Skip to main content
Erschienen in: Journal of Applied and Industrial Mathematics 3/2020

01.08.2020

Some Model of a Suspension Filtration in a Porous Media That Accounts for the Two-Zone and Multistage Character of Deposition Kinetics

verfasst von: B. Kh. Khuzhayorov, J. M. Makhmudov, B. M. Fayziev, T. I. Begmatov

Erschienen in: Journal of Applied and Industrial Mathematics | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of suspension filtration in a porous medium consisting of active and passive zones is posed and numerically solved in the case of a multistage kinetics of particle deposition. Some mathematical model of the process is proposed that is based on the general conservation laws and additional phenomenological assumptions. The influence of the multistage kinetics of particle deposition on the filtration characteristics is considered. We establish that, as the parameter characterizing the duration of the stage of formation of the irreversible deposition increases, a region with complete saturation of the passive zone capacity appears near the filter inlet. No further increase of the deposition concentration in the passive zone is observed, while the process of particles movement in suspension and deposition of them in the active zone continues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Amirtharajah, “Some Theoretical and Conceptual Views of Filtration,” J. American Water Works Association 80 (12), 36–46 (1988).CrossRef A. Amirtharajah, “Some Theoretical and Conceptual Views of Filtration,” J. American Water Works Association 80 (12), 36–46 (1988).CrossRef
2.
Zurück zum Zitat C. Tien and B. V. Ramarao, Granular Filtration of Aerosols and Hydrosols (Springer, New York, 2007). C. Tien and B. V. Ramarao, Granular Filtration of Aerosols and Hydrosols (Springer, New York, 2007).
3.
Zurück zum Zitat A. Zamani and B. Maini, “Flow of Dispersed Particles through Porous Media–Deep Bed Filtration,” J. Petroleum Sci. Eng. 69 (1–2), 71–88 (2009).CrossRef A. Zamani and B. Maini, “Flow of Dispersed Particles through Porous Media–Deep Bed Filtration,” J. Petroleum Sci. Eng. 69 (1–2), 71–88 (2009).CrossRef
4.
Zurück zum Zitat S. Vigneswaran and R. Ben Aim, Water, Wastewater and Sludge Filtration (Chapman & Hall/CRC Press, Boca Raton, 1989). S. Vigneswaran and R. Ben Aim, Water, Wastewater and Sludge Filtration (Chapman & Hall/CRC Press, Boca Raton, 1989).
5.
Zurück zum Zitat K. J. Ives, “Theory of Filtration,” in Proceedings of International Water Supply Association. Eighth Congress, Vol. 1 (Vienna, 1969), pp. K3–K28. K. J. Ives, “Theory of Filtration,” in Proceedings of International Water Supply Association. Eighth Congress, Vol. 1 (Vienna, 1969), pp. K3–K28.
6.
Zurück zum Zitat J. P. Herzig, D. M. Leclerc, and P. Goff, “Flow of Suspensions through Porous Media—Application to Deep Filtration,” J. Ind. Eng. Chem. 62, 8–35 (1970).CrossRef J. P. Herzig, D. M. Leclerc, and P. Goff, “Flow of Suspensions through Porous Media—Application to Deep Filtration,” J. Ind. Eng. Chem. 62, 8–35 (1970).CrossRef
7.
Zurück zum Zitat N. D. Ahfir, et al., “Transport and Deposition of Suspended Particles in Saturated Porous Media: Hydrodynamic Effect,” Hydrogeol. J. 15 (4), 659–668 (2007).CrossRef N. D. Ahfir, et al., “Transport and Deposition of Suspended Particles in Saturated Porous Media: Hydrodynamic Effect,” Hydrogeol. J. 15 (4), 659–668 (2007).CrossRef
8.
