Skip to main content

2020 | OriginalPaper | Buchkapitel

8. Solve Case

verfasst von : Zhiqiang (John) Zhai

Erschienen in: Computational Fluid Dynamics for Built and Natural Environments

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chapter 5 presents the final universal form of the discretized governing equations for all flow conservations (e.g., mass, momentum, energy).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Benim AC, Zinser W (1986) A segregated formulation of Navier-Stokes equations with finite elements. Comput Methods Appl Mech Eng 57(2):223–237MATHCrossRef Benim AC, Zinser W (1986) A segregated formulation of Navier-Stokes equations with finite elements. Comput Methods Appl Mech Eng 57(2):223–237MATHCrossRef
Zurück zum Zitat Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. Fundam Mixed Convect 213:65–72 Blay D, Mergui S, Niculae C (1992) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. Fundam Mixed Convect 213:65–72
Zurück zum Zitat Chen QY, Xu WR (1998) A zero-equation turbulence model for indoor airflow simulation. Energy Build 28(2):137–144CrossRef Chen QY, Xu WR (1998) A zero-equation turbulence model for indoor airflow simulation. Energy Build 28(2):137–144CrossRef
Zurück zum Zitat Chow WK, Cheung YL (1997) Comparison of the algorithms PISO and SIMPLER for solving pressure-velocity linked equations in simulating compartmental fire. Numer Heat Transfer 31(1):87–112CrossRef Chow WK, Cheung YL (1997) Comparison of the algorithms PISO and SIMPLER for solving pressure-velocity linked equations in simulating compartmental fire. Numer Heat Transfer 31(1):87–112CrossRef
Zurück zum Zitat Cohen J, Molemake JA (2009) Fast double precision CFD code using CUDA. In: 21st international conference on parallel computational fluid dynamics Cohen J, Molemake JA (2009) Fast double precision CFD code using CUDA. In: 21st international conference on parallel computational fluid dynamics
Zurück zum Zitat Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5(3):243–255MathSciNetMATHCrossRef Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential equations by finite differences. Commun Pure Appl Math 5(3):243–255MathSciNetMATHCrossRef
Zurück zum Zitat Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process 58(5):471–483CrossRef Foster N, Metaxas D (1996) Realistic animation of liquids. Graph Models Image Process 58(5):471–483CrossRef
Zurück zum Zitat Foster N, Metaxas D (1997) Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press, Addison-Wesley Publishing Co Foster N, Metaxas D (1997) Modeling the motion of a hot, turbulent gas. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, ACM Press, Addison-Wesley Publishing Co
Zurück zum Zitat Ghia U, Ghia KN, Shin CT (1982) High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411MATHCrossRef Ghia U, Ghia KN, Shin CT (1982) High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys 48:387–411MATHCrossRef
Zurück zum Zitat Haroutunian V, Engelman MS, Hasbani I (1993) Segregated finite element algorithms for the numerical solution of large scale incompressible flow problems. Int J Numer Methods Fluids 17(4):323–348MATHCrossRef Haroutunian V, Engelman MS, Hasbani I (1993) Segregated finite element algorithms for the numerical solution of large scale incompressible flow problems. Int J Numer Methods Fluids 17(4):323–348MATHCrossRef
Zurück zum Zitat Hauke G, Landaberea A, Garmendia I, Canales J (2005) A segregated method for compressible flow computation part I: isothermal compressible flows. Int J Numer Methods Fluids 47(4):183–209MATHCrossRef Hauke G, Landaberea A, Garmendia I, Canales J (2005) A segregated method for compressible flow computation part I: isothermal compressible flows. Int J Numer Methods Fluids 47(4):183–209MATHCrossRef
Zurück zum Zitat Huang HC, Li ZH, Usmani AS (1999) Finite element analysis for transient non-Newtonian flow. Springer London Limited, LondonMATHCrossRef Huang HC, Li ZH, Usmani AS (1999) Finite element analysis for transient non-Newtonian flow. Springer London Limited, LondonMATHCrossRef
