & a_{1}c_{2} + b_{1}d_{2} - c_{1}a_{2} - d_{1}b_{2},a_{1}d_{2} - b_{1}c_{2} + c_{1}b_{2} - d_{1}a_{2}). {}\\ \end{array}$$
Therefore, \((p,q) =\mathrm{ Vec}(\overline{p}q)\). Also \((p,q) = -(q,p) = -\mathrm{Vec}(\overline{q}p)\).
 
35.
(a) We have
$$\displaystyle\begin{array}{rcl} p_{0}& =& 2,\quad q_{0} = 1,\quad \mathbf{p} = (-1,1,-1),\quad \mathbf{q} = (1,1,1), {}\\ \left [p,q\right ]& =& p_{0}q_{0} -\mathbf{p}\mathbf{q} + p_{0}\mathbf{q} + q_{0}\mathbf{p} {}\\ & =& 2 - (-1,1,-1)(1,1,1) + 2(1,1,1) + (-1,1,-1) {}\\ & =& 3 + (1,3,1) = 3 + i + 3j + k; {}\\ \end{array}$$
(b) 6 + 2j + 3k; (c) − 2 − i + 4j + 2k; (d) \(0_{\mathbb{H}}\); (e) \(0_{\mathbb{H}}\); (f) \(0_{\mathbb{H}}\).
 
36.
We immediately get
$$\displaystyle\begin{array}{rcl} 2p& =& 2 + 2i + 2j - 2k,\quad 2p + q = 4 + i + j - k, {}\\ pq& =& (1 + i + j - k)(2 - i - j + k) = 5 + i + j - k, {}\\ p_{0}& =& 1,\quad q_{0} = 2,\quad \mathbf{p} = (1,1,-1),\quad \mathbf{q} = (-1,-1,1), {}\\ \left [p,q\right ]& =& p_{0}q_{0} -\mathbf{p}\mathbf{q} + p_{0}\mathbf{q} {}\\ & +& q_{0}\mathbf{p} = 2 - (1,1,-1)(-1,-1,1) + (-1,-1,1) {}\\ & +& 2(1,1,-1) = 5 + (1,1,-1) = 5 + i + j - k {}\\ \left [p,q\right ] + p& =& 6 + 2i + 2j - 2k, {}\\ \mathrm{Sc}(\left [p,q\right ] + p)& =& 6, {}\\ \mathrm{Vec}(\left [p,q\right ] + p)& =& (2,2,-2), {}\\ q \cdot (\left [p,q\right ] + p)& =& q_{0}\mathrm{Sc}(\left [p,q\right ] + p) + \mathbf{q}\mathrm{Vec}(\left [p,q\right ] + p) {}\\ & =& 12 + (-1,-1,1)(2,2,-2) = 6, {}\\ (p,q)& =& p_{0}q_{0} - q_{0}\mathbf{p} -\mathbf{p} \times \mathbf{q} {}\\ & =& (-1,-1,1) - 2(1,1,-1) - (1,1,-1) \times (-1,-1,1) {}\\ & =& (-3,-3,3)\, =\, -3i - 3j + 3k. {}\\ \end{array}$$
Therefore
$$\displaystyle\begin{array}{rcl} & & 2p + q - pq + q \cdot (\left [p,q\right ] + p) + (p,q) {}\\ & =& 4 + i + j - k - (5 + i + j - k) + 6 - 3i - 3j + 3k {}\\ & =& 5 - 3i - 3j + 3k. {}\\ \end{array}$$
 
37.
We have p 0 = a 1, \(q_{0} = a_{2}\), \(\mathbf{p} = (b_{1},c_{1},d_{1})\), \(\mathbf{q} = (b_{2},c_{2},d_{2})\), and
$$\displaystyle\begin{array}{rcl} \left [p,q\right ]& =& p_{0}q_{0} -\mathbf{p}\mathbf{q} + p_{0}\mathbf{q} + q_{0}\mathbf{p} {}\\ & =& a_{1}a_{2} - (b_{1},c_{1},d_{1})(b_{2},c_{2},d_{2}) + a_{1}(b_{2},c_{2},d_{2}) + a_{2}(b_{1},c_{1},d_{1}) {}\\ & =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{1}b_{2},a_{1}c_{2},a_{1}d_{2}) + {}\\ & +& (a_{2}b_{1},a_{2}c_{1},a_{1}d_{1}) {}\\ & =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} {}\\ & +& (a_{1}b_{2} + a_{2}b_{1},a_{1}c_{2} + a_{2}c_{1},a_{1}d_{2} + a_{2}d_{1}), {}\\ & =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{1}b_{2} + a_{2}b_{1})i {}\\ & +& (a_{1}c_{2} + a_{2}c_{1})j + (a_{1}d_{2} + a_{2}d_{1})k. {}\\ \end{array}$$
 
