Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Calcolo 4/2020

01.12.2020

Some improved Ky Fan type eigenvalue inclusion sets for tensors

verfasst von: Yangyang Xu, Bing Zheng, Ruijuan Zhao

Erschienen in: Calcolo | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

To locate the eigenvalues of a given tensor, we present two classes of new Ky Fan type eigenvalue inclusion sets for tensors, which are tighter than those in Yang et al. (SIAM J Matrix Anal Appl 31:2517–2530, 2010) and He et al. (J Inequal Appl 114:1-9, 2014), respectively. Under certain conditions, the theoretical comparisons of the new proposed Ky Fan type eigenvalue inclusion sets for tensors are established. As applications, some sufficient conditions for identifying strong \(\mathcal {M}\)-tensors, the non-singularity and positive definiteness of tensors are obtained. Some numerical examples are given to verify the validity of our theoretical results.
Literatur
1.
Zurück zum Zitat Berman, A., Plemmons, R.: Nonnegative Matrices in Mathematical Sciences. SIAM, Philadelphia (1994) CrossRef Berman, A., Plemmons, R.: Nonnegative Matrices in Mathematical Sciences. SIAM, Philadelphia (1994) CrossRef
2.
Zurück zum Zitat Bose, N.K., Modarressi, A.R.: General procedure for multivariable polynomial positivity with control applications. IEEE Trans. Automat. Control 21, 696–701 (1976) MathSciNetCrossRef Bose, N.K., Modarressi, A.R.: General procedure for multivariable polynomial positivity with control applications. IEEE Trans. Automat. Control 21, 696–701 (1976) MathSciNetCrossRef
3.
4.
Zurück zum Zitat Bu, C.J., Wei, Y.P., Sun, L.Z., Zhou, J.: Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl. 480, 168–175 (2015) MathSciNetCrossRef Bu, C.J., Wei, Y.P., Sun, L.Z., Zhou, J.: Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl. 480, 168–175 (2015) MathSciNetCrossRef
5.
Zurück zum Zitat Bu, C.J., Jin, X.Q., Li, H.F., Deng, C.L.: Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl. 512, 234–248 (2017) MathSciNetCrossRef Bu, C.J., Jin, X.Q., Li, H.F., Deng, C.L.: Brauer-type eigenvalue inclusion sets and the spectral radius of tensors. Linear Algebra Appl. 512, 234–248 (2017) MathSciNetCrossRef
6.
Zurück zum Zitat Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008) MathSciNetCrossRef Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008) MathSciNetCrossRef
7.
Zurück zum Zitat De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- \((r_1, r_2,\cdot \cdot \cdot, r_n)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000) MathSciNetCrossRef De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank- \((r_1, r_2,\cdot \cdot \cdot, r_n)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000) MathSciNetCrossRef
8.
Zurück zum Zitat Ding, W.Y., Qi, L.Q., Wei, Y.M.: \(\cal{M}\)-tensors and nonsingular \(\cal{M}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013) MathSciNetCrossRef Ding, W.Y., Qi, L.Q., Wei, Y.M.: \(\cal{M}\)-tensors and nonsingular \(\cal{M}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013) MathSciNetCrossRef
9.
10.
Zurück zum Zitat Friedland, S., Gaubert, S., Han, L.: Perron–Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl. 438, 738–749 (2013) MathSciNetCrossRef Friedland, S., Gaubert, S., Han, L.: Perron–Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl. 438, 738–749 (2013) MathSciNetCrossRef
11.
Zurück zum Zitat He, J., Huang, T.Z.: Inequalities for \(\cal{M}\)-tensors. J. Inequal. Appl. 114, 1–9 (2014) MathSciNet He, J., Huang, T.Z.: Inequalities for \(\cal{M}\)-tensors. J. Inequal. Appl. 114, 1–9 (2014) MathSciNet
12.
Zurück zum Zitat Hu, S.L., Qi, L.Q.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24, 564–579 (2012) MathSciNetCrossRef Hu, S.L., Qi, L.Q.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24, 564–579 (2012) MathSciNetCrossRef
13.
Zurück zum Zitat Hu, S.L., Huang, Z.H., Ni, H.Y., Qi, L.Q.: Positive definiteness of diffusion kurtosis imaging. Inverse Probl. Imag. 6, 57–75 (2012) MathSciNetCrossRef Hu, S.L., Huang, Z.H., Ni, H.Y., Qi, L.Q.: Positive definiteness of diffusion kurtosis imaging. Inverse Probl. Imag. 6, 57–75 (2012) MathSciNetCrossRef
14.
Zurück zum Zitat Hu, S.L., Huang, Z.H., Ling, C., Qi, L.Q.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013) MathSciNetCrossRef Hu, S.L., Huang, Z.H., Ling, C., Qi, L.Q.: On determinants and eigenvalue theory of tensors. J. Symb. Comput. 50, 508–531 (2013) MathSciNetCrossRef
