Skip to main content
Erschienen in: Natural Computing 1/2021

07.03.2020

Solving two-dimensional cutting stock problem via a DNA computing algorithm

verfasst von: M. Dodge, S. A. MirHassani, F. Hooshmand

Erschienen in: Natural Computing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two-dimensional cutting stock problem (TDCSP) is a well-known combinatorial optimization problem in which a given set of two-dimensional small pieces with different shapes should be cut from a given main board so that the demand of each small piece is satisfied and the total waste is minimized. Since TDCSP is an NP-complete problem, it is unsolvable in polynomial time on electronic computers. However, using the structure of DNA molecules, DNA computing algorithms are capable to solve NP-complete problems in polynomial time. In this paper, a DNA computing algorithm based on the sticker model is presented to find the optimal solution to TDCSP. It is proved that the time complexity of this algorithm on DNA computers is polynomial considering the number of small pieces and the length and width of the main board.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 11(266):1021–1023CrossRef Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 11(266):1021–1023CrossRef
Zurück zum Zitat Ahrabian H, Mirzaei A, Nowzari-dalini A (2008) A DNA sticker algorithm for solving N-queen problem. Int J Comput Sci Appl 5(2):12–22 Ahrabian H, Mirzaei A, Nowzari-dalini A (2008) A DNA sticker algorithm for solving N-queen problem. Int J Comput Sci Appl 5(2):12–22
Zurück zum Zitat Alves C, Brás P, de Carvalho JV, Pinto T (2012) New constructive algorithms for leather nesting in the automotive industry. Comput Oper Res 39(7):1487–1505CrossRef Alves C, Brás P, de Carvalho JV, Pinto T (2012) New constructive algorithms for leather nesting in the automotive industry. Comput Oper Res 39(7):1487–1505CrossRef
Zurück zum Zitat Arnold MG (2011) An improved DNA-sticker addition algorithm and its application to logarithmic arithmetic. In: Cardelli L, Shih W (eds) DNA computing and molecular programming. Springer, Berlin, pp 34–48CrossRef Arnold MG (2011) An improved DNA-sticker addition algorithm and its application to logarithmic arithmetic. In: Cardelli L, Shih W (eds) DNA computing and molecular programming. Springer, Berlin, pp 34–48CrossRef
Zurück zum Zitat Babaei M (2013) A novel text and image encryption method based on chaos theory and DNA computing. Nat Comput 12(1):101–107MathSciNetCrossRef Babaei M (2013) A novel text and image encryption method based on chaos theory and DNA computing. Nat Comput 12(1):101–107MathSciNetCrossRef
Zurück zum Zitat Baldacci R, Boschetti MA, Ganovelli M, Maniezzo V (2014) Algorithm for nesting with defects. Discrete Appl Math 163(1):17–33MathSciNetCrossRef Baldacci R, Boschetti MA, Ganovelli M, Maniezzo V (2014) Algorithm for nesting with defects. Discrete Appl Math 163(1):17–33MathSciNetCrossRef
Zurück zum Zitat Bennell JA, Cabo M, Martínez-Sykoraa A (2018) A beam search approach to solve the convex irregular bin packing problem with guillotine cuts. Eur J Oper Res 270(1):89–102CrossRef Bennell JA, Cabo M, Martínez-Sykoraa A (2018) A beam search approach to solve the convex irregular bin packing problem with guillotine cuts. Eur J Oper Res 270(1):89–102CrossRef