38.
Let \(p = a_{1} + b_{1}i + c_{1}j + d_{1}k\) and \(q = a_{2} + b_{2}i + c_{2}j + d_{2}k\), where \(a_{i},b_{i},c_{i},d_{i} \in \mathbb{R}\), i = 1, 2. Then
$$\displaystyle\begin{array}{rcl} pq& =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - d_{1}c_{2})i + {}\\ & +& (a_{1}c_{2} - b_{1}d_{2} + c_{1}a_{2} + d_{1}b_{2})j + (a_{1}d_{2} + b_{1}c_{2} - c_{1}b_{2} + d_{1}a_{2})k, {}\\ qp& =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{2}b_{1} + b_{2}a_{1} + c_{2}d_{1} - d_{2}c_{1})i + {}\\ & +& (a_{2}c_{1} - b_{2}d_{1} + c_{2}a_{1} + d_{2}b_{1})j + (a_{2}d_{1} + b_{2}c_{1} - c_{2}b_{1} + d_{2}a_{1})k, {}\\ \frac{1} {2}\left (pq + qp\right )& =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{2}b_{1} + b_{2}a_{1})i + {}\\ & +& (a_{2}c_{1} + a_{1}c_{2})j + (a_{1}d_{2} + a_{2}d_{1})k. {}\\ \end{array}$$
Consequently,
$$\displaystyle\begin{array}{rcl} \left [p,q\right ] = \frac{pq + qp} {2}.& & {}\\ \end{array}$$
 
39.
(a) It is easy to see that
$$\displaystyle\begin{array}{rcl} pq = (i + j)(i - j) = -2k,\quad qp = (i - j)(i + j) = 2k,& & {}\\ \left [p,q\right ] = \frac{pq + qp} {2} = 0_{\mathbb{H}};& & {}\\ \end{array}$$
(b) − 1 + 2i; (c) 3 + i + j + k.
 
40.
We have
$$\displaystyle\begin{array}{rcl} \left [p,q\right ] = \frac{pq + qp} {2} = \frac{qp + pq} {2} = \left [q,p\right ].& & {}\\ \end{array}$$
 
41.
(a) Obviously, it holds that
$$\displaystyle\begin{array}{rcl} & & \mathbf{p} = (1,2,-1),\quad \mathbf{q} = (-1,1,1), {}\\ & & \mathbf{p} \times \mathbf{q} = (3,0,3) = 3i + 3k; {}\\ \end{array}$$
(b) 3i − 3j; (c) \(-2i -\frac{3} {2}j + \frac{1} {2}k\); (d) k; (e) − j; (f) i.
 
42.
We have
$$\displaystyle\begin{array}{rcl} & & \mathbf{p} = (b_{1},c_{1},d_{1}),\quad \mathbf{q} = (b_{2},c_{2},d_{2}), {}\\ & & \mathbf{p} \times \mathbf{q} = (b_{1},c_{1},d_{1}) \times (b_{2},c_{2},d_{2}) = (c_{1}d_{2} - c_{2}d_{1},b_{2}d_{1} - b_{1}d_{2},b_{1}c_{2} - b_{2}c_{1}), {}\\ \end{array}$$
i.e.,
$$\displaystyle\begin{array}{rcl} p \times q = (c_{1}d_{2} - c_{2}d_{1})i + (b_{2}d_{1} - b_{1}d_{2})j + (b_{1}c_{2} - b_{2}c_{1})k.& & {}\\ \end{array}$$
 
43.
Let \(p = a_{1} + b_{1}i + c_{1}j + d_{1}k\) and \(q = a_{2} + b_{2}i + c_{2}j + d_{2}k\), where \(a_{i},b_{i},c_{i},d_{i} \in \mathbb{R}\) (i = 1, 2). Then
$$\displaystyle\begin{array}{rcl} pq& =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{1}b_{2} + b_{1}a_{2} + c_{1}d_{2} - c_{2}d_{1})i + {}\\ & +& (a_{1}c_{2} - b_{1}d_{2} + c_{1}a_{2} + d_{1}b_{2})j + (a_{1}d_{2} + b_{1}c_{2} - c_{1}b_{2} + d_{1}a_{2})k, {}\\ qp& =& a_{1}a_{2} - b_{1}b_{2} - c_{1}c_{2} - d_{1}d_{2} + (a_{2}b_{1} + b_{2}a_{1} + c_{2}d_{1} - d_{2}c_{1})i + {}\\ & +& (a_{2}c_{1} - b_{2}d_{1} + c_{2}a_{1} + d_{2}b_{1})j + (a_{2}d_{1} + b_{2}c_{1} - c_{2}b_{1} + d_{2}a_{1})k, {}\\ \end{array}$$
Therefore,
$$\displaystyle\begin{array}{rcl} \frac{1} {2}\left (pq - qp\right ) = (c_{1}d_{2} - c_{2}d_{1})i + (d_{1}b_{2} - d_{2}b_{1})j + (b_{1}c_{2} - c_{1}b_{2})k,& & {}\\ \end{array}$$
whence
$$\displaystyle\begin{array}{rcl} p \times q = \frac{pq - qp} {2}.& & {}\\ \end{array}$$
 
44.
(a) We obtain
$$\displaystyle\begin{array}{rcl} pq& =& (i + j - k)(1 - i + j + k) = 1 + 3i + j + k, {}\\ qp& =& (1 - i + j + k)(i + j - k) = 1 - i + j - 3k, {}\\ \frac{1} {2}\left (pq - qp\right )& =& 2i + 2k; {}\\ \end{array}$$
(b) − ik, (c) ij + k.
 