Zurück zum Zitat Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65MathSciNetMATHCrossRef Issa RI (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys 62(1):40–65MathSciNetMATHCrossRef
Zurück zum Zitat Jin M, Chen Q (2015) Improvement of fast fluid dynamics with a conservative semi-Lagrangian scheme. Int J Numer Methods Heat Fluid Flow 25(1):2–18MathSciNetMATHCrossRef Jin M, Chen Q (2015) Improvement of fast fluid dynamics with a conservative semi-Lagrangian scheme. Int J Numer Methods Heat Fluid Flow 25(1):2–18MathSciNetMATHCrossRef
Zurück zum Zitat Jin M, Zuo W, Chen Q (2012) Improvements of fast fluid dynamics for simulating airflow in buildings. Numer Heat Transfer Part B Fundam 62(6):419–438CrossRef Jin M, Zuo W, Chen Q (2012) Improvements of fast fluid dynamics for simulating airflow in buildings. Numer Heat Transfer Part B Fundam 62(6):419–438CrossRef
Zurück zum Zitat Jin M, Zuo W, Chen Q (2013) Simulating natural ventilation in and around buildings by fast fluid dynamics. Numer Heat Transfer Part A Appl 64(4):273–289CrossRef Jin M, Zuo W, Chen Q (2013) Simulating natural ventilation in and around buildings by fast fluid dynamics. Numer Heat Transfer Part A Appl 64(4):273–289CrossRef
Zurück zum Zitat Kerh T, Lee JJ, Wellford LC (1998) Finite element analysis of fluid motion with an oscillating structural system. Adv Eng Softw 29(7–9):717–722CrossRef Kerh T, Lee JJ, Wellford LC (1998) Finite element analysis of fluid motion with an oscillating structural system. Adv Eng Softw 29(7–9):717–722CrossRef
Zurück zum Zitat Liu W, Jin M, Chen C, You R, Chen Q (2016) Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numer Heat Transfer Part A Appl 69(7):748–762CrossRef Liu W, Jin M, Chen C, You R, Chen Q (2016) Implementation of a fast fluid dynamics model in OpenFOAM for simulating indoor airflow. Numer Heat Transfer Part A Appl 69(7):748–762CrossRef
Zurück zum Zitat Mora L, Gadgil AJ, Wurtz E (2003) Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data. Indoor Air 13(2):77–85CrossRef Mora L, Gadgil AJ, Wurtz E (2003) Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data. Indoor Air 13(2):77–85CrossRef
Zurück zum Zitat Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation
Zurück zum Zitat Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15(10):1787–1806MATHCrossRef Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15(10):1787–1806MATHCrossRef
Zurück zum Zitat Pelletier D, Garon A, Camarero R (1991) Finite element method for computing turbulent propeller flow. AIAA J 29(1):68–75CrossRef Pelletier D, Garon A, Camarero R (1991) Finite element method for computing turbulent propeller flow. AIAA J 29(1):68–75CrossRef
Zurück zum Zitat Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532MATHCrossRef Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21:1525–1532MATHCrossRef
Zurück zum Zitat Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19(1):35–46CrossRef Robert A (1981) A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean 19(1):35–46CrossRef
Zurück zum Zitat Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes, computational fluid dynamics unit report HTS/80/1. Imperial College Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass transfer processes, computational fluid dynamics unit report HTS/80/1. Imperial College
Zurück zum Zitat Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press, Addison-Wesley Publishing Co Stam J (1999) Stable fluids. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press, Addison-Wesley Publishing Co
Zurück zum Zitat Staniforth A, Côté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119(9):2206–2223CrossRef Staniforth A, Côté J (1991) Semi-Lagrangian integration schemes for atmospheric models—a review. Mon Weather Rev 119(9):2206–2223CrossRef
Zurück zum Zitat Temam R (1968) Une méthode d’approximation de la solution des équations de navier-stokes. Bull Soc Math Fr 96:115–152MATHCrossRef Temam R (1968) Une méthode d’approximation de la solution des équations de navier-stokes. Bull Soc Math Fr 96:115–152MATHCrossRef