Zurück zum Zitat Chang WL, Guo M, Ho M (2003) Solving the set-splitting problem in sticker-based model. In: Guo M, Yang LT (eds) Parallel and distributed processing and applications. Springer, Berlin, pp 185–196CrossRef Chang WL, Guo M, Ho M (2003) Solving the set-splitting problem in sticker-based model. In: Guo M, Yang LT (eds) Parallel and distributed processing and applications. Springer, Berlin, pp 185–196CrossRef
Zurück zum Zitat Cheng CH, Feiring BR, Cheng TCE (1994) The cutting stock problem—a survey. Int J Prod Econ 36(3):291–305CrossRef Cheng CH, Feiring BR, Cheng TCE (1994) The cutting stock problem—a survey. Int J Prod Econ 36(3):291–305CrossRef
Zurück zum Zitat Chu C, Antonio J (1999) Approximate algorithms to solve real-life multicriteria cutting stock problems. Oper Res 47(4):495–508CrossRef Chu C, Antonio J (1999) Approximate algorithms to solve real-life multicriteria cutting stock problems. Oper Res 47(4):495–508CrossRef
Zurück zum Zitat Cui Y, Lu Y (2009) Heuristic algorithm for a cutting stock problem in the steel bridge construction. Comput Oper Res 36(2):612–622CrossRef Cui Y, Lu Y (2009) Heuristic algorithm for a cutting stock problem in the steel bridge construction. Comput Oper Res 36(2):612–622CrossRef
Zurück zum Zitat Darehmiraki M, Mishmast Nehi H (2007) Molecular solution to the 0–1 knapsack problem based on DNA computing. Appl Math Comput 187(2):1033–1037MathSciNetMATH Darehmiraki M, Mishmast Nehi H (2007) Molecular solution to the 0–1 knapsack problem based on DNA computing. Appl Math Comput 187(2):1033–1037MathSciNetMATH
Zurück zum Zitat Farley AA (1990) The cutting stock problem in the canvas industry. Eur J Oper Res 44(2):247–255CrossRef Farley AA (1990) The cutting stock problem in the canvas industry. Eur J Oper Res 44(2):247–255CrossRef
Zurück zum Zitat Glass CA, van Oostrum JM (2008) Bun splitting: a practical cutting stock problem. Ann Oper Res 179(1):15–33CrossRef Glass CA, van Oostrum JM (2008) Bun splitting: a practical cutting stock problem. Ann Oper Res 179(1):15–33CrossRef
Zurück zum Zitat Kallrath J, Rebennack S, Kallrath J, Kusche R (2014) Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges. Eur J Oper Res 238(1):374–389CrossRef Kallrath J, Rebennack S, Kallrath J, Kusche R (2014) Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges. Eur J Oper Res 238(1):374–389CrossRef
Zurück zum Zitat Kang Z, Xiaojun T, Jin X (2009) Closed circle DNA algorithm of change positive-weighted Hamilton circuit problem. Syst Eng Electron 20(3):636–642 Kang Z, Xiaojun T, Jin X (2009) Closed circle DNA algorithm of change positive-weighted Hamilton circuit problem. Syst Eng Electron 20(3):636–642
Zurück zum Zitat Khullar S, Chopra V, Kahlon MS (2007) DNA computing: migrating from silicon chips to test tubes. In: National conference on challenges and opportunities in information technology Khullar S, Chopra V, Kahlon MS (2007) DNA computing: migrating from silicon chips to test tubes. In: National conference on challenges and opportunities in information technology
Zurück zum Zitat Lee JY, Shin SY, Park TH, Zhang BT (2004) Solving traveling salesman problems with DNA molecules encoding numerical values. BioSystems 78(1–3):39–47CrossRef Lee JY, Shin SY, Park TH, Zhang BT (2004) Solving traveling salesman problems with DNA molecules encoding numerical values. BioSystems 78(1–3):39–47CrossRef
Zurück zum Zitat Liu X, Yang X, Li S, Ding Y (2010) Solving the minimum bisection problem using a biologically inspired computational model. Theoret Comput Sci 411(6):888–896MathSciNetCrossRef Liu X, Yang X, Li S, Ding Y (2010) Solving the minimum bisection problem using a biologically inspired computational model. Theoret Comput Sci 411(6):888–896MathSciNetCrossRef
