Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2017

09.02.2017

Solvothermal synthesis of molybdenum oxide on liquid-phase exfoliated graphene composite electrodes for aqueous supercapacitor application

verfasst von: M. Y. Ho, P. S. Khiew, D. Isa, W. S. Chiu, C. H. Chia

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

MoO3–graphene nanocomposites have been prepared through a green and facile synthesis method and serve as the main electrode materials for electrochemical capacitor in mild aqueous electrolyte. First, graphene sheets were synthesized via mild sonication treatment of graphite flakes in an optimum ratio of ethanol and de-ionized water, followed by deposition of MoO3 onto graphene sheets via low-temperature solvothermal treatment using ethylene glycol- de-ionized water as mixed solvent. The composites were characterised using X-ray diffraction, Raman spectroscopy and electron diffraction and the results revealed that α-MoO3 particles were successfully synthesized and anchored homogeneously onto graphene sheets. The electrochemical capacitance properties of MoO3–graphene nanocomposites were measured by cyclic voltammetry, galvanostatic charge discharge method and electrochemical impedance spectroscopy. The results showed that the specific capacitance of MoO3–graphene nanocomposites is 148 F/g, which is much higher than that of pure MoO3 electrodes (84 F/g) in neutral Na2SO3 electrolyte. The specific capacitance is superior to those reported in the literatures using neutral aqueous electrolytes. Moreover, over 81% of the original capacitance was retained after 1600 cycles, indicating a good cycle stability of composite materials. The high specific capacitance and excellent cyclic stability of the electrode is believed originated from the synergistic effect of the highly conductive graphene material and the pseudocapacitive behavior of the MoO3 nanoparticles in neutral electrolyte.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5, 436–442 (2011)CrossRef T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5, 436–442 (2011)CrossRef
2.
Zurück zum Zitat D. Chen, Q.F. Wang, R.M. Wang, G.Z. Shen, Ternary oxide nanostructured materials for supercapacitors: A review. J. Mater. Chem. A 3, 10158–10173 (2015)CrossRef D. Chen, Q.F. Wang, R.M. Wang, G.Z. Shen, Ternary oxide nanostructured materials for supercapacitors: A review. J. Mater. Chem. A 3, 10158–10173 (2015)CrossRef
3.
Zurück zum Zitat X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, H.L. Wang, X. Wang, Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: Synthesis and properties. J. Mater. Chem. 22, 8314–8320 (2012)CrossRef X.F. Xia, Q.L. Hao, W. Lei, W.J. Wang, H.L. Wang, X. Wang, Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: Synthesis and properties. J. Mater. Chem. 22, 8314–8320 (2012)CrossRef
4.
Zurück zum Zitat B. Xu, S.F. Yue, Z.Y. Sui, X.T. Zhang, S.S. Hou, G.P. Cao, Y.S. Yang, What is the choice for supercapacitors: Graphene or graphene oxide? Energy. Environ. Sci. 4, 2826–2830 (2011) B. Xu, S.F. Yue, Z.Y. Sui, X.T. Zhang, S.S. Hou, G.P. Cao, Y.S. Yang, What is the choice for supercapacitors: Graphene or graphene oxide? Energy. Environ. Sci. 4, 2826–2830 (2011)
5.
Zurück zum Zitat Z.S. Wu, G.M. Zhou, L.C. Yin, W.C. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano. Energy 1, 107–131 (2012) Z.S. Wu, G.M. Zhou, L.C. Yin, W.C. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano. Energy 1, 107–131 (2012)
6.
Zurück zum Zitat C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J. Power Sources 217, 184–192 (2012)CrossRef C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J. Power Sources 217, 184–192 (2012)CrossRef
7.
Zurück zum Zitat M. Pumera, Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010)CrossRef M. Pumera, Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39, 4146–4157 (2010)CrossRef
8.
Zurück zum Zitat L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010)CrossRef L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010)CrossRef
9.