Zurück zum Zitat Van Doormal JP, Raithby GG (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transfer Appl 7(7):147–163MATH Van Doormal JP, Raithby GG (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transfer Appl 7(7):147–163MATH
Zurück zum Zitat Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting incompressible fluid flows. In: National heat transfer conference, ASME, 85-HT-9 Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting incompressible fluid flows. In: National heat transfer conference, ASME, 85-HT-9
Zurück zum Zitat Van Doormaal JP, Raithby GD, McDonald BH (1987) The segregated approach to predicting viscous compressible fluid flows. J Turbomach 109(2):268–277CrossRef Van Doormaal JP, Raithby GD, McDonald BH (1987) The segregated approach to predicting viscous compressible fluid flows. J Turbomach 109(2):268–277CrossRef
Zurück zum Zitat Vincent S, Randrianarivelo TN, Pianet G, Caltagirone JP (2007) Local penalty methods for flows interacting with moving solids at high reynolds numbers. Comput Fluids 36(5):902–913MATHCrossRef Vincent S, Randrianarivelo TN, Pianet G, Caltagirone JP (2007) Local penalty methods for flows interacting with moving solids at high reynolds numbers. Comput Fluids 36(5):902–913MATHCrossRef
Zurück zum Zitat Wang H, Wang H, Gao F, Zhou P, Zhai Z (2018) Literature review on pressure-velocity decoupling algorithms applied to built-environment CFD simulation. Build Environ 143:671–678CrossRef Wang H, Wang H, Gao F, Zhou P, Zhai Z (2018) Literature review on pressure-velocity decoupling algorithms applied to built-environment CFD simulation. Build Environ 143:671–678CrossRef
Zurück zum Zitat Wang H, Zhai Z (2012) Application of coarse grid CFD on indoor environment modeling: optimizing the trade-off between grid resolution and simulation accuracy. HVAC&R Res 18(5):915–933 Wang H, Zhai Z (2012) Application of coarse grid CFD on indoor environment modeling: optimizing the trade-off between grid resolution and simulation accuracy. HVAC&R Res 18(5):915–933
Zurück zum Zitat Xue Y, Liu W, Zhai Z (2016) New semi-Lagrangian-based PISO method for fast and accurate indoor environment modeling. Build Environ 105:236–244CrossRef Xue Y, Liu W, Zhai Z (2016) New semi-Lagrangian-based PISO method for fast and accurate indoor environment modeling. Build Environ 105:236–244CrossRef
Zurück zum Zitat Yin R, Chow WK (2003) Comparison of four algorithms for solving pressure-velocity linked equations in simulating atrium fire. Int J Arch Sci 4(1):24–35 Yin R, Chow WK (2003) Comparison of four algorithms for solving pressure-velocity linked equations in simulating atrium fire. Int J Arch Sci 4(1):24–35
Zurück zum Zitat Zaparoli EL (2011) A comparative CFD analysis: penalty method (PM), pressure poisson equation (PPE) and the coupled formulation (PPE + PM). In: The 21st Brazilian congress of mechanical engineering Zaparoli EL (2011) A comparative CFD analysis: penalty method (PM), pressure poisson equation (PPE) and the coupled formulation (PPE + PM). In: The 21st Brazilian congress of mechanical engineering
Zurück zum Zitat Zuo W, Chen Q (2009) Real-time or faster-than-real-time simulation of airflow in buildings. Indoor Air 19(1):33–44CrossRef Zuo W, Chen Q (2009) Real-time or faster-than-real-time simulation of airflow in buildings. Indoor Air 19(1):33–44CrossRef
Zurück zum Zitat Zuo W, Hu J, Chen Q (2010) Improvements on FFD modeling by using different numerical schemes. Numer Heat Transfer Part B Fundam 58(1):1–16CrossRef Zuo W, Hu J, Chen Q (2010) Improvements on FFD modeling by using different numerical schemes. Numer Heat Transfer Part B Fundam 58(1):1–16CrossRef
Zurück zum Zitat Zuo W, Jin M, Chen Q (2012) Reduction of numerical diffusion in the FFD model. Eng Appl Comput Fluid Mech 6(2):234–247 Zuo W, Jin M, Chen Q (2012) Reduction of numerical diffusion in the FFD model. Eng Appl Comput Fluid Mech 6(2):234–247
Metadaten
Titel
Solve Case
verfasst von
Zhiqiang (John) Zhai
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9820-0_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.