Zurück zum Zitat Lu HC, Huang YH, Tseng KA (2013) An integrated algorithm for cutting stock problems in the thin-film transistor liquid crystal display industry. Comput Ind Eng 64(4):1084–1092CrossRef Lu HC, Huang YH, Tseng KA (2013) An integrated algorithm for cutting stock problems in the thin-film transistor liquid crystal display industry. Comput Ind Eng 64(4):1084–1092CrossRef
Zurück zum Zitat MirHassani SA, Jalaeian Bashirzadeh A (2015) A GRASP meta-heuristic for two-dimensional irregular cutting stock problem. Int J Adv Manuf Technol 81(1–4):455–464CrossRef MirHassani SA, Jalaeian Bashirzadeh A (2015) A GRASP meta-heuristic for two-dimensional irregular cutting stock problem. Int J Adv Manuf Technol 81(1–4):455–464CrossRef
Zurück zum Zitat Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 363(6432):446–449CrossRef Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 363(6432):446–449CrossRef
Zurück zum Zitat Paul S, Sahoo G (2008) A DNA computing model to solve 0-1 integer programming problem. Appl Math Sci 2(50):2921–2929MATH Paul S, Sahoo G (2008) A DNA computing model to solve 0-1 integer programming problem. Appl Math Sci 2(50):2921–2929MATH
Zurück zum Zitat Pérez-Jiménez J, Sancho-Caparrini F (2001) Solving knapsack problems in a sticker based model. In: DNA computing. s.l.: international workshop on DNA-based computers. pp 161–171 Pérez-Jiménez J, Sancho-Caparrini F (2001) Solving knapsack problems in a sticker based model. In: DNA computing. s.l.: international workshop on DNA-based computers. pp 161–171
Zurück zum Zitat Pérez-Jiménez MJ, Sancho-Caparrini F (2005) Generating pairwise disjoint families through DNA computations. In: Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F (eds) Recent results in natural computing. Fénix Editora, Sevilla, pp 231–246 Pérez-Jiménez MJ, Sancho-Caparrini F (2005) Generating pairwise disjoint families through DNA computations. In: Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F (eds) Recent results in natural computing. Fénix Editora, Sevilla, pp 231–246
Zurück zum Zitat Razzazi M, Roayaei M (2011) Using sticker model of DNA computing to solve domatic partition, kernel and induced path problems. Inf Sci 181(17):3581–3600MathSciNetCrossRef Razzazi M, Roayaei M (2011) Using sticker model of DNA computing to solve domatic partition, kernel and induced path problems. Inf Sci 181(17):3581–3600MathSciNetCrossRef
Zurück zum Zitat Rodrigues MO, Toledo FMB (2017) A clique covering MIP model for the irregular strip packing problem. Comput Oper Res 87:221–234MathSciNetCrossRef Rodrigues MO, Toledo FMB (2017) A clique covering MIP model for the irregular strip packing problem. Comput Oper Res 87:221–234MathSciNetCrossRef
Zurück zum Zitat Roweis S et al (1998) A sticker-based model for DNA computation. J Comput Biol 5(4):615–629CrossRef Roweis S et al (1998) A sticker-based model for DNA computation. J Comput Biol 5(4):615–629CrossRef
Zurück zum Zitat Sanches CAA, Soma NY (2009) A polynomial-time DNA computing solution for the bin-packing problem. Appl Math Comput 215(6):2055–2062MathSciNetMATH Sanches CAA, Soma NY (2009) A polynomial-time DNA computing solution for the bin-packing problem. Appl Math Comput 215(6):2055–2062MathSciNetMATH
