Skip to main content
Erschienen in: Engineering with Computers 4/2019

11.12.2018 | Original Article

Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials

verfasst von: Kobra Rabiei, Yadollah Ordokhani

Erschienen in: Engineering with Computers | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current study, we introduce fractional-order Boubaker polynomials related to the Boubaker polynomials to achieve the numerical result for pantograph differential equations of fractional order in any arbitrary interval. The features of these polynomials are exploited to construct the new fractional integration and pantograph operational matrices. Then these matrices and least square approximation method are used to reorganize the problem to a nonlinear equations system which can be resolved by means of the Newton’s iterative method. The brief discussion about errors of the used estimations is deliberated and, finally, some examples are included to demonstrate the validity and applicability of our method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806CrossRef Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J Fluids Eng 124:803–806CrossRef
3.
Zurück zum Zitat Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. J AIAA 23:918–925CrossRefMATH Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. J AIAA 23:918–925CrossRefMATH
4.
Zurück zum Zitat Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41:9–12CrossRefMATH Oldham KB (2010) Fractional differential equations in electrochemistry. Adv Eng Softw 41:9–12CrossRefMATH
6.
Zurück zum Zitat Gonzalez-Parra G, Arenas AJ, Chen-Charpentier BM (2014) A fractional order epidemic model for the simulation of outbreaks of in uenza A(H1N1). Math Methods Appl Sci 37(15):2218–2226MathSciNetCrossRefMATH Gonzalez-Parra G, Arenas AJ, Chen-Charpentier BM (2014) A fractional order epidemic model for the simulation of outbreaks of in uenza A(H1N1). Math Methods Appl Sci 37(15):2218–2226MathSciNetCrossRefMATH
7.
Zurück zum Zitat Bisci GM, Radulescu VD (2015) Multiplicity results for elliptic fractional equations with subcritical term. Nonlinear Differ Equ Appl 22(4):721–739MathSciNetCrossRefMATH Bisci GM, Radulescu VD (2015) Multiplicity results for elliptic fractional equations with subcritical term. Nonlinear Differ Equ Appl 22(4):721–739MathSciNetCrossRefMATH
8.
Zurück zum Zitat Dabiri A, Butcher EA (2017) Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun Nonlinear Sci Numer Simul 50:284–310MathSciNetCrossRef Dabiri A, Butcher EA (2017) Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun Nonlinear Sci Numer Simul 50:284–310MathSciNetCrossRef
9.
Zurück zum Zitat Momani S, Al-Khaled K (2005) Numerical solutions for systems of fractional differential equations by the decomposition method. Appl Math Comput 162:1351–1365MathSciNetMATH Momani S, Al-Khaled K (2005) Numerical solutions for systems of fractional differential equations by the decomposition method. Appl Math Comput 162:1351–1365MathSciNetMATH
10.
Zurück zum Zitat Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1329–1336MathSciNetMATH Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59:1329–1336MathSciNetMATH
11.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef Dehghan M, Abbaszadeh M (2017) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput 33(3):587–605CrossRef
12.
Zurück zum Zitat Suarez L, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. J Appl Mech 64:629–635MathSciNetCrossRefMATH Suarez L, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. J Appl Mech 64:629–635MathSciNetCrossRefMATH
13.
Zurück zum Zitat Bataineh AS, Alomari AK, Noorani MSM, Hashim I, Nazar R (2009) Series solutions of systems of nonlinear fractional differential equations. Acta Appl Math 105(2):189–198MathSciNetCrossRefMATH Bataineh AS, Alomari AK, Noorani MSM, Hashim I, Nazar R (2009) Series solutions of systems of nonlinear fractional differential equations. Acta Appl Math 105(2):189–198MathSciNetCrossRefMATH
14.