Zurück zum Zitat R.B. Rakhi, W. Chen, D.Y. Cha, H.N. Alshareef, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem. 21, 16197 (2011)CrossRef R.B. Rakhi, W. Chen, D.Y. Cha, H.N. Alshareef, High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J. Mater. Chem. 21, 16197 (2011)CrossRef
10.
Zurück zum Zitat Y.B. Tan, J.M. Lee, Graphene for supercapacitor applications. J Mater Chem A 1, 14814–14843 (2013)CrossRef Y.B. Tan, J.M. Lee, Graphene for supercapacitor applications. J Mater Chem A 1, 14814–14843 (2013)CrossRef
11.
Zurück zum Zitat Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011)CrossRef Y. Chen, X. Zhang, D. Zhang, P. Yu, Y. Ma, High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573–580 (2011)CrossRef
12.
Zurück zum Zitat Y. Haldorai, W. Voit, J.J. Shim, Nano ZnO @ reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014)CrossRef Y. Haldorai, W. Voit, J.J. Shim, Nano ZnO @ reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid. Electrochim. Acta 120, 65–72 (2014)CrossRef
13.
Zurück zum Zitat L. Lu, L.K. Pan, H.B. Li, G. Zhu, T. Lv, X.J. Liu, Z. Sun, T. Chen, DHC Chua, Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J. Alloys Compd. 509, 5488–5492 (2011)CrossRef L. Lu, L.K. Pan, H.B. Li, G. Zhu, T. Lv, X.J. Liu, Z. Sun, T. Chen, DHC Chua, Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J. Alloys Compd. 509, 5488–5492 (2011)CrossRef
14.
Zurück zum Zitat A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. Mater. Chem. Phys. 140, 405–411 (2013)CrossRef A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. Mater. Chem. Phys. 140, 405–411 (2013)CrossRef
15.
Zurück zum Zitat E.R. Ezeigwe, MTT Tan, P.S. Khiew, W.S. Chiu, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors. Ceram. Int. 41, 715–724 (2015)CrossRef E.R. Ezeigwe, MTT Tan, P.S. Khiew, W.S. Chiu, One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors. Ceram. Int. 41, 715–724 (2015)CrossRef
16.
Zurück zum Zitat J. Wang, Z. Gao, Z.S. Li, B. Wang, Y.X. Yan, Q. Liu, T. Mann, M.L. Zhang, Z.H. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184, 1421–1427 (2011)CrossRef J. Wang, Z. Gao, Z.S. Li, B. Wang, Y.X. Yan, Q. Liu, T. Mann, M.L. Zhang, Z.H. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties. J. Solid State Chem. 184, 1421–1427 (2011)CrossRef
17.
Zurück zum Zitat X. Dai, W. Shi, H. Cai, R. Li, G. Yang, Facile preparation of the novel structured α-MnO2/graphene nanocomposites and their electrochemical properties. Solid State Sci. 27, 17–23 (2014)CrossRef X. Dai, W. Shi, H. Cai, R. Li, G. Yang, Facile preparation of the novel structured α-MnO2/graphene nanocomposites and their electrochemical properties. Solid State Sci. 27, 17–23 (2014)CrossRef
18.
Zurück zum Zitat Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim. Acta 117, 528–533 (2014)CrossRef Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim. Acta 117, 528–533 (2014)CrossRef
19.
Zurück zum Zitat X. Feng, Z. Yan, N. Chen, Y. Zhang, Y. Ma, X. Liu, Q. Fan, L. Wang, W. Huang, The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. J. Mater. Chem. A 1, 12818 (2013)CrossRef X. Feng, Z. Yan, N. Chen, Y. Zhang, Y. Ma, X. Liu, Q. Fan, L. Wang, W. Huang, The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal method and their application in supercapacitors. J. Mater. Chem. A 1, 12818 (2013)CrossRef
20.
Zurück zum Zitat J. Cao, Y. Wang, Y. Zhou, J.H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. Journal Electroanalytical. Chemistry 689, 201–206 (2013) J. Cao, Y. Wang, Y. Zhou, J.H. Ouyang, D. Jia, L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. Journal Electroanalytical. Chemistry 689, 201–206 (2013)
21.