45.
(a) We get
$$\displaystyle\begin{array}{rcl} p_{0}& =& 1,\quad q_{0} = 2, {}\\ \mathbf{p}& =& (-1,1,1),\quad \mathbf{q} = (-1,0,-1), {}\\ p \cdot q& =& p_{0}q_{0} + \mathbf{p}\mathbf{q}\, =\, 2 + (-1,1,1)(-1,0,-1) = 2, {}\\ (p,q)& =& p_{0}\mathbf{q} - q_{0}\mathbf{p} -\mathbf{p} \times \mathbf{q} {}\\ & =& (-1,0,-1) - 2(-1,1,1) - (-1,1,1) \times (-1,0,-1) {}\\ & =& (2,0,-4)\, =\, 2i - 4k, {}\\ p \times q& =& \mathbf{p} \times \mathbf{q} = (-1,1,1) \times (-1,0,-1) = (-1,-2,1), {}\\ p \times q& =& -i - 2j + k, {}\\ p \cdot q - (p,q)& +& p \times q = 2 - 2i + 4k - i - 2j + k = 2 - 3i - 2j + 5k; {}\\ \end{array}$$
(b) 2 + i + 6j − 5k; (c) 6 − i − 2j + k.
 
46.
(a) We have
$$\displaystyle\begin{array}{rcl} 2p - r& =& 2i + 2j - (i + j + k) = i + j - k, {}\\ p + q& =& i + j + 1 - i - k = 1 + j - k, {}\\ \mathrm{Sc}(p + q) = 1,& & \mathrm{Vec}(p + q) = (0,1,-1), {}\\ r_{0} = 0,& & \mathbf{r} = (1,1,1), {}\\ r \cdot (p + q)& =& r_{0}\mathrm{Sc}(p + q) + \mathbf{r}\mathrm{Vec}(p + q)\,=\,(1,1,1)(0,1,-1)\,=\,0, {}\\ q + r& =& 1 + j, {}\\ p(q + r)& =& (i + j)(1 + j) = -1 + i + j + k, {}\\ 2p - r - r \cdot (p + q)& -& p(q + r)\,=\,i + j - k - (-1 + i + j + k)\,=\,1 - 2k; {}\\ \end{array}$$
(b) 1 + 2i + 2j + 2k; (c) 1 + i; (d) − 2 + 3i − 2k.
 
47.
(a) We have
$$\displaystyle\begin{array}{rcl} \vert p\vert & =& \sqrt{9 + 1 + 1 + 1} = 2\sqrt{3}, {}\\ \mathrm{sgn}(p)& =& \frac{p} {\vert p\vert } = \frac{\sqrt{3}} {6} \ (3 + i - j + k)\, =\, \frac{\sqrt{3}} {2} + \frac{\sqrt{3}} {6} \ i -\frac{\sqrt{3}} {6} \ j + \frac{\sqrt{3}} {6} \ k; {}\\ \end{array}$$
(b) \(\frac{\sqrt{3}} {3} -\frac{\sqrt{3}} {3} i + \frac{\sqrt{3}} {3} k\); (c) \(\frac{\sqrt{2}} {2} i -\frac{\sqrt{2}} {2} j\).
 
48.
(a) After a straightforward calculation we get
$$\displaystyle\begin{array}{rcl} pq& =& (i + j)(1 - k) = 2j, {}\\ \vert r\vert & =& \sqrt{3}, {}\\ \mathrm{sgn}(r)& =& \frac{r} {\vert r\vert } = \frac{\sqrt{3}} {3} \ i + \frac{\sqrt{3}} {3} \ j + \frac{\sqrt{3}} {3} \ k, {}\\ pq - p + 2q - 3\mathrm{sgn}(r)& =& 2 - (1 + \sqrt{3})i + (1 -\sqrt{3})j - (2 + \sqrt{3})k; {}\\ \end{array}$$
(b) \((3 + \sqrt{2})i - j\); (c) \(-\sqrt{2}i -\sqrt{2}j - 3\sqrt{2}k\); (d) \(-2 -\frac{\sqrt{3}} {3} -\frac{2\sqrt{3}} {3} i -\frac{\sqrt{3}} {3} k\); (e) \(-2 -{\Bigl ( 1 + \frac{\sqrt{2}} {2} \Bigr )}i -{\Bigl ( 3 + \frac{\sqrt{2}} {2} \Bigr )}j - 2k\); (f) \(-3i + (\sqrt{2} - 3)j - 3k\).
 
49.
The following calculation solves our exercise:
$$\displaystyle\begin{array}{rcl} \vert p\vert & =& \sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}, {}\\ \mathrm{sgn}(p)& =& \frac{a} {\sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}} + \frac{b} {\sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}}\ i {}\\ & +& \frac{c} {\sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}}\ j + \frac{d} {\sqrt{{a}^{2 } + {b}^{2 } + {c}^{2 } + {d}^{2}}}\ k. {}\\ \end{array}$$
 
50.
(a) We have
$$\displaystyle\begin{array}{rcl} p_{0} = 1,\quad \vert p\vert = \sqrt{6},\quad \mathrm{arg}(p) =\arccos \ \frac{\sqrt{6}} {6};& & {}\\ \end{array}$$
(b) \(\arccos {\Bigl (-\frac{1} {2}\Bigr )}\); (c) \(\arccos \frac{2} {\sqrt{6}}\).
 
51.
(a) We compute
$$\displaystyle\begin{array}{rcl} & & \vert q\vert = \sqrt{3},\quad q_{0} = 1,\quad \mathrm{arg}(q) =\arccos \ \frac{\sqrt{3}} {3}, {}\\ & & p - r = 2,\quad \mathbf{q} = (-1,0,-1),\quad r_{0} = 0,\quad \mathbf{r} = (0,1,1), {}\\ & & \left [q,r\right ] = q_{0}r_{0} -\mathbf{q}\mathbf{r} + q_{0}\mathbf{r} + r_{0}\mathbf{q} = 1 + (0,1,1), {}\\ & & \left [q,r\right ] = 1 + j + k, {}\\ & & \mathrm{arg}(q)(p - r) -\left [q,r\right ] = 2\arccos \ \frac{\sqrt{3}} {3} - 1 - j - k; {}\\ \end{array}$$
(b) \(-\frac{\pi }{2} - i + \frac{\sqrt{2}} {2} j +{\Bigl ( -4 + \frac{\sqrt{2}} {2} \Bigr )}k\); (c) \(3 -\frac{3\pi } {2} +{\Bigl ( 2 + \frac{\pi } {2}\Bigr )}i +{\Bigl ( 4 - \frac{\pi } {2}\Bigr )}j + 6k\).
 
