Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Some Observations on the Physics of Stringed Instruments

verfasst von : Nicholas Giordano

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We provide a general introduction to stringed instruments, focusing on the piano, guitar, and violin. These are representative of instruments in which the strings are excited by striking (the piano), plucking (the guitar), and bowing (the violin). We begin by discussing, in a general way, the strings and soundboards, and how these couple to the surrounding air to generate sound. Important features specific to these instruments are then discussed, with particular attention to the different ways the strings are set into motion, key differences in the way the soundboards vibrate, and the effects of these differences on the resulting musical tones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
6.1
Zurück zum Zitat L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985) L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985)
6.2
Zurück zum Zitat N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRef N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRef
6.3
Zurück zum Zitat R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin 2008) R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin 2008)
6.4
6.5
Zurück zum Zitat T.D. Rossing (Ed.): The Science of String Instruments (Springer, New York 2010) T.D. Rossing (Ed.): The Science of String Instruments (Springer, New York 2010)
6.6
Zurück zum Zitat N.J. Giordano: Physics of the Piano (Oxford University Press, Oxford 2010)MATH N.J. Giordano: Physics of the Piano (Oxford University Press, Oxford 2010)MATH
6.7
Zurück zum Zitat A. Chaigne, J. Kergomard: Acoustique des Instruments de Musique (Belin, Paris 2010) A. Chaigne, J. Kergomard: Acoustique des Instruments de Musique (Belin, Paris 2010)
6.8
Zurück zum Zitat A. Chaigne: On the use of finite differences for musical synthesis. Application to plucked string instruments, J. Acoustique 5, 181–211 (1992) A. Chaigne: On the use of finite differences for musical synthesis. Application to plucked string instruments, J. Acoustique 5, 181–211 (1992)
6.9
Zurück zum Zitat A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. Physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95, 1112–1118 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. Physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95, 1112–1118 (1994)CrossRef
6.10
Zurück zum Zitat A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters, J. Acoust. Soc. Am. 95, 1631–1640 (1994)CrossRef A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters, J. Acoust. Soc. Am. 95, 1631–1640 (1994)CrossRef
6.11
Zurück zum Zitat J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano, J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano, J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef
6.12
Zurück zum Zitat N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102, 1159–1168 (1997)CrossRef N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102, 1159–1168 (1997)CrossRef
6.13
Zurück zum Zitat W. Strutt (Lord Rayleigh): Theory of Sound (Dover, New York 1945) W. Strutt (Lord Rayleigh): Theory of Sound (Dover, New York 1945)
6.14
Zurück zum Zitat E. Bechache, A. Chaigne, G. Deveraux, P. Joly: Numerical simulation of a guitar, Comput. Struct. 83, 107–126 (2005)MathSciNetCrossRef E. Bechache, A. Chaigne, G. Deveraux, P. Joly: Numerical simulation of a guitar, Comput. Struct. 83, 107–126 (2005)MathSciNetCrossRef
6.15
Zurück zum Zitat A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing, J. Acoust. Soc. Am. 123, 2401–2406 (2008)CrossRef A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing, J. Acoust. Soc. Am. 123, 2401–2406 (2008)CrossRef