Zurück zum Zitat W.L. Yang, Z. Gao, J. Wang, B. Wang, Q. Liu, Z.S. Li, T. Mann, P.P. Yang, M.L. Zhang, L.H. Liu, Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim. Acta 69, 112–119 (2012)CrossRef W.L. Yang, Z. Gao, J. Wang, B. Wang, Q. Liu, Z.S. Li, T. Mann, P.P. Yang, M.L. Zhang, L.H. Liu, Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim. Acta 69, 112–119 (2012)CrossRef
22.
Zurück zum Zitat J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A Facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)CrossRef J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A Facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158–1164 (2012)CrossRef
23.
Zurück zum Zitat H.D. Liu, J.L. Zhang, D.D. Xu, L.H. Huang, S.Z. Tan, W.J. Mai, Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 19, 135–144 (2015)CrossRef H.D. Liu, J.L. Zhang, D.D. Xu, L.H. Huang, S.Z. Tan, W.J. Mai, Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 19, 135–144 (2015)CrossRef
24.
Zurück zum Zitat Y.Y. Wei, S.Q. Chen, D.W. Su, B. Sun, J.G. Zhu, G.X. Wang, 3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. J. Mater. Chem. A 2, 8103–8109 (2014)CrossRef Y.Y. Wei, S.Q. Chen, D.W. Su, B. Sun, J.G. Zhu, G.X. Wang, 3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. J. Mater. Chem. A 2, 8103–8109 (2014)CrossRef
25.
Zurück zum Zitat Z.X. Song, Y.J. Zhang, W. Liu, S. Zhang, .Liu GC, H.Y. Chen, J.S. Qiu, Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors. Electrochim. Acta 112, 120–126 (2013)CrossRef Z.X. Song, Y.J. Zhang, W. Liu, S. Zhang, .Liu GC, H.Y. Chen, J.S. Qiu, Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors. Electrochim. Acta 112, 120–126 (2013)CrossRef
26.
Zurück zum Zitat X. Leng, J.P. Zou, X. Xiong, H.W. He, Hydrothermal synthesis and pseudo capacitance behavior of a highly homogeneous dispersed graphene sheets/ruthenium oxide nanocomposite. RSC Adv. 4, 61596–61603 (2014)CrossRef X. Leng, J.P. Zou, X. Xiong, H.W. He, Hydrothermal synthesis and pseudo capacitance behavior of a highly homogeneous dispersed graphene sheets/ruthenium oxide nanocomposite. RSC Adv. 4, 61596–61603 (2014)CrossRef
27.
Zurück zum Zitat X.Z. Yu, B.G. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4—3D graphene hybrid electrodes. Adv. Mater. 26, 1044–1051 (2014)CrossRef X.Z. Yu, B.G. Lu, Z. Xu, Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4—3D graphene hybrid electrodes. Adv. Mater. 26, 1044–1051 (2014)CrossRef
28.
Zurück zum Zitat Q.W. Tang, Z.Q. Shan, L. Wang, X. Qin, MoO2–graphene nanocomposite as anode material for lithium-ion batteries. Electrochim. Acta 79, 148–153 (2012)CrossRef Q.W. Tang, Z.Q. Shan, L. Wang, X. Qin, MoO2–graphene nanocomposite as anode material for lithium-ion batteries. Electrochim. Acta 79, 148–153 (2012)CrossRef
29.
Zurück zum Zitat A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169–178 (2012)CrossRef A. Bhaskar, M. Deepa, T.N. Rao, U.V. Varadaraju, Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. J. Power Sources 216, 169–178 (2012)CrossRef
30.
Zurück zum Zitat L. Noerochim, J. Wang, D. Wexler, Z. Chao, H. Liu, Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries. J. Power Sources 228, 198–205 (2013)CrossRef L. Noerochim, J. Wang, D. Wexler, Z. Chao, H. Liu, Rapid synthesis of free-standing MoO3/Graphene films by the microwave hydrothermal method as cathode for bendable lithium batteries. J. Power Sources 228, 198–205 (2013)CrossRef
31.
