Skip to main content

30.05.2024 | Original Paper

Some results on the Hamming distances of cyclic codes

verfasst von: Guantao Pan, Lanqiang Li, Ziwen Cao, Fuyin Tian

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cyclic codes over finite fields have been studied for decades due to their wide applicability in communication systems, consumer electronics, and data storage systems. Let p be an odd prime and let s and m be positive integers. In this paper, we first determine the Hamming distances of all cyclic codes of length 8 over \(F_q\). Building upon this, we explicitly obtain the Hamming distances of all repeated-root cyclic codes of length \(8p^s\) over \(F_q\). As an application, we give all maximum distance separable cyclic codes of length \(8p^s\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 337–342 (1991)MathSciNetCrossRef Castagnoli, G., Massey, J.L., Schoeller, P.A., von Seemann, N.: On repeated-root cyclic codes. IEEE Trans. Inf. Theory 37, 337–342 (1991)MathSciNetCrossRef
3.
Zurück zum Zitat Özadam, H., Özbudak, F.: The minimum Hamming distance of cyclic codes of length \(2p^s\). In:Proceedings of the International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes pp. 92–100 (2009) Özadam, H., Özbudak, F.: The minimum Hamming distance of cyclic codes of length \(2p^s\). In:Proceedings of the International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes pp. 92–100 (2009)
4.
Zurück zum Zitat Dinh, H.Q.: Repeated-root constacyclic codes of length \(2p^s\). Finite Fields Appl. 18, 940–950 (2012)CrossRef Dinh, H.Q.: Repeated-root constacyclic codes of length \(2p^s\). Finite Fields Appl. 18, 940–950 (2012)CrossRef
5.
Zurück zum Zitat Dinh, H.Q.: Structure of repeated-root constacyclic codes of length \(3p^s\) and their duals. Discret. Math. 313, 983–991 (2013)CrossRef Dinh, H.Q.: Structure of repeated-root constacyclic codes of length \(3p^s\) and their duals. Discret. Math. 313, 983–991 (2013)CrossRef
6.
Zurück zum Zitat Dinh, H.Q., Wang, X., Liu, H., Sriboonchitta, S.: On the Hamming distances of repeated-root constacyclic codes of length \(4p^s\). Discret. Math. 342, 1456–1470 (2019)CrossRef Dinh, H.Q., Wang, X., Liu, H., Sriboonchitta, S.: On the Hamming distances of repeated-root constacyclic codes of length \(4p^s\). Discret. Math. 342, 1456–1470 (2019)CrossRef
7.
Zurück zum Zitat Dinh, H.Q., Wang, X., Sirisrisakulchai, J.: On the Hamming distances of constacyclic codes of length \(5p^s\). IEEE Access 8, 46242–46254 (2020)CrossRef Dinh, H.Q., Wang, X., Sirisrisakulchai, J.: On the Hamming distances of constacyclic codes of length \(5p^s\). IEEE Access 8, 46242–46254 (2020)CrossRef
8.
Zurück zum Zitat Dinh, H.Q.: Structure of repeated-root cyclic codes and negacyclic codes of length \(6p^s\) and their duals. Contemp. Math. 609, 69–87 (2014)CrossRef Dinh, H.Q.: Structure of repeated-root cyclic codes and negacyclic codes of length \(6p^s\) and their duals. Contemp. Math. 609, 69–87 (2014)CrossRef
9.
Zurück zum Zitat Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(lp^s\) and their duals. Discret. Appl. Math. 177, 60–70 (2014)CrossRef Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(lp^s\) and their duals. Discret. Appl. Math. 177, 60–70 (2014)CrossRef
10.
Zurück zum Zitat Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(2l^m p^s\). Finite Fields Appl. 33, 137–159 (2015)MathSciNetCrossRef Chen, B., Dinh, H.Q., Liu, H.: Repeated-root constacyclic codes of length \(2l^m p^s\). Finite Fields Appl. 33, 137–159 (2015)MathSciNetCrossRef
11.