Zurück zum Zitat J. M. Kavanagh, et al., “Particle Capture Models: Comparison with Experimental Data,” ANZIAM J. 53, C249–C265 (2011).MathSciNetCrossRef J. M. Kavanagh, et al., “Particle Capture Models: Comparison with Experimental Data,” ANZIAM J. 53, C249–C265 (2011).MathSciNetCrossRef
9.
Zurück zum Zitat C. V. Chrysikopoulos and S. I. Vasiliki, “Effect of Gravity on Colloid Transport through Water–Saturated Columns Packed with Glass Beads: Modeling and Experiments,” Environ. Sci. Technol. 48, 6805–6813 (2014).CrossRef C. V. Chrysikopoulos and S. I. Vasiliki, “Effect of Gravity on Colloid Transport through Water–Saturated Columns Packed with Glass Beads: Modeling and Experiments,” Environ. Sci. Technol. 48, 6805–6813 (2014).CrossRef
10.
Zurück zum Zitat V. E. Katzourakis and C. V. Chrysikopoulos, “Mathematical Modeling of Colloid and Virus Cotransport in Porous Media: Application to Experimental Data,” Adv. Water. Resour. 68, 62–73 (2014).CrossRef V. E. Katzourakis and C. V. Chrysikopoulos, “Mathematical Modeling of Colloid and Virus Cotransport in Porous Media: Application to Experimental Data,” Adv. Water. Resour. 68, 62–73 (2014).CrossRef
11.
Zurück zum Zitat B. Bai, T. Xu, and Z. Guo, “An Experimental and Theoretical Study of the Seepage Migration of Suspended Particles with Different Sizes,” Hydrogeol. J. 24, 2063–2078 (2016).CrossRef B. Bai, T. Xu, and Z. Guo, “An Experimental and Theoretical Study of the Seepage Migration of Suspended Particles with Different Sizes,” Hydrogeol. J. 24, 2063–2078 (2016).CrossRef
12.
Zurück zum Zitat S. A. Bradford, et al., “Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media,” Environ. Sci. Technol. 37, 2242–2250 (2003).CrossRef S. A. Bradford, et al., “Modeling Colloid Attachment, Straining, and Exclusion in Saturated Porous Media,” Environ. Sci. Technol. 37, 2242–2250 (2003).CrossRef
13.
Zurück zum Zitat P. Bedrikovetsky, “Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media,” Transp. Porous Med. 75, 335–369 (2008).MathSciNetCrossRef P. Bedrikovetsky, “Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media,” Transp. Porous Med. 75, 335–369 (2008).MathSciNetCrossRef
14.
Zurück zum Zitat G. R. Guedes, F. Al-Abduwani, P. Bedrikovetsky, and P. Currie, “Deep-Bed Filtration under Multiple Particle-Capture Mechanisms,” SPE J. 14, 477–487 (2009).CrossRef G. R. Guedes, F. Al-Abduwani, P. Bedrikovetsky, and P. Currie, “Deep-Bed Filtration under Multiple Particle-Capture Mechanisms,” SPE J. 14, 477–487 (2009).CrossRef
15.
Zurück zum Zitat S. A. Boronin, et al., “Damage to Formation Surrounding Flooding Wells: Modelling of Suspension Filtration with Account of Particle Trapping and Mobilization,” J. Phys. Conf. Ser. 925, 012009 (2017).CrossRef S. A. Boronin, et al., “Damage to Formation Surrounding Flooding Wells: Modelling of Suspension Filtration with Account of Particle Trapping and Mobilization,” J. Phys. Conf. Ser. 925, 012009 (2017).CrossRef
16.
Zurück zum Zitat G. Malgaresi, N. Khazali, and P. Bedrikovetsky, “Non-Monotonic Retention Profiles during Axi-Symmetric Colloidal Flows,” J. Hydrol. Eng. 580, 124235 (2020).CrossRef G. Malgaresi, N. Khazali, and P. Bedrikovetsky, “Non-Monotonic Retention Profiles during Axi-Symmetric Colloidal Flows,” J. Hydrol. Eng. 580, 124235 (2020).CrossRef
17.
Zurück zum Zitat C. Tien, Granular Filtration of Aerosols and Hydrosols (Butterworth, Boston, 1989). C. Tien, Granular Filtration of Aerosols and Hydrosols (Butterworth, Boston, 1989).
18.