Zurück zum Zitat X.F. Yang, H.Y. Ding, D. Zhang, X.H. Yan, C.Y. Lu, J.L. Qin, R.X. Zhang, H. Tang, H.J. Song, Hydrothermal synthesis of MoO3 nanobelt-graphene composites. Cryst. Res. Technol. 46, 1195–1201 (2011)CrossRef X.F. Yang, H.Y. Ding, D. Zhang, X.H. Yan, C.Y. Lu, J.L. Qin, R.X. Zhang, H. Tang, H.J. Song, Hydrothermal synthesis of MoO3 nanobelt-graphene composites. Cryst. Res. Technol. 46, 1195–1201 (2011)CrossRef
32.
Zurück zum Zitat Y. Xu, R. Yi, B. Yuan, X.F. Wu, M. Dunwell, Q.L. Lin, L. Fei, S.G. Deng, P. Andersen, D.H. Wang, H.M. Luo, High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J. Phys. Chem. Lett. 3, 309–314 (2012)CrossRef Y. Xu, R. Yi, B. Yuan, X.F. Wu, M. Dunwell, Q.L. Lin, L. Fei, S.G. Deng, P. Andersen, D.H. Wang, H.M. Luo, High capacity MoO2/graphite oxide composite anode for lithium-ion batteries. J. Phys. Chem. Lett. 3, 309–314 (2012)CrossRef
33.
Zurück zum Zitat K.H. Seng, G.D. Du, L. Li, Z.X. Chen, H.K. Liu, Z.P. Guo, Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. J. Mater. Chem. 22, 16072 (2012)CrossRef K.H. Seng, G.D. Du, L. Li, Z.X. Chen, H.K. Liu, Z.P. Guo, Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. J. Mater. Chem. 22, 16072 (2012)CrossRef
34.
Zurück zum Zitat K. Kalantar-zadeh, J.S. Tang, M.S. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2, 429–433 (2010)CrossRef K. Kalantar-zadeh, J.S. Tang, M.S. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2, 429–433 (2010)CrossRef
35.
Zurück zum Zitat X.W. Lou, H.C. Zeng, Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14, 4781–4789 (2002)CrossRef X.W. Lou, H.C. Zeng, Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14, 4781–4789 (2002)CrossRef
36.
Zurück zum Zitat T. Ivanova, M. Surtchev, K. Gesheva, Investigation of CVD molybdenum oxide films. Mater. Lett. 53, 250–257 (2002)CrossRef T. Ivanova, M. Surtchev, K. Gesheva, Investigation of CVD molybdenum oxide films. Mater. Lett. 53, 250–257 (2002)CrossRef
37.
Zurück zum Zitat Z.Q. Yuan, L.L. Si, D.H. Wei, L. Hu, Y.C. Zhu, X.N. Li, Y.T. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118, 5091–5101 (2014)CrossRef Z.Q. Yuan, L.L. Si, D.H. Wei, L. Hu, Y.C. Zhu, X.N. Li, Y.T. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118, 5091–5101 (2014)CrossRef
38.
Zurück zum Zitat E.R. Ezeigwe, MTT Tan, P.S. Khiew, W.S. Chiu, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior. Ceram. Int. 41, 11418–11427 (2015)CrossRef E.R. Ezeigwe, MTT Tan, P.S. Khiew, W.S. Chiu, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior. Ceram. Int. 41, 11418–11427 (2015)CrossRef
39.
Zurück zum Zitat JSY Chia, M.T.T. Tan, P.S. Khiew, J.K. Chin, H.W. Lee, D.C.S Bien, W.S. Chiu, A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application. Chem. Eng. J. 249, 270–278 (2014)CrossRef JSY Chia, M.T.T. Tan, P.S. Khiew, J.K. Chin, H.W. Lee, D.C.S Bien, W.S. Chiu, A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application. Chem. Eng. J. 249, 270–278 (2014)CrossRef
40.