Zurück zum Zitat Odibat Z, Momani S (2006) Application of variational iteration method to nonlinear differential equations of fractional order. Int J Nonlinear Sci Numer Simul 1(7):15–27MathSciNetMATH Odibat Z, Momani S (2006) Application of variational iteration method to nonlinear differential equations of fractional order. Int J Nonlinear Sci Numer Simul 1(7):15–27MathSciNetMATH
15.
Zurück zum Zitat Saadatmandi A, Dehghan M (2009) Variational iteration method for solving a generalized pantograph equation. Comput Math Appl 58(11):2190–2196MathSciNetCrossRefMATH Saadatmandi A, Dehghan M (2009) Variational iteration method for solving a generalized pantograph equation. Comput Math Appl 58(11):2190–2196MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional BlochTorrey equations. Appl Numer Math 131:190–206MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2018) An efficient technique based on finite difference/finite element method for solution of two-dimensional space/multi-time fractional BlochTorrey equations. Appl Numer Math 131:190–206MathSciNetCrossRefMATH
17.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput Math Appl 75(8):2903–2914MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2018) A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput Math Appl 75(8):2903–2914MathSciNetCrossRefMATH
18.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2018) A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributedorder fractional damped diffusionwave equation. Math Methods Appl Sci 41(9):3476–3494MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2018) A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributedorder fractional damped diffusionwave equation. Math Methods Appl Sci 41(9):3476–3494MathSciNetCrossRefMATH
19.
Zurück zum Zitat Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, BostonMATH Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, BostonMATH
20.
Zurück zum Zitat Macdoonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press, Cambridge Macdoonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press, Cambridge
21.
Zurück zum Zitat Niculescu SI (2001) Delay effects on stability: a robust approach. Springer, BerlinMATH Niculescu SI (2001) Delay effects on stability: a robust approach. Springer, BerlinMATH
22.
Zurück zum Zitat Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Applied mathematical sciences, vol 99. Springer, New YorkCrossRefMATH Hale JK, Verduyn Lunel SM (1993) Introduction to functional differential equations. Applied mathematical sciences, vol 99. Springer, New YorkCrossRefMATH
23.
Zurück zum Zitat Bonilla B, Rivero M, Rodriguez-Germa L, Trujillo JJ (2007) Fractional differential equations as alternative models to nonlinear differential equations. Appl Math Comput 187:79–88MathSciNetMATH Bonilla B, Rivero M, Rodriguez-Germa L, Trujillo JJ (2007) Fractional differential equations as alternative models to nonlinear differential equations. Appl Math Comput 187:79–88MathSciNetMATH
24.
25.
Zurück zum Zitat Ockendon JR, Tayler AB (1971) The dynamics of a current collection system for an electric locomotive. Proc R Soc Lond Ser A 332:447–468CrossRef Ockendon JR, Tayler AB (1971) The dynamics of a current collection system for an electric locomotive. Proc R Soc Lond Ser A 332:447–468CrossRef
26.
Zurück zum Zitat Dehghan M, Shakeri F (2008) The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys Scr 78:1–11CrossRefMATH Dehghan M, Shakeri F (2008) The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys Scr 78:1–11CrossRefMATH
27.
Zurück zum Zitat Sedaghat S, Ordokhani Y, Dehghan M (2012) Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun Nonl Sci Numer Simul 17:4815–4830MathSciNetCrossRefMATH Sedaghat S, Ordokhani Y, Dehghan M (2012) Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun Nonl Sci Numer Simul 17:4815–4830MathSciNetCrossRefMATH
28.
29.
Zurück zum Zitat Tohidi E, Bhrawy AH, Erfani KA (2012) Collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl Math Model 37:4283–4294MathSciNetCrossRefMATH Tohidi E, Bhrawy AH, Erfani KA (2012) Collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl Math Model 37:4283–4294MathSciNetCrossRefMATH