52.
(a) An easy computation yields
$$\displaystyle\begin{array}{rcl} & & \vert p\vert = 2,\quad p_{0} = 1,\quad \mathrm{arg}(p) =\arccos \frac{1} {2} = \frac{\pi } {3}, {}\\ & & \mathbf{p} = (1,1,1),\quad \vert \mathbf{p}\vert = \sqrt{3}, \frac{\mathbf{p}} {\vert \mathbf{p}\vert } = \left (\frac{\sqrt{3}} {3}, \frac{\sqrt{3}} {3}, \frac{\sqrt{3}} {3} \right ). {}\\ \end{array}$$
Consequently,
$$\displaystyle\begin{array}{rcl} p = 2\left [\cos \frac{\pi } {3} + \left (\frac{\sqrt{3}} {3} \ i + \frac{\sqrt{3}} {3} \ j + \frac{\sqrt{3}} {3} k\right )\sin \frac{\pi } {3}\right ];& & {}\\ \end{array}$$
(b) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} i + \frac{\sqrt{2}} {2} j\Bigr )}\sin \frac{\pi } {2}\Bigr )}\); (c) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} i + \frac{\sqrt{2}} {2} k\Bigr )}\sin \frac{\pi } {2}\Bigr )}\); (d) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} j + \frac{\sqrt{2}} {2} k\Bigr )}\sin \frac{\pi } {2}\Bigr )}\); (e) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} i -\frac{\sqrt{2}} {2} j\Bigr )}\sin \frac{\pi } {2}\Bigr )}\); (f) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} i -\frac{\sqrt{2}} {2} k\Bigr )}\sin \frac{\pi } {2}\Bigr )}\); (g) \(\sqrt{2}{\Bigl (\cos \frac{\pi }{2} +{\Bigl ( \frac{\sqrt{2}} {2} j -\frac{\sqrt{2}} {2} k\Bigr )}\sin \frac{\pi } {2}\Bigr )}\).
 
53.
(a) p = 1 + i1 + 1j + i1j; (b) \(p = 2 + i{\Bigl ( -\frac{3} {2}\Bigr )} + (-4)j + i5j\); (c) \(p = \frac{1} {2} + i(-2) + 3j + i(-4)j\).
 
54.
(a) We have
$$\displaystyle\begin{array}{rcl} p& =& 1j + i1j, {}\\ q& =& 1 + i(-1) + i(-1)j, {}\\ pq& =& (1j + i1j)(1 + i(-1) + i(-1)j) = 1 + i(-1) + i2j; {}\\ \end{array}$$
(b) \(\frac{3} {2} + i{\Bigl ( -\frac{1} {2}\Bigr )} +{\Bigl ( -\frac{1} {2}\Bigr )}j + i{\Bigl ( -\frac{11} {2} \Bigr )}j\); (c) − 1 + i(6) + (−5)j + i5j.
 
55.
(a) 1 + i2 + 4j + i3j; (b) 1 + i1 + 1j + i1j; (c) 1 + i2 + 4j + i1j.
 
56.
(a) It is clear that
$$\displaystyle\begin{array}{rcl} ipj& =& i\left (2 + \frac{3} {2}\ i -\frac{1} {2}\ j + k\right )j = 1 + \frac{1} {2}\ i -\frac{3} {2}\ j + 2k, {}\\ p + ipj& =& 3 + 2i - 2j + 3k, {}\\ p - ipj& =& 1 + i + j - k, {}\\ p_{+}& =& \frac{3} {2} + i - j + \frac{3} {2}\ k,\quad p_{-}\, =\, \frac{1} {2} + \frac{1} {2}\ i + \frac{1} {2}\ j -\frac{1} {2}\ k; {}\\ \end{array}$$
(b) \(p_{+} = \frac{3} {2} + i - j + \frac{3} {2}k\), \(p_{-} = -\frac{1} {2} + \frac{1} {2}k\); (c) \(p_{+} = -\frac{1} {2} - i + j -\frac{1} {2}k\), \(p_{-} = \frac{3} {2} -\frac{3} {2}k\).
 
57.
We have
$$\displaystyle\begin{array}{rcl} ipj& =& d - ci - bj + ak, {}\\ p + ipj& =& a + d + (b - c)i - (b - c)j + (a + d)k, {}\\ p - ipj& =& a - d + (b + c)i + (b + c)j - (a - d)k, {}\\ p_{+}& =& \frac{a + d} {2} + \frac{b - c} {2} \ i -\frac{b - c} {2} \ j + \frac{a + d} {2} \ k, {}\\ p_{-}& =& \frac{a - d} {2} + \frac{b + c} {2} \ i + \frac{b + c} {2} \ j -\frac{a - d} {2} \ k. {}\\ \end{array}$$
 