Zurück zum Zitat L. Obreja, N. Foca, M.I. Popa, V. Melnig, Alcoholic reduction platinum nanoparticles synthesis by sonochemical method. Biomater. Biophys. Med. Phys. Ecol. 31–36 (2008) L. Obreja, N. Foca, M.I. Popa, V. Melnig, Alcoholic reduction platinum nanoparticles synthesis by sonochemical method. Biomater. Biophys. Med. Phys. Ecol. 31–36 (2008)
41.
Zurück zum Zitat P. Manivel, K. Sivashanmugan, C. Viswanathan, D. Mangalaraj, Preparation of new reducing agent for the synthesis of silver nanoparticles. AIP Conf. Proc. 1349, 415–416 (2011)CrossRef P. Manivel, K. Sivashanmugan, C. Viswanathan, D. Mangalaraj, Preparation of new reducing agent for the synthesis of silver nanoparticles. AIP Conf. Proc. 1349, 415–416 (2011)CrossRef
42.
Zurück zum Zitat E. Rodríguez-León, R. Iñiguez-Palomares, R.E. Navarro, R. Herrera-Urbina, J. Tánori, C. Iñiguez-Palomares, A. Maldonado, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8, 318 (2013)CrossRef E. Rodríguez-León, R. Iñiguez-Palomares, R.E. Navarro, R. Herrera-Urbina, J. Tánori, C. Iñiguez-Palomares, A. Maldonado, Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8, 318 (2013)CrossRef
43.
Zurück zum Zitat H.H. Duan, D.S. Wang, Y.D. Li, Green chemistry for nanoparticle synthesis. Chemical Society Review 44, 5778 (2015)CrossRef H.H. Duan, D.S. Wang, Y.D. Li, Green chemistry for nanoparticle synthesis. Chemical Society Review 44, 5778 (2015)CrossRef
44.
Zurück zum Zitat C.E. Hoppe, M. Lazzari, I.P. Blanco, M.A.L. Quintela, One-step synthesis of gold and silver hydrosols using poly (N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22, 7027–7034 (2006)CrossRef C.E. Hoppe, M. Lazzari, I.P. Blanco, M.A.L. Quintela, One-step synthesis of gold and silver hydrosols using poly (N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22, 7027–7034 (2006)CrossRef
45.
Zurück zum Zitat X.Y. Chen, X. Wang, Z.H. Wang, J.X. Wan, J.W. Liu, Y.T. Qian, An ethylene glycol reduction approach to metastable VO2nanowire arrays. Nanotechnology 15, 7027–7034 (2004) X.Y. Chen, X. Wang, Z.H. Wang, J.X. Wan, J.W. Liu, Y.T. Qian, An ethylene glycol reduction approach to metastable VO2nanowire arrays. Nanotechnology 15, 7027–7034 (2004)
46.
Zurück zum Zitat M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.B.R. Lee, B.H. Kim, Y.S. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151 (2015)CrossRef M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.B.R. Lee, B.H. Kim, Y.S. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151 (2015)CrossRef
47.
Zurück zum Zitat Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu, H.T. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for Supercapacitor. Electrochim. Acta 88, 519–525 (2013)CrossRef Y. Liu, Y. Zhang, G.H. Ma, Z. Wang, K.Y. Liu, H.T. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for Supercapacitor. Electrochim. Acta 88, 519–525 (2013)CrossRef
48.
Zurück zum Zitat P. Zhao, in Preparation and Characterization and Reducing Properties of MoO 3 Nano-Fibers, ed. by T. Lin Nanofibers—Production, Properties and Functional Applications, (InTech, Rijeka, 2011), pp 135–152 P. Zhao, in Preparation and Characterization and Reducing Properties of MoO 3 Nano-Fibers, ed. by T. Lin Nanofibers—Production, Properties and Functional Applications, (InTech, Rijeka, 2011), pp 135–152
49.