6.16
Zurück zum Zitat A. Mamou-mani, J. Frelat, C. Besaniou: Prestressed soundboards: Analytical approach using simple systems including geometric nonlinearity, Acta Acoust. united Acust. 95, 915–928 (2009)CrossRef A. Mamou-mani, J. Frelat, C. Besaniou: Prestressed soundboards: Analytical approach using simple systems including geometric nonlinearity, Acta Acoust. united Acust. 95, 915–928 (2009)CrossRef
6.17
Zurück zum Zitat A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards, J. Acoust. Soc. Am. 133, 2456–2466 (2013)CrossRef A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards, J. Acoust. Soc. Am. 133, 2456–2466 (2013)CrossRef
6.18
Zurück zum Zitat P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, Princeton 1968) P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, Princeton 1968)
6.19
Zurück zum Zitat D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95, 2313–2319 (1994)CrossRef D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95, 2313–2319 (1994)CrossRef
6.20
Zurück zum Zitat D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRef
6.21
Zurück zum Zitat N. Giordano, M. Jiang: Physical modeling of the piano, Eur. J. Appl. Signal Process. 7, 926–933 (2004) N. Giordano, M. Jiang: Physical modeling of the piano, Eur. J. Appl. Signal Process. 7, 926–933 (2004)
6.22
Zurück zum Zitat H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am. 99, 3286–3296 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am. 99, 3286–3296 (1996)CrossRef
6.23
Zurück zum Zitat H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRef
6.24
Zurück zum Zitat H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part III. Piano and scale design, J. Acoust. Soc. Am. 100, 1286–1298 (1996)CrossRef H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part III. Piano and scale design, J. Acoust. Soc. Am. 100, 1286–1298 (1996)CrossRef
6.25
6.26
Zurück zum Zitat D.E. Hall: Piano string excitation in the case of small hammer mass, J. Acoust. Soc. Am. 79, 141–147 (1986)CrossRef D.E. Hall: Piano string excitation in the case of small hammer mass, J. Acoust. Soc. Am. 79, 141–147 (1986)CrossRef
6.27
Zurück zum Zitat D.E. Hall: Piano string excitation II: General solution for a hard narrow hammer, J. Acoust. Soc. Am. 81, 535–546 (1987)CrossRef D.E. Hall: Piano string excitation II: General solution for a hard narrow hammer, J. Acoust. Soc. Am. 81, 535–546 (1987)CrossRef
6.28
Zurück zum Zitat D.E. Hall: Piano string excitation III: General solution for a soft narrow hammer, J. Acoust. Soc. Am. 81, 547–555 (1987)CrossRef D.E. Hall: Piano string excitation III: General solution for a soft narrow hammer, J. Acoust. Soc. Am. 81, 547–555 (1987)CrossRef
6.29
Zurück zum Zitat D.E. Hall, A. Askenfelt: Piano string excitation V: Spectra for real hammers and strings, J. Acoust. Soc. Am. 83, 1627–1638 (1987)CrossRef D.E. Hall, A. Askenfelt: Piano string excitation V: Spectra for real hammers and strings, J. Acoust. Soc. Am. 83, 1627–1638 (1987)CrossRef
6.30
Zurück zum Zitat D.E. Hall: Piano string excitation VI: Nonlinear modeling, J. Acoust. Soc. Am. 92, 95–105 (1992)CrossRef D.E. Hall: Piano string excitation VI: Nonlinear modeling, J. Acoust. Soc. Am. 92, 95–105 (1992)CrossRef
6.31
Zurück zum Zitat T. Yanagisawa, K. Nakamura, H. Aiko: Experimental study on force-time curve during the contact between hammer and piano string, J. Acoust. Soc. Jpn. 37, 627–632 (1981) T. Yanagisawa, K. Nakamura, H. Aiko: Experimental study on force-time curve during the contact between hammer and piano string, J. Acoust. Soc. Jpn. 37, 627–632 (1981)
6.32
Zurück zum Zitat T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer, Trans. Musical Acoust. Tech. Group Meet. Acoust. Soc. Jpn. 1, 14–17 (1982) T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer, Trans. Musical Acoust. Tech. Group Meet. Acoust. Soc. Jpn. 1, 14–17 (1982)