30.
Zurück zum Zitat Bahsi M, Cevik M, Sezer M (2015) Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl Math Comput 271:11–21MathSciNetMATH Bahsi M, Cevik M, Sezer M (2015) Orthoexponential polynomial solutions of delay pantograph differential equations with residual error estimation. Appl Math Comput 271:11–21MathSciNetMATH
31.
Zurück zum Zitat Guglielmi N, Zennaro M (2003) Stability of one-leg \(\varTheta\)-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal 23:421–38MathSciNetCrossRefMATH Guglielmi N, Zennaro M (2003) Stability of one-leg \(\varTheta\)-methods for the variable coefficient pantograph equation on the quasi-geometric mesh. IMA J Numer Anal 23:421–38MathSciNetCrossRefMATH
32.
Zurück zum Zitat Saeed U, Rehman M (2014) Hermite wavelet method for fractional delay differential equations. J Differ Equ 2014:8 (Article ID 359093) CrossRef Saeed U, Rehman M (2014) Hermite wavelet method for fractional delay differential equations. J Differ Equ 2014:8 (Article ID 359093) CrossRef
33.
Zurück zum Zitat Yang Y, Huang Y (2013) Spectral-collocation methods for fractional pantograph delay-integrodifferential equations. Adv Math Phys 2013:14 (Article ID 821327)MathSciNetMATH Yang Y, Huang Y (2013) Spectral-collocation methods for fractional pantograph delay-integrodifferential equations. Adv Math Phys 2013:14 (Article ID 821327)MathSciNetMATH
34.
Zurück zum Zitat Rahimkhani P, Ordokhania Y, Babolian E (2017) Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J Comput Appl Math 309:493–510MathSciNetCrossRefMATH Rahimkhani P, Ordokhania Y, Babolian E (2017) Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J Comput Appl Math 309:493–510MathSciNetCrossRefMATH
35.
Zurück zum Zitat Anapali A, Ozturk Y, Gulsu M (2015) Numerical approach for solving fractional pantograph equation. Int J Comput Appl 113:9MATH Anapali A, Ozturk Y, Gulsu M (2015) Numerical approach for solving fractional pantograph equation. Int J Comput Appl 113:9MATH
36.
Zurück zum Zitat Bhrawy AH, Al-Zahrani AA, Alhamed YA, Baleanu D (2014) A new generalized Laguerre–Gauss collocation scheme for numerical solution of generalized fractional pantograph equation. Rom J Phys 59:646–657MATH Bhrawy AH, Al-Zahrani AA, Alhamed YA, Baleanu D (2014) A new generalized Laguerre–Gauss collocation scheme for numerical solution of generalized fractional pantograph equation. Rom J Phys 59:646–657MATH
37.
Zurück zum Zitat Boubaker K (2007) On modified Boubaker polynomials: some differential and analytical properties of the new polynomial issued from an attempt for solving bi-varied heat equation. Trends Appl Sci Res 2:540–544CrossRef Boubaker K (2007) On modified Boubaker polynomials: some differential and analytical properties of the new polynomial issued from an attempt for solving bi-varied heat equation. Trends Appl Sci Res 2:540–544CrossRef
38.
Zurück zum Zitat Mahmoud BKB (2009) Temperature 3D profiling in cryogenic cylindrical devices using Boubaker polynomials expansion scheme (BPES). Cryogenics 49:217–220CrossRef Mahmoud BKB (2009) Temperature 3D profiling in cryogenic cylindrical devices using Boubaker polynomials expansion scheme (BPES). Cryogenics 49:217–220CrossRef
39.
Zurück zum Zitat Dada M, Awojoyogbe OB, Boubaker K (2009) Heat transfer spray model: an improved theoretical thermal time-response to uniform layers deposit using Bessel and Boubaker polynomials. Curr Appl Phys 9:622–624CrossRef Dada M, Awojoyogbe OB, Boubaker K (2009) Heat transfer spray model: an improved theoretical thermal time-response to uniform layers deposit using Bessel and Boubaker polynomials. Curr Appl Phys 9:622–624CrossRef
40.
Zurück zum Zitat Kumar AS (2010) An analytical solution to applied mathematics-related Love’s equation using the Boubaker polynomials expansion scheme. J Franklin Inst 347(9):1755–1761MathSciNetCrossRefMATH Kumar AS (2010) An analytical solution to applied mathematics-related Love’s equation using the Boubaker polynomials expansion scheme. J Franklin Inst 347(9):1755–1761MathSciNetCrossRefMATH