Zurück zum Zitat H.E. Morris, Reactions of ethyl alcohol. Chemical Review 10, 465–506 (1932)CrossRef H.E. Morris, Reactions of ethyl alcohol. Chemical Review 10, 465–506 (1932)CrossRef
50.
Zurück zum Zitat M.S. Saha, R.Y. Li, X.L. Sun, High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells. J. Power Sources 177, 314–322 (2008)CrossRef M.S. Saha, R.Y. Li, X.L. Sun, High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells. J. Power Sources 177, 314–322 (2008)CrossRef
51.
Zurück zum Zitat N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimia Acta 51, 3039–3045 (2006)CrossRef N. Nagarajan, H. Humadi, I. Zhitomirsky, Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochimia Acta 51, 3039–3045 (2006)CrossRef
52.
Zurück zum Zitat M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, Charge storage performance of lithiated iron phosphate/activated carbon composite as symmetrical electrode for electrochemical capacitor. Curr. Appl. Phys. 14, 1564–1575 (2014)CrossRef M.Y. Ho, P.S. Khiew, D. Isa, T.K. Tan, W.S. Chiu, C.H. Chia, Charge storage performance of lithiated iron phosphate/activated carbon composite as symmetrical electrode for electrochemical capacitor. Curr. Appl. Phys. 14, 1564–1575 (2014)CrossRef
53.
Zurück zum Zitat D. Parviz, M. Kazemeini, A.M. Rashidi, K.H. Jafari Jozani, Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. J. Nanopart. Res. 12, 1509–1521 (2010)CrossRef D. Parviz, M. Kazemeini, A.M. Rashidi, K.H. Jafari Jozani, Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. J. Nanopart. Res. 12, 1509–1521 (2010)CrossRef
54.
Zurück zum Zitat T.H. Chiang, H.C. Yeh, The Synthesis of α-MoO3 by Ethylene Glycol. Materials 6, 4609–4625 (2013)CrossRef T.H. Chiang, H.C. Yeh, The Synthesis of α-MoO3 by Ethylene Glycol. Materials 6, 4609–4625 (2013)CrossRef
55.
Zurück zum Zitat B.S. Murty, in Tools to Characterize Nanomaterials. Textbook of Nanoscience and Nanotechnology, Ch.5 (Universities Press, India, 2013), pp. 149–175CrossRef B.S. Murty, in Tools to Characterize Nanomaterials. Textbook of Nanoscience and Nanotechnology, Ch.5 (Universities Press, India, 2013), pp. 149–175CrossRef
56.
Zurück zum Zitat W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photo electrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12–18 (2014)CrossRef W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photo electrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12–18 (2014)CrossRef
57.
Zurück zum Zitat A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and non-adiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and non-adiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRef
58.
Zurück zum Zitat A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)CrossRef
59.
Zurück zum Zitat S.T. Wang, C.H. An, Y.G. Zhang, Z.D. Zhang, Y.T. Qian, Ethanothermal reduction to MoO2 microspheres via modified Pechini method. J. Cryst. Growth 293, 209–215 (2006)CrossRef S.T. Wang, C.H. An, Y.G. Zhang, Z.D. Zhang, Y.T. Qian, Ethanothermal reduction to MoO2 microspheres via modified Pechini method. J. Cryst. Growth 293, 209–215 (2006)CrossRef
60.
Zurück zum Zitat J.T. Zhang, J.W. Jiang, X.S. Zhao, Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef J.T. Zhang, J.W. Jiang, X.S. Zhao, Synthesis and Capacitive Properties of Manganese Oxide Nanosheets Dispersed on Functionalized Graphene Sheets. J. Phys. Chem. C 115, 6448–6454 (2011)CrossRef
61.
Zurück zum Zitat N.L. Wu, “Nanocrystallineoxide Supercapacitors. Mater. Chem. Phys. 75, 6–11 (2002)CrossRef N.L. Wu, “Nanocrystallineoxide Supercapacitors. Mater. Chem. Phys. 75, 6–11 (2002)CrossRef
62.