6.33
Zurück zum Zitat T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer felt, J. Acoust. Soc. Jpn. 40, 725–729 (1984) T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer felt, J. Acoust. Soc. Jpn. 40, 725–729 (1984)
6.34
Zurück zum Zitat A. Stulov: Hysteretic model of the grand piano hammer felt, J. Acoust. Soc. Am. 97, 2577–2585 (1995)CrossRef A. Stulov: Hysteretic model of the grand piano hammer felt, J. Acoust. Soc. Am. 97, 2577–2585 (1995)CrossRef
6.35
Zurück zum Zitat N. Giordano, J.P. Winans II: Piano hammers and their force compression characteristics: Does a power law make sense?, J. Acoust. Soc. Am. 107, 2248–2255 (2000)CrossRef N. Giordano, J.P. Winans II: Piano hammers and their force compression characteristics: Does a power law make sense?, J. Acoust. Soc. Am. 107, 2248–2255 (2000)CrossRef
6.36
Zurück zum Zitat H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones, J. Acoust. Soc. Am. 34, 749–761 (1962)CrossRef H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones, J. Acoust. Soc. Am. 34, 749–761 (1962)CrossRef
6.37
Zurück zum Zitat N. Giordano: Evolution of music wire and its impact on the development of the piano, Proc. Meet. Acoust. 12, 035002 (2011)CrossRef N. Giordano: Evolution of music wire and its impact on the development of the piano, Proc. Meet. Acoust. 12, 035002 (2011)CrossRef
6.38
Zurück zum Zitat O.L. Railsback: Scale temperament as applied to piano tuning, J. Acoust. Soc. Am. 9, 274 (1938)CrossRef O.L. Railsback: Scale temperament as applied to piano tuning, J. Acoust. Soc. Am. 9, 274 (1938)CrossRef
6.39
Zurück zum Zitat O.L. Railsback: A study of the tuning of pianos, J. Acoust. Soc. Am. 10, 86 (1938)CrossRef O.L. Railsback: A study of the tuning of pianos, J. Acoust. Soc. Am. 10, 86 (1938)CrossRef
6.40
Zurück zum Zitat O.H. Schuck, R.W. Young: Observations on the vibration of piano strings, J. Acoust. Soc. Am. 15, 1–11 (1943)CrossRef O.H. Schuck, R.W. Young: Observations on the vibration of piano strings, J. Acoust. Soc. Am. 15, 1–11 (1943)CrossRef
6.41
Zurück zum Zitat N. Giordano: Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance, J. Acoust. Soc. Am. 138, 2359–2366 (2015)CrossRef N. Giordano: Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance, J. Acoust. Soc. Am. 138, 2359–2366 (2015)CrossRef
6.42
Zurück zum Zitat G. Weinreich: Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484 (1977)CrossRef G. Weinreich: Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484 (1977)CrossRef
6.43
Zurück zum Zitat N. Giordano: Mechanical impedance of a piano soundboard, J. Acoust. Soc. Am. 103, 2128–2133 (1998)CrossRef N. Giordano: Mechanical impedance of a piano soundboard, J. Acoust. Soc. Am. 103, 2128–2133 (1998)CrossRef
6.44
Zurück zum Zitat W.M. Hartmann: Signals, Sound and Sensation (AIP, Woodbury 1997) W.M. Hartmann: Signals, Sound and Sensation (AIP, Woodbury 1997)
6.45
Zurück zum Zitat J.G. Roederer: Introduction to the Physics and Psychophysics of Music (Springer, New York 2008) J.G. Roederer: Introduction to the Physics and Psychophysics of Music (Springer, New York 2008)
6.46
Zurück zum Zitat N.H. Fletcher: Physics and Music (Heinemann Educational Australia, Port Melbourne 1976) N.H. Fletcher: Physics and Music (Heinemann Educational Australia, Port Melbourne 1976)
6.47
Zurück zum Zitat B.E. Richardson, G.W. Roberts: The adjustment of mode frequencies in a guitar: A study by means of holographic interferometry and finite element analysis. In: Proc. SMAC 83. R. Swedish Acad. Music, Stockholm (1985) pp. 285–302 B.E. Richardson, G.W. Roberts: The adjustment of mode frequencies in a guitar: A study by means of holographic interferometry and finite element analysis. In: Proc. SMAC 83. R. Swedish Acad. Music, Stockholm (1985) pp. 285–302