58.
We have
$$\displaystyle\begin{array}{rcl} \left (a + d + i(b - c)\right )\frac{1 + k} {2} & =& \frac{a + ak + d + dk + i(b - c) - j(b - c)} {2} {}\\ & =& \frac{a + d} {2} + \frac{b - c} {2} \ i -\frac{b - c} {2} \ j + \frac{a + d} {2} \ k {}\\ & =& p_{+}, {}\\ \end{array}$$
where in the last equality we used the previous exercise. Also,
$$\displaystyle\begin{array}{rcl} \left (a - d + i(b + c)\right )\frac{1 - k} {2} & =& \frac{a - d - (a - d)k + i(b + c) + j(b + c)} {2} {}\\ & =& \frac{a - d} {2} + \frac{b + c} {2} \ i + \frac{b + c} {2} \ j -\frac{a - d} {2} \ k {}\\ & =& p_{-}. {}\\ \end{array}$$
 
59.
We have
$$\displaystyle\begin{array}{rcl} \frac{1 + k} {2} \left (a + d + j(c - b)\right )& =& \frac{a + d + j(c - b) + (a + d)k - i(c - b)} {2} {}\\ & =& \frac{a + d} {2} + \frac{b - c} {2} \ i -\frac{b - c} {2} \ j + \frac{a + d} {2} \ k {}\\ & =& p_{+}, {}\\ \frac{1 - k} {2} \left (a - d + j(b + c)\right )& =& \frac{(a - d) + j(b + c) - k(a - d) + i(b + c)} {2}{}\\ & = & p_{ -}. {}\\ \end{array}$$
 
60.
Let p = a + bi + cj + dk \((a,b,c,d \in \mathbb{R})\). Then
$$\displaystyle\begin{array}{rcl} & & \vert p_{+}{\vert }^{2} = \frac{{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2} + 2ad - 2bc} {2}, {}\\ & & \vert p_{-}{\vert }^{2} = \frac{{a}^{2} + {b}^{2} + {c}^{2} + {d}^{2} - 2ad + 2bc} {2}. {}\\ \end{array}$$
Consequently
$$\displaystyle\begin{array}{rcl} \vert p_{+}{\vert }^{2} + \vert p_{ -}{\vert }^{2}\, =\, {a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}\, =\, \vert p{\vert }^{2}.& & {}\\ \end{array}$$
 
62.
(a) \(0_{\mathbb{H}}\); (b) 1 − ijk; (c) 4; (d) j + k; (e) 2 − 2k.
 
64.
Note that
$$\displaystyle\begin{array}{rcl} \mathrm{Sc}\left (p\mathbf{q}\overline{p}\right ) = \frac{p\mathbf{q}\overline{p} + \overline{p\mathbf{q}\overline{p}}} {2} = \frac{p} {2}\left (\mathbf{q} + \overline{\mathbf{q}}\right )\overline{p} = 0.& & {}\\ \end{array}$$
 
66.
The following computation leads to the solution:
$$\displaystyle\begin{array}{rcl} \left \vert q\mathbf{p}\overline{q}\right \vert = \vert q\vert \left \vert \mathbf{p}\right \vert \vert \overline{q}\vert = \left \vert \mathbf{p}\right \vert \vert \overline{q}\vert = \left \vert \mathbf{p}\right \vert.& & {}\\ \end{array}$$
 
68.
Indeed,
$$\displaystyle\begin{array}{rcl} q\left (\alpha \mathbf{p} + \mathbf{q}\right )\overline{q} = q\alpha \mathbf{p}\overline{q} + q\mathbf{q}\overline{q} =\alpha q\mathbf{p}\overline{q} + q\mathbf{q}\overline{q}.& & {}\\ \end{array}$$
 
70.
(a) \(- \frac{2} {\sqrt{3}}i + \frac{2} {\sqrt{3}}j - \frac{2} {\sqrt{3}}k\); (b) \(i\); (c) \(j\); (d) k; (e) \(101{\Bigl ( - \frac{i} {6} + \frac{2j} {\sqrt{6}} - \frac{k} {\sqrt{6}}\Bigr )}\); (f) \(2{\Bigl ( - \frac{i} {\sqrt{19}} + \frac{3j} {\sqrt{19}} - \frac{3k} {\sqrt{19}}\Bigr )}\).
 