Zurück zum Zitat J. C. Crittenden, R. Rh. Trussell, D. W. Hand, K. J. Howe, and G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, 3rd Ed. (Wiley, New York, 2012).CrossRef J. C. Crittenden, R. Rh. Trussell, D. W. Hand, K. J. Howe, and G. Tchobanoglous, MWH’s Water Treatment: Principles and Design, 3rd Ed. (Wiley, New York, 2012).CrossRef
19.
Zurück zum Zitat V. Jegatheesan and S. Vigneswaran, “Deep Bed Filtration: Mathematical Models and Observations,” Crit. Rev. Environ. Sci. Technol. 36 (6), 515–569 (2005).CrossRef V. Jegatheesan and S. Vigneswaran, “Deep Bed Filtration: Mathematical Models and Observations,” Crit. Rev. Environ. Sci. Technol. 36 (6), 515–569 (2005).CrossRef
20.
Zurück zum Zitat V. Gitis, A. Adin, and I. Rubinstein, “Kinetic Models in Rapid Filtration,” inProceedings of American Water Works Association. Annual Conference (Chicago, 1999). V. Gitis, A. Adin, and I. Rubinstein, “Kinetic Models in Rapid Filtration,” inProceedings of American Water Works Association. Annual Conference (Chicago, 1999).
21.
Zurück zum Zitat V. Gitis, I. Rubinstein, M. Livshits, and M. Ziskind, “Deep-Bed Filtration Model with Multistage Deposition Kinetics,” Chem. Eng. J. 163 (1–2), 78–85 (2010).CrossRef V. Gitis, I. Rubinstein, M. Livshits, and M. Ziskind, “Deep-Bed Filtration Model with Multistage Deposition Kinetics,” Chem. Eng. J. 163 (1–2), 78–85 (2010).CrossRef
22.
Zurück zum Zitat C. Gruesbeck and R. E. Collins, “Entertainment and Deposition of Fine Particles in Porous Media,” Soc. Petrol. Eng. J. 22 (6), 847–856 (1982).CrossRef C. Gruesbeck and R. E. Collins, “Entertainment and Deposition of Fine Particles in Porous Media,” Soc. Petrol. Eng. J. 22 (6), 847–856 (1982).CrossRef
23.
Zurück zum Zitat B. Kh. Khuzhaerov, “Effects of Blockage and Erosion on the Filtration of Suspensions,” J. Eng. Phys. 58 (2), 185–190 (1990).CrossRef B. Kh. Khuzhaerov, “Effects of Blockage and Erosion on the Filtration of Suspensions,” J. Eng. Phys. 58 (2), 185–190 (1990).CrossRef
24.
Zurück zum Zitat B. Kh. Khuzhayorov, “A Model of Colmatation Suffosion Filtration,” J. Porous Media 2 (2), 163–172 (1999).CrossRef B. Kh. Khuzhayorov, “A Model of Colmatation Suffosion Filtration,” J. Porous Media 2 (2), 163–172 (1999).CrossRef
25.
Zurück zum Zitat E. V. Venetsianov and R. N. Rubinshtein, Dynamics of Sorption from Liquid Media (Nauka, Moscow, 1983) [in Russian]. E. V. Venetsianov and R. N. Rubinshtein, Dynamics of Sorption from Liquid Media (Nauka, Moscow, 1983) [in Russian].
26.
Zurück zum Zitat E. V. Venetsianov and M. M. Senyavin, “Mathematical Description of Suspension Clarification by Filtration,” Teor. Osn. Khim. Tekhnol. 10 (4), 584–591 (1976). E. V. Venetsianov and M. M. Senyavin, “Mathematical Description of Suspension Clarification by Filtration,” Teor. Osn. Khim. Tekhnol. 10 (4), 584–591 (1976).
27.
Zurück zum Zitat A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983) [in Russian]. A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983) [in Russian].
Metadaten
Titel
Some Model of a Suspension Filtration in a Porous Media That Accounts for the Two-Zone and Multistage Character of Deposition Kinetics
verfasst von
B. Kh. Khuzhayorov
J. M. Makhmudov
B. M. Fayziev
T. I. Begmatov
Publikationsdatum
01.08.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Applied and Industrial Mathematics / Ausgabe 3/2020
Print ISSN: 1990-4789
Elektronische ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478920030102

Weitere Artikel der Ausgabe 3/2020

Journal of Applied and Industrial Mathematics 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.