6.48
Zurück zum Zitat M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Coupled modes of the resonance box of the guitar, J. Acoust. Soc. Am. 111, 2284–2292 (2002)CrossRef M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Coupled modes of the resonance box of the guitar, J. Acoust. Soc. Am. 111, 2284–2292 (2002)CrossRef
6.49
Zurück zum Zitat G. Derveaux, A. Chaigne, P. Joly, E. Bécache: Time-domain simulation of a guitar: Model and method, J. Acoust. Soc. Am. 114, 3368–3383 (2003)CrossRef G. Derveaux, A. Chaigne, P. Joly, E. Bécache: Time-domain simulation of a guitar: Model and method, J. Acoust. Soc. Am. 114, 3368–3383 (2003)CrossRef
6.50
Zurück zum Zitat J.C. Schelleng: The bowed string and the player, J. Acoust. Soc. Am. 53, 26–41 (1973)CrossRef J.C. Schelleng: The bowed string and the player, J. Acoust. Soc. Am. 53, 26–41 (1973)CrossRef
6.51
Zurück zum Zitat K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, J. Acoust. Soc. Am. 101, 2903–2913 (1998)CrossRef K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, J. Acoust. Soc. Am. 101, 2903–2913 (1998)CrossRef
6.52
Zurück zum Zitat K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acoust. united Acust. 88, 970–985 (2002) K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acoust. united Acust. 88, 970–985 (2002)
6.53
Zurück zum Zitat C.M. Hutchins: Plate tuning for the violin maker, J. Catgut Acoust. Soc. 39, 25–32 (1983) C.M. Hutchins: Plate tuning for the violin maker, J. Catgut Acoust. Soc. 39, 25–32 (1983)
6.54
Zurück zum Zitat C.M. Hutchins: Note for the violin maker in free plate mode tuning and plate stiffness, J. Catgut Acoust. Soc. 1(II), 25–30 (1989) C.M. Hutchins: Note for the violin maker in free plate mode tuning and plate stiffness, J. Catgut Acoust. Soc. 1(II), 25–30 (1989)
6.55
Zurück zum Zitat C.M. Hutchins, A.S. Hopping, F.A. Saunders: Subharmonics and plate tap tones in violin acoustics, J. Acoust. Soc. Am. 32, 1443–1449 (1960)CrossRef C.M. Hutchins, A.S. Hopping, F.A. Saunders: Subharmonics and plate tap tones in violin acoustics, J. Acoust. Soc. Am. 32, 1443–1449 (1960)CrossRef
6.56
Zurück zum Zitat G. Bissinger, C.M. Hutchins: Evidence for the coupling between plate and enclosed air vibrations in violins, J. Catgut Acoust. Soc. 39, 7–14 (1983) G. Bissinger, C.M. Hutchins: Evidence for the coupling between plate and enclosed air vibrations in violins, J. Catgut Acoust. Soc. 39, 7–14 (1983)
6.57
Zurück zum Zitat E.V. Jansson: Admittance measurements of 25 high quality violins, Acta Acoust. united Acust. 83, 337–341 (1997) E.V. Jansson: Admittance measurements of 25 high quality violins, Acta Acoust. united Acust. 83, 337–341 (1997)
6.59
Zurück zum Zitat C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Tao: Player preferences amoung new and old violins, Proc. Nat. Acad. Sci. 109, 760–763 (2012)CrossRef C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Tao: Player preferences amoung new and old violins, Proc. Nat. Acad. Sci. 109, 760–763 (2012)CrossRef
6.60
Zurück zum Zitat J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today, Acta Acoust. united Acust. 90, 579–589 (2004) J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today, Acta Acoust. united Acust. 90, 579–589 (2004)
6.61
Zurück zum Zitat G. Bissinger: Structural acoustics of good and bad violins, J. Acoust. Soc. Am. 124, 1764–1773 (2008)CrossRef G. Bissinger: Structural acoustics of good and bad violins, J. Acoust. Soc. Am. 124, 1764–1773 (2008)CrossRef
Metadaten
Titel
Some Observations on the Physics of Stringed Instruments
verfasst von
Nicholas Giordano
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.