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Abdel-Khalek, Quaternion analysis (1996, peprint). arXiv:hepth/9607152 K. Abdel-Khalek, Quaternion analysis (1996, peprint). arXiv:hepth/9607152
2.
Zurück zum Zitat G. Aeberli, Der Zusammenhang zwischen quaternären quadratischen formen und idealen in quaternionenringen. Comment. Math. Helv. 33, 212–239 (1959)CrossRefMATHMathSciNet G. Aeberli, Der Zusammenhang zwischen quaternären quadratischen formen und idealen in quaternionenringen. Comment. Math. Helv. 33, 212–239 (1959)CrossRefMATHMathSciNet
3.
Zurück zum Zitat V. Bargmann, Über den Zusammenhang zwischen Semivektoren und Spinoren und die Reduktion der Diracgleichungen für Semivektoren. Helv. Phys. Acta 7, 57–82 (1934) V. Bargmann, Über den Zusammenhang zwischen Semivektoren und Spinoren und die Reduktion der Diracgleichungen für Semivektoren. Helv. Phys. Acta 7, 57–82 (1934)
4.
Zurück zum Zitat I.Y. Baritzhack, R.R. Harman, Optimal fusion of a given quaternion with vector measurements. J. Guid. Control Dyn. 25(1), 188–190 (2002)CrossRef I.Y. Baritzhack, R.R. Harman, Optimal fusion of a given quaternion with vector measurements. J. Guid. Control Dyn. 25(1), 188–190 (2002)CrossRef
5.
Zurück zum Zitat W.E. Baylis, Why i? Am. J. Phys. 60, 788–797 (1992) W.E. Baylis, Why i? Am. J. Phys. 60, 788–797 (1992)
6.
Zurück zum Zitat B. Beck, Sur les équations polynomiales dans les quaternions. Enseign. Math. 25(3–4), 193–201 (1979)MATHMathSciNet B. Beck, Sur les équations polynomiales dans les quaternions. Enseign. Math. 25(3–4), 193–201 (1979)MATHMathSciNet
8.
Zurück zum Zitat E. Cartan, Sur les groupes linéaires quaternioniens. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 85, 191–203 (1940)MathSciNet E. Cartan, Sur les groupes linéaires quaternioniens. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 85, 191–203 (1940)MathSciNet
9.
Zurück zum Zitat G. Combebiac, Calcul des Triquaternions (GauthierVillars, Paris, 1902)MATH G. Combebiac, Calcul des Triquaternions (GauthierVillars, Paris, 1902)MATH
10.
Zurück zum Zitat S. De Leo, P. Rotelli, Representations of U(1, q) and constructive quaternion tensor products. Nuovo Cimento B 110, 33–51 (1995)CrossRef S. De Leo, P. Rotelli, Representations of U(1, q) and constructive quaternion tensor products. Nuovo Cimento B 110, 33–51 (1995)CrossRef
11.
Zurück zum Zitat P. Du Val, Homographies, Quaternions, and Rotations. Clarendon Press, Oxford (1964)MATH P. Du Val, Homographies, Quaternions, and Rotations. Clarendon Press, Oxford (1964)MATH
12.
Zurück zum Zitat S. Eilenberg, I. Niven, The “fundamental theorem of algebra” for quaternions. Bull. Am. Math. Soc. 50, 244–248 (1944)CrossRefMathSciNet S. Eilenberg, I. Niven, The “fundamental theorem of algebra” for quaternions. Bull. Am. Math. Soc. 50, 244–248 (1944)CrossRefMathSciNet
13.
Zurück zum Zitat A. Einstein, W. Mayer, Die Diracgleichungen für Semivektoren. Proc. R. Acad. Amst. 56, 497–516 (1933) A. Einstein, W. Mayer, Die Diracgleichungen für Semivektoren. Proc. R. Acad. Amst. 56, 497–516 (1933)
14.
Zurück zum Zitat I. Gelfand, V. Retakh, R.L. Wilson, Quaternionic quasideterminants and determinants, in Lie Groups and Symmetric Spaces, ed. by F.I. Karpelevich, S.G. Gindikin. American Mathematical Society Translations Series 2, vol. 210 (American Mathematical Society, Providence, 2003), pp. 111–123 I. Gelfand, V. Retakh, R.L. Wilson, Quaternionic quasideterminants and determinants, in Lie Groups and Symmetric Spaces, ed. by F.I. Karpelevich, S.G. Gindikin. American Mathematical Society Translations Series 2, vol. 210 (American Mathematical Society, Providence, 2003), pp. 111–123
15.
Zurück zum Zitat K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems (Birkhäuser, Basel, 1990)CrossRefMATH K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems (Birkhäuser, Basel, 1990)CrossRefMATH
16.
Zurück zum Zitat K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers (Wiley, New York, 1997)MATH K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers (Wiley, New York, 1997)MATH
17.
Zurück zum Zitat K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008)MATH K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space (Birkhäuser, Basel, 2008)MATH
18.
Zurück zum Zitat F. Gürsey, Applications of Quaternions to Field Equations. Ph.D. thesis, University of London, 1950 F. Gürsey, Applications of Quaternions to Field Equations. Ph.D. thesis, University of London, 1950
19.
Zurück zum Zitat W.R. Hamilton, On quaternions and the rotation of a solid body. Proc. R. Ir. Acad. 4, 38–56 (1850) W.R. Hamilton, On quaternions and the rotation of a solid body. Proc. R. Ir. Acad. 4, 38–56 (1850)
20.
Zurück zum Zitat W.R. Hamilton, Elements of Quaternions, Vol. I et II (First edition 1866; second edition edited and expanded by C.J. Joly 1899–1901; reprinted by Chelsea Publishing, New York, 1969) W.R. Hamilton, Elements of Quaternions, Vol. I et II (First edition 1866; second edition edited and expanded by C.J. Joly 1899–1901; reprinted by Chelsea Publishing, New York, 1969)