Zurück zum Zitat M. Jayalakshmi, N. Venugopal, K.P. Raja, M.M. Rao, Nano SnO2–Al2O3 mixed oxide and SnO2–Al2O3–carbon composite oxides as new and novel electrodes for supercapacitor applications. J. Power Sources 158(2), 1538–1543 (2006)CrossRef M. Jayalakshmi, N. Venugopal, K.P. Raja, M.M. Rao, Nano SnO2–Al2O3 mixed oxide and SnO2–Al2O3–carbon composite oxides as new and novel electrodes for supercapacitor applications. J. Power Sources 158(2), 1538–1543 (2006)CrossRef
63.
Zurück zum Zitat M. Jayalakshmi, M.M. Rao, N. Venugopal, K.-B. Kim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sources 166(2), 578–583 (2007)CrossRef M. Jayalakshmi, M.M. Rao, N. Venugopal, K.-B. Kim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sources 166(2), 578–583 (2007)CrossRef
64.
Zurück zum Zitat T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim. Acta 55, 4170–4173 (2010)CrossRef T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors. Electrochim. Acta 55, 4170–4173 (2010)CrossRef
65.
Zurück zum Zitat W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Performance of flexible and binderless polypyrrole/graphene oxide/ zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88–94 (2015)CrossRef W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Performance of flexible and binderless polypyrrole/graphene oxide/ zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88–94 (2015)CrossRef
66.
Zurück zum Zitat X. Zhao, C. Johnston, A. Crossley, P.S. Grant, Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J. Mater. Chem. 20, 7637–7644 (2010)CrossRef X. Zhao, C. Johnston, A. Crossley, P.S. Grant, Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J. Mater. Chem. 20, 7637–7644 (2010)CrossRef
67.
Zurück zum Zitat L. Mao, K. Zhang, HSO Chan, J.S. Wu, Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater. Chem. 22, 1845–1851 (2012)CrossRef L. Mao, K. Zhang, HSO Chan, J.S. Wu, Nanostructured MnO2/graphene composites for supercapacitor electrodes: the effect of morphology, crystallinity and composition. J. Mater. Chem. 22, 1845–1851 (2012)CrossRef
68.
Zurück zum Zitat I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56, 376–380 (2010)CrossRef I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochim. Acta 56, 376–380 (2010)CrossRef
69.
Zurück zum Zitat C. Yuan, L. Chen, B. Gao, L. Su, X. Zhang, Synthesis and utilization of RuO2 xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. J. Mater. Chem. 19, 246–252 (2009)CrossRef C. Yuan, L. Chen, B. Gao, L. Su, X. Zhang, Synthesis and utilization of RuO2 xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. J. Mater. Chem. 19, 246–252 (2009)CrossRef
70.
Zurück zum Zitat L. Mao, K. Zhang, HSO Chan, J.S. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80–85 (2012)CrossRef L. Mao, K. Zhang, HSO Chan, J.S. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 22, 80–85 (2012)CrossRef
71.
Zurück zum Zitat P.L. Taberna, P.L. Simon, in Electrochemical Techniques, Supercapacitors: Materials, Systems and Applications, ed. by F Beguin, E Frackowiak (Wiley-VCH, Germany, 2013), pp. 119–129 P.L. Taberna, P.L. Simon, in Electrochemical Techniques, Supercapacitors: Materials, Systems and Applications, ed. by F Beguin, E Frackowiak (Wiley-VCH, Germany, 2013), pp. 119–129
Metadaten
Titel
Solvothermal synthesis of molybdenum oxide on liquid-phase exfoliated graphene composite electrodes for aqueous supercapacitor application
verfasst von
M. Y. Ho
P. S. Khiew
D. Isa
W. S. Chiu
C. H. Chia
Publikationsdatum
09.02.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6391-y

Weitere Artikel der Ausgabe 9/2017

Journal of Materials Science: Materials in Electronics 9/2017 Zur Ausgabe

Neuer Inhalt