Zurück zum Zitat Liu, L., Li, L., Kai, X., Zhu, S.: Repeated-root constacyclic codes of length \(3lp^n\) and their dual codes. Finite Fields Appl. 42, 269–295 (2016)MathSciNetCrossRef Liu, L., Li, L., Kai, X., Zhu, S.: Repeated-root constacyclic codes of length \(3lp^n\) and their dual codes. Finite Fields Appl. 42, 269–295 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Sharma, A.: Repeated-root constacyclic codes of length \(l^tp^s\) and their dual codes. Cryptogr. Commun. 7, 229–255 (2015)MathSciNetCrossRef Sharma, A.: Repeated-root constacyclic codes of length \(l^tp^s\) and their dual codes. Cryptogr. Commun. 7, 229–255 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012)MathSciNetCrossRef Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Zhu, X., Yue, Q., Hu, L.: Weight distributions of cyclic codes of length \(tl^m\). Discret. Appl. Math. 338, 844–856 (2015) Zhu, X., Yue, Q., Hu, L.: Weight distributions of cyclic codes of length \(tl^m\). Discret. Appl. Math. 338, 844–856 (2015)
15.
Zurück zum Zitat Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetCrossRef Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetCrossRef
16.
Zurück zum Zitat Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory IT–19(1), 101–110 (1973)MathSciNetCrossRef Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory IT–19(1), 101–110 (1973)MathSciNetCrossRef
17.
Zurück zum Zitat Li, X., Yue, Q.: The Hamming distances of repeated-root cyclic codes of length \(5p^s\) [J]. Discret. Appl. Math. 284, 29–41 (2020)CrossRef Li, X., Yue, Q.: The Hamming distances of repeated-root cyclic codes of length \(5p^s\) [J]. Discret. Appl. Math. 284, 29–41 (2020)CrossRef
18.
Zurück zum Zitat Dinh, H.Q., Wang, X., Maneejuk, P.: On the Hamming distances of repeated-root cyclic codes of length \(6p^s\). IEEE Access 8, 39946–39958 (2020)CrossRef Dinh, H.Q., Wang, X., Maneejuk, P.: On the Hamming distances of repeated-root cyclic codes of length \(6p^s\). IEEE Access 8, 39946–39958 (2020)CrossRef
19.
Zurück zum Zitat Gao, Y., Yue, Q.: The minimum Hamming distances of repeated-root cyclic codes of length \(6p^s\) and their MDS codes. J. Appl. Math. Comput. 65, 107–123 (2021)MathSciNetCrossRef Gao, Y., Yue, Q.: The minimum Hamming distances of repeated-root cyclic codes of length \(6p^s\) and their MDS codes. J. Appl. Math. Comput. 65, 107–123 (2021)MathSciNetCrossRef
20.
Zurück zum Zitat Dinh, H.Q., Nguyen, B.T., Paravee, M., Thi, H.L., Vo, T.M.: Optimal constructions of quantum and synchronizable codes from repeated-root cyclic codes of length \(3p^s\). Quantum Inf. Process. 22, 257 (2023)CrossRef Dinh, H.Q., Nguyen, B.T., Paravee, M., Thi, H.L., Vo, T.M.: Optimal constructions of quantum and synchronizable codes from repeated-root cyclic codes of length \(3p^s\). Quantum Inf. Process. 22, 257 (2023)CrossRef
21.
Zurück zum Zitat Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \(F_{p^m}\). Quantum Inf. Process. 20, 373 (2023)CrossRef Dinh, H.Q., Le, H.T., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length \(4p^s\) over \(F_{p^m}\). Quantum Inf. Process. 20, 373 (2023)CrossRef
22.
Zurück zum Zitat Dinh, H.Q., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic codes of length \(5p^s\) over \(F_{p^m}\). Appl. Algebra Eng. Commun. Comput. 34, 931–964 (2023)CrossRef Dinh, H.Q., Nguyen, B.T., Tansuchat, R.: Quantum MDS and synchronizable codes from cyclic codes of length \(5p^s\) over \(F_{p^m}\). Appl. Algebra Eng. Commun. Comput. 34, 931–964 (2023)CrossRef
Metadaten
Titel
Some results on the Hamming distances of cyclic codes
verfasst von
Guantao Pan
Lanqiang Li
Ziwen Cao
Fuyin Tian
Publikationsdatum
30.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00660-8