Zurück zum Zitat Sanches CAA, Soma NY (2014) A computational DNA solution approach for the quadratic Diophantine equation. Appl Math Comput 238:436–443MathSciNetMATH Sanches CAA, Soma NY (2014) A computational DNA solution approach for the quadratic Diophantine equation. Appl Math Comput 238:436–443MathSciNetMATH
Zurück zum Zitat Toledo FMB et al (2013) The dotted-board model: a new MIP model for nesting irregular shapes. Int J Prod Econ 145(2):478–487CrossRef Toledo FMB et al (2013) The dotted-board model: a new MIP model for nesting irregular shapes. Int J Prod Econ 145(2):478–487CrossRef
Zurück zum Zitat Tyagi SK, Ghorpade A, Karunakaran KP, Tiwari MK (2007) Optimal part orientation in layered manufacturing using evolutionary stickers-based DNA algorithm. Virtual Phys Prototyp 2(1):3–19CrossRef Tyagi SK, Ghorpade A, Karunakaran KP, Tiwari MK (2007) Optimal part orientation in layered manufacturing using evolutionary stickers-based DNA algorithm. Virtual Phys Prototyp 2(1):3–19CrossRef
Zurück zum Zitat Wang Z, Pu J, Cao L, Tan J (2015) A parallel biological optimization algorithm to solve the unbalanced assignment problem based on DNA molecular computing. Int J Mol Sci 16(10):25338–25352CrossRef Wang Z, Pu J, Cao L, Tan J (2015) A parallel biological optimization algorithm to solve the unbalanced assignment problem based on DNA molecular computing. Int J Mol Sci 16(10):25338–25352CrossRef
Zurück zum Zitat Winfree E (2003) DNA computing by self-Assembly. The Bridge 33:31–38 Winfree E (2003) DNA computing by self-Assembly. The Bridge 33:31–38
Zurück zum Zitat Wood DH (2003) DNA computing capabilities for game theory. Nat Comput 2(1):85–108CrossRef Wood DH (2003) DNA computing capabilities for game theory. Nat Comput 2(1):85–108CrossRef
Zurück zum Zitat Xingpeng J, Yin L, Ya M, Dazhi M (2007) A new DNA alogorithm to solve graph coloring problem. Prog Nat Sci 17(6):733–738CrossRef Xingpeng J, Yin L, Ya M, Dazhi M (2007) A new DNA alogorithm to solve graph coloring problem. Prog Nat Sci 17(6):733–738CrossRef
Zurück zum Zitat Xu J, Dong Y, Wei X (2004) Sticker DNA computer model-part 1: theory. Chin Sci Bull 49(8):772–780MATH Xu J, Dong Y, Wei X (2004) Sticker DNA computer model-part 1: theory. Chin Sci Bull 49(8):772–780MATH
Zurück zum Zitat Xu J, Qiang X, Gang F, Zhou K (2006) A DNA computer model for solving vertex coloring problem. Chin Sci Bull 51:2541–2549MathSciNetCrossRef Xu J, Qiang X, Gang F, Zhou K (2006) A DNA computer model for solving vertex coloring problem. Chin Sci Bull 51:2541–2549MathSciNetCrossRef
Zurück zum Zitat Zhang H, Liu X (2016) A DNA sticker model for the hierarchical clustering problems. In: China, IEEE advanced information management, communicates, electronic and automation control conference (IMCEC) Zhang H, Liu X (2016) A DNA sticker model for the hierarchical clustering problems. In: China, IEEE advanced information management, communicates, electronic and automation control conference (IMCEC)
Zurück zum Zitat Zimmermann KH (2002) Efficient DNA sticker algorithms for NP-complete graph problems. Comput Phys Commun 144(3):297–309MathSciNetCrossRef Zimmermann KH (2002) Efficient DNA sticker algorithms for NP-complete graph problems. Comput Phys Commun 144(3):297–309MathSciNetCrossRef
Metadaten
Titel
Solving two-dimensional cutting stock problem via a DNA computing algorithm
verfasst von
M. Dodge
S. A. MirHassani
F. Hooshmand
Publikationsdatum
07.03.2020
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 1/2021
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-020-09786-3

Weitere Artikel der Ausgabe 1/2021

Natural Computing 1/2021 Zur Ausgabe