41.
Zurück zum Zitat Boubaker K (2011) Boubaker polynomials expansion scheme (BPES) solution to Boltzmann diffusion equation in the case of strongly anisotropic neutral particles forwardbackward scattering. Ann Nucl Energy 38:1715–1717CrossRef Boubaker K (2011) Boubaker polynomials expansion scheme (BPES) solution to Boltzmann diffusion equation in the case of strongly anisotropic neutral particles forwardbackward scattering. Ann Nucl Energy 38:1715–1717CrossRef
42.
Zurück zum Zitat Kafash A, Delavarkhalafi A, Karbassi AS, Boubaker K (2014) A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme. J Interpolat Approx Sci Comput 2014:1–18MathSciNet Kafash A, Delavarkhalafi A, Karbassi AS, Boubaker K (2014) A numerical approach for solving optimal control problems using the Boubaker polynomials expansion scheme. J Interpolat Approx Sci Comput 2014:1–18MathSciNet
43.
Zurück zum Zitat Rabiei K, Ordokhani Y, Babolian E (2017) The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn 88(2):1013–1026MathSciNetCrossRefMATH Rabiei K, Ordokhani Y, Babolian E (2017) The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn 88(2):1013–1026MathSciNetCrossRefMATH
45.
Zurück zum Zitat Podlubny I (1999) Fractional diferential equations. Academic Press, New YorkMATH Podlubny I (1999) Fractional diferential equations. Academic Press, New YorkMATH
46.
Zurück zum Zitat Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New YorkMATH Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New YorkMATH
47.
Zurück zum Zitat Bellen A, Zennaro M (2003) Numerical methods for delay differential equations. Numerical mathematics and scientific computation. The Clarendon Press, New YorkCrossRefMATH Bellen A, Zennaro M (2003) Numerical methods for delay differential equations. Numerical mathematics and scientific computation. The Clarendon Press, New YorkCrossRefMATH
48.
Zurück zum Zitat Wang WS, Li SF (2007) On the one-leg—method for solving nonlinear neutral functional differential equations. Appl Math Comput 193:285–301MathSciNetMATH Wang WS, Li SF (2007) On the one-leg—method for solving nonlinear neutral functional differential equations. Appl Math Comput 193:285–301MathSciNetMATH
49.
Zurück zum Zitat Chen X, Wang L (2010) The variational iteration method for solving a neutral functional differential equation with proportional delays. Comput Math Appl 59:2696–2702MathSciNetCrossRefMATH Chen X, Wang L (2010) The variational iteration method for solving a neutral functional differential equation with proportional delays. Comput Math Appl 59:2696–2702MathSciNetCrossRefMATH
50.
Zurück zum Zitat Brunner H, Huang Q, Xies H (2011) Discontinuous Galerkin methods for delay differential equations of pantograph type. SIAM J Numer Anal 48:1944–1967MathSciNetCrossRefMATH Brunner H, Huang Q, Xies H (2011) Discontinuous Galerkin methods for delay differential equations of pantograph type. SIAM J Numer Anal 48:1944–1967MathSciNetCrossRefMATH
51.
Zurück zum Zitat Muroya Y, Ishiwata E, Brunner H (2003) On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math 152:347–366MathSciNetCrossRefMATH Muroya Y, Ishiwata E, Brunner H (2003) On the attainable order of collocation methods for pantograph integro-differential equations. J Comput Appl Math 152:347–366MathSciNetCrossRefMATH
52.
Zurück zum Zitat Rahimkhani P, Ordokhania Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer Algorithms 74(1):223–245MathSciNetCrossRefMATH Rahimkhani P, Ordokhania Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer Algorithms 74(1):223–245MathSciNetCrossRefMATH
Metadaten
Titel
Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials
verfasst von
Kobra Rabiei
Yadollah Ordokhani
Publikationsdatum
11.12.2018
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 4/2019
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-018-0673-8

Weitere Artikel der Ausgabe 4/2019

Engineering with Computers 4/2019 Zur Ausgabe

Neuer Inhalt