15.
Zurück zum Zitat Li, H.B., Huang, T.Z.: An improvement of Ky Fan theorem for matrix eigenvalues. Comput. Math. Appl. 49, 789–803 (2005) MathSciNetCrossRef Li, H.B., Huang, T.Z.: An improvement of Ky Fan theorem for matrix eigenvalues. Comput. Math. Appl. 49, 789–803 (2005) MathSciNetCrossRef
16.
Zurück zum Zitat Li, C.Q., Li, Y.T.: An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64, 587–601 (2016) MathSciNetCrossRef Li, C.Q., Li, Y.T.: An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64, 587–601 (2016) MathSciNetCrossRef
17.
Zurück zum Zitat Li, C.Q., Li, Y.T., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014) MathSciNetCrossRef Li, C.Q., Li, Y.T., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014) MathSciNetCrossRef
18.
Zurück zum Zitat Li, C.Q., Chen, Z., Li, Y.T.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015) MathSciNetCrossRef Li, C.Q., Chen, Z., Li, Y.T.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015) MathSciNetCrossRef
19.
Zurück zum Zitat Li, C.Q., Zhou, J.J., Li, Y.T.: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64, 727–736 (2016) MathSciNetCrossRef Li, C.Q., Zhou, J.J., Li, Y.T.: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64, 727–736 (2016) MathSciNetCrossRef
20.
Zurück zum Zitat Li, C.Q., Zhang, C.Y., Li, Y.T.: Minimal Geršgorin tensor eigenvalue inclusion set and its approximation. J. Comput. Appl. Math. 302, 200–210 (2016) MathSciNetCrossRef Li, C.Q., Zhang, C.Y., Li, Y.T.: Minimal Geršgorin tensor eigenvalue inclusion set and its approximation. J. Comput. Appl. Math. 302, 200–210 (2016) MathSciNetCrossRef
21.
Zurück zum Zitat Li, C.Q., Jiao, A.Q., Li, Y.T.: An \(S\)-type eigenvalue localization set for tensors. Linear Algebra Appl. 493, 469–483 (2016) MathSciNetCrossRef Li, C.Q., Jiao, A.Q., Li, Y.T.: An \(S\)-type eigenvalue localization set for tensors. Linear Algebra Appl. 493, 469–483 (2016) MathSciNetCrossRef
22.
Zurück zum Zitat Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1, pp. 129–132 (2005) Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1, pp. 129–132 (2005)
23.
Zurück zum Zitat Ni, Q., Qi, L.Q., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008) MathSciNetCrossRef Ni, Q., Qi, L.Q., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008) MathSciNetCrossRef
25.
Zurück zum Zitat Qi, L.Q., Luo, Z.Y.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017) CrossRef Qi, L.Q., Luo, Z.Y.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017) CrossRef
26.
Zurück zum Zitat Sang, C.L., Li, C.Q.: Exclusion sets in eigenvalue localization sets for tensors. Linear Multilinear Algebra 67, 2399–2409 (2019) MathSciNetCrossRef Sang, C.L., Li, C.Q.: Exclusion sets in eigenvalue localization sets for tensors. Linear Multilinear Algebra 67, 2399–2409 (2019) MathSciNetCrossRef
27.
Zurück zum Zitat Shao, J.Y., Shan, H., Zhang, L.: On some properties of the determinants of tensors. Linear Algebra Appl. 439, 3057–3069 (2013) MathSciNetCrossRef Shao, J.Y., Shan, H., Zhang, L.: On some properties of the determinants of tensors. Linear Algebra Appl. 439, 3057–3069 (2013) MathSciNetCrossRef
29.
Zurück zum Zitat Yang, Y.N., Yang, Q.Z.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM. J. Matrix Anal. Appl. 31, 2517–2530 (2010) MathSciNetCrossRef Yang, Y.N., Yang, Q.Z.: Further results for Perron–Frobenius theorem for nonnegative tensors. SIAM. J. Matrix Anal. Appl. 31, 2517–2530 (2010) MathSciNetCrossRef
30.
Zurück zum Zitat Zhang, L.P., Qi, L.Q., Zhou, G.L.: \(\cal{M}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014) MathSciNetCrossRef Zhang, L.P., Qi, L.Q., Zhou, G.L.: \(\cal{M}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014) MathSciNetCrossRef
31.
Zurück zum Zitat Zhao, J.X., Sang, C.L.: An eigenvalue localization set for tensors and its applications. J. Inequal. Appl. 59, 1–9 (2017) MathSciNetMATH Zhao, J.X., Sang, C.L.: An eigenvalue localization set for tensors and its applications. J. Inequal. Appl. 59, 1–9 (2017) MathSciNetMATH
Metadaten
Titel
Some improved Ky Fan type eigenvalue inclusion sets for tensors
verfasst von
Yangyang Xu
Bing Zheng
Ruijuan Zhao
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00389-z

Weitere Artikel der Ausgabe 4/2020

Calcolo 4/2020 Zur Ausgabe

Premium Partner