21.
Zurück zum Zitat T. Haslwanter, Mathematics of the three dimensional eye rotations. Vis. Res. 35, 1727–1739 (1995)CrossRef T. Haslwanter, Mathematics of the three dimensional eye rotations. Vis. Res. 35, 1727–1739 (1995)CrossRef
23.
Zurück zum Zitat D. Hestenes, A unified language for mathematics and physics, in Clifford Algebras and Their Applications in Mathematical Physics, ed. by J.S.R. Chisholmand, A.K.Common (Reidel, Dordrecht, 1986), pp. 1–23CrossRef D. Hestenes, A unified language for mathematics and physics, in Clifford Algebras and Their Applications in Mathematical Physics, ed. by J.S.R. Chisholmand, A.K.Common (Reidel, Dordrecht, 1986), pp. 1–23CrossRef
24.
Zurück zum Zitat D. Janovská, G. Opfer, The classification and the computation of the zeros of quaternionic, two-sided polynomials. Numer. Math. 115, 81–100 (2010)CrossRefMATHMathSciNet D. Janovská, G. Opfer, The classification and the computation of the zeros of quaternionic, two-sided polynomials. Numer. Math. 115, 81–100 (2010)CrossRefMATHMathSciNet
25.
Zurück zum Zitat D. Janovská, G. Opfer, A note on the computation of all zeros of simple quaternionic polynomials. SIAM J. Numer. Anal. 48(1), 244–256 (2010)CrossRefMATHMathSciNet D. Janovská, G. Opfer, A note on the computation of all zeros of simple quaternionic polynomials. SIAM J. Numer. Anal. 48(1), 244–256 (2010)CrossRefMATHMathSciNet
26.
Zurück zum Zitat T. Jiang, Cramer rule for quaternionic linear equations in quaternionic quantum theory. Rep. Math. Phys. 57(3), 463–468 (2006)CrossRefMATHMathSciNet T. Jiang, Cramer rule for quaternionic linear equations in quaternionic quantum theory. Rep. Math. Phys. 57(3), 463–468 (2006)CrossRefMATHMathSciNet
27.
Zurück zum Zitat T. Jiang, M. Wei, On a solution of the quaternion matrix equation X − AXB = C and its application. Acta Math. Sin. 21, 483–490 (2005)CrossRefMATHMathSciNet T. Jiang, M. Wei, On a solution of the quaternion matrix equation XAXB = C and its application. Acta Math. Sin. 21, 483–490 (2005)CrossRefMATHMathSciNet
28.
Zurück zum Zitat W.J. Johnston, A quaternion substitute for the theory of tensors. Proc. R. Ir. Acad. A 37, 13–27 (1926) W.J. Johnston, A quaternion substitute for the theory of tensors. Proc. R. Ir. Acad. A 37, 13–27 (1926)
29.
Zurück zum Zitat C.J. Joly, Quaternion invariants of linear vector functions and quaternions determinants. Proc. R. Ir. Acad. 4, 1–15 (1896) C.J. Joly, Quaternion invariants of linear vector functions and quaternions determinants. Proc. R. Ir. Acad. 4, 1–15 (1896)
30.
Zurück zum Zitat V. Kravchenko, M. Shapiro, Integral Representations for Spatial Models of Mathematical Physics. Research Notes in Mathematics (Pitman Advanced Publishing Program, London, 1996) V. Kravchenko, M. Shapiro, Integral Representations for Spatial Models of Mathematical Physics. Research Notes in Mathematics (Pitman Advanced Publishing Program, London, 1996)
31.
Zurück zum Zitat T.Y. Lam, A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131 (Springer, New York, 1991) T.Y. Lam, A First Course in Noncommutative Rings. Graduate Texts in Mathematics, vol. 131 (Springer, New York, 1991)
33.
Zurück zum Zitat H.C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients. Proc. R. Ir. Acad. Sect. A 52, 253–260 (1949) H.C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients. Proc. R. Ir. Acad. Sect. A 52, 253–260 (1949)
34.
Zurück zum Zitat M. Markic, Transformantes nouveau véhicule mathématique. Synth\(\grave{e}\) se des triquaternions de Combebiac et du syst\(\grave{e}\) me géométrique de Grassmann Calcul des quadriquaternions. Ann. Fac. Sci. Toulouse, 28, 103–148 (1936) M. Markic, Transformantes nouveau véhicule mathématique. Synth\(\grave{e}\) se des triquaternions de Combebiac et du syst\(\grave{e}\) me géométrique de Grassmann Calcul des quadriquaternions. Ann. Fac. Sci. Toulouse, 28, 103–148 (1936)
35.
Zurück zum Zitat M. Markic, Transformantes nouveau véhicule mathématique. Synth\(\grave{e}\) se des triquaternions de Combebiac et du syst\(\grave{e}\) me géométrique de Grassmann Calcul des quadriquaternions. Ann. Fac. Sci. Toulouse 1, 201–248 (1937) M. Markic, Transformantes nouveau véhicule mathématique. Synth\(\grave{e}\) se des triquaternions de Combebiac et du syst\(\grave{e}\) me géométrique de Grassmann Calcul des quadriquaternions. Ann. Fac. Sci. Toulouse 1, 201–248 (1937)
37.
Zurück zum Zitat R.E. O’Connor, G. Pall, The quaternion congruence \(\overline{t}at = b(mod\,g)\). Am. J. Math. 61(2), 487–508 (1939)CrossRefMathSciNet R.E. O’Connor, G. Pall, The quaternion congruence \(\overline{t}at = b(mod\,g)\). Am. J. Math. 61(2), 487–508 (1939)CrossRefMathSciNet
38.
Zurück zum Zitat S. O’Donnel, William Rowan Hamilton, Portrait of a Prodigy (Boole Press, Dublin, 1983) S. O’Donnel, William Rowan Hamilton, Portrait of a Prodigy (Boole Press, Dublin, 1983)
40.
Zurück zum Zitat G.B. Price, An Introduction to Multicomplex Spaces and Functions (Marcel Dekker, New York, 1991)MATH G.B. Price, An Introduction to Multicomplex Spaces and Functions (Marcel Dekker, New York, 1991)MATH
41.
Zurück zum Zitat V. Retakh, R.L. Wilson, Advanced Course on Quasideterminants and Universal Localization. Notes of the Course (Centre de Recerca Matematica (CRM), Bellaterra, 2007) V. Retakh, R.L. Wilson, Advanced Course on Quasideterminants and Universal Localization. Notes of the Course (Centre de Recerca Matematica (CRM), Bellaterra, 2007)
42.
Zurück zum Zitat M. Riesz, Clifford Numbers and Spinors. Lecture Series No. 38 (Institute for Fluid Dynamics and Applied Mathematics/University of Maryland, Baltimore, 1958). Reprinted in Clifford Numbers and Spinors, ed. by M. Riesz, E.F. Bolinder, P. Lounesto (Kluwer, Dordrecht, 1993) M. Riesz, Clifford Numbers and Spinors. Lecture Series No. 38 (Institute for Fluid Dynamics and Applied Mathematics/University of Maryland, Baltimore, 1958). Reprinted in Clifford Numbers and Spinors, ed. by M. Riesz, E.F. Bolinder, P. Lounesto (Kluwer, Dordrecht, 1993)
43.
Zurück zum Zitat W. Rindler, I. Robinson, A plainmans guide to bivectors, biquaternions, and the algebra and geometry of Lorentz transformations, in On Einsteins Path Essays in Honour of Engelbert Schucking, ed. by A. Harvey (Springer, New York, 1999), pp. 407–433 W. Rindler, I. Robinson, A plainmans guide to bivectors, biquaternions, and the algebra and geometry of Lorentz transformations, in On Einsteins Path Essays in Honour of Engelbert Schucking, ed. by A. Harvey (Springer, New York, 1999), pp. 407–433
44.
Zurück zum Zitat E. Sarrau, Notions sur la théorie des quaternions, Paris, Gauthier-Villars, 1889, 46 p. E. Sarrau, Notions sur la théorie des quaternions, Paris, Gauthier-Villars, 1889, 46 p.
47.
Zurück zum Zitat P.G. Tait, On the linear and vector function. Proc. R. Soc. Edinb. 23, 424–426 (1899) P.G. Tait, On the linear and vector function. Proc. R. Soc. Edinb. 23, 424–426 (1899)
48.
Zurück zum Zitat P.G. Tait, On the claim recently made for Gauss to the invention (not the discovery) of quaternions. Proc. R. Soc. Edinb. 23, 17–23 (1899/1900) P.G. Tait, On the claim recently made for Gauss to the invention (not the discovery) of quaternions. Proc. R. Soc. Edinb. 23, 17–23 (1899/1900)
49.
Zurück zum Zitat O. Teichmüller, Operatoren im Wachsschen Raum. J. Math. 174, 73–124 (1935)MATH O. Teichmüller, Operatoren im Wachsschen Raum. J. Math. 174, 73–124 (1935)MATH
51.
Zurück zum Zitat W.H. Watson, On a system of functional dynamics and optics. Philos. Trans. R. Soc. A 236, 155–190 (1937)CrossRef W.H. Watson, On a system of functional dynamics and optics. Philos. Trans. R. Soc. A 236, 155–190 (1937)CrossRef
53.
Zurück zum Zitat P. Weiss, On some applications of quaternions to restricted relativity and classical radiation theory. Proc. R. Ir. Acad. A 46, 129–168 (1941)MATH P. Weiss, On some applications of quaternions to restricted relativity and classical radiation theory. Proc. R. Ir. Acad. A 46, 129–168 (1941)MATH
54.
Zurück zum Zitat P. Weiss, An extension of Cauchy’s integral formula bymeans of a Maxwell’s stress tensor. J. Lond. Math. Soc. 21(3), 210–218 (1946)CrossRefMATH P. Weiss, An extension of Cauchy’s integral formula bymeans of a Maxwell’s stress tensor. J. Lond. Math. Soc. 21(3), 210–218 (1946)CrossRefMATH
55.
Zurück zum Zitat H. Weyl, Quantenmechanik und Gruppentheorie. Weyl, H. Publication: Zeitschrift für Physik 46(1–2), 1–46 (1927) H. Weyl, Quantenmechanik und Gruppentheorie. Weyl, H. Publication: Zeitschrift für Physik 46(1–2), 1–46 (1927)
57.
Zurück zum Zitat D.R. Wilkins, William Rowan Hamilton: mathematical genius. Phys. World 18, 33–36 (2005) D.R. Wilkins, William Rowan Hamilton: mathematical genius. Phys. World 18, 33–36 (2005)
59.
Zurück zum Zitat L.A. Wolf, Similarity of matrices in which the elements are real quaternions. Bull. Am. Math. Soc. 42, 737–743 (1936)CrossRef L.A. Wolf, Similarity of matrices in which the elements are real quaternions. Bull. Am. Math. Soc. 42, 737–743 (1936)CrossRef
60.
61.
Zurück zum Zitat F. Zhang, Permanent Inequalities and Quaternion Matrices. Ph.D. dissertation, University of California at Santa Barbara, 1993 F. Zhang, Permanent Inequalities and Quaternion Matrices. Ph.D. dissertation, University of California at Santa Barbara, 1993
62.
Zurück zum Zitat F. Zhang, On numerical range of normal matrices of quaternions. J. Math. Phys. Sci. 29(6), 235–251 (1995)MATHMathSciNet F. Zhang, On numerical range of normal matrices of quaternions. J. Math. Phys. Sci. 29(6), 235–251 (1995)MATHMathSciNet
Metadaten
Titel
Solutions
verfasst von
João Pedro Morais
Svetlin Georgiev
Wolfgang Sprößig
Copyright-Jahr
2014
Verlag
Springer Basel
DOI
https://doi.org/10.1007/978-3-0348-0622-0_11