Skip to main content

2015 | OriginalPaper | Buchkapitel

3. Source and Pathway of Silver Nanoparticles to the Environment

verfasst von : Yongguang Yin, Sujuan Yu, Xiaoya Yang, Jingfu Liu, Guibin Jiang

Erschienen in: Silver Nanoparticles in the Environment

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The production and use of silver nanoparticles (AgNPs) in industrial and commercial products increased significantly in recent years. During the production, manufacturing, use and disposal of AgNP containing products, AgNPs would be released into the environment inevitably. Moreover, AgNPs could also be naturally occurred in the environment through biological and chemical reduction processes. In recent years, various chemical and biological pathways, including reduction of Ag+ by natural organic matters, plants and microorganisms, and generation of AgNPs from macroscale elemental silver objects through dissolution and reduction, were demonstrated for the occurrence of naturally occurred AgNPs. In this chapter, we introduce the occurrences of natural AgNPs in the environments and their possible formation pathways and mechanisms, and discuss the anthropogenic pathways for intentionally and unintentionally produced AgNPs and their release into the environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi:10.1021/es103316qCrossRef Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi:10.1021/es103316qCrossRef
2.
Zurück zum Zitat Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155. doi:10.1039/c0em00547aCrossRef Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155. doi:10.1039/c0em00547aCrossRef
3.
Zurück zum Zitat Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31 (1):115–121. doi:10.1002/etc.719CrossRef Mitrano DM, Lesher EK, Bednar A, Monserud J, Higgins CP, Ranville JF (2012) Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ Toxicol Chem 31 (1):115–121. doi:10.1002/etc.719CrossRef
4.
Zurück zum Zitat Li LXY, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47(13):7317–7323. doi:10.1021/es3041658 Li LXY, Hartmann G, Doblinger M, Schuster M (2013) Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany. Environ Sci Technol 47(13):7317–7323. doi:10.1021/es3041658
6.
Zurück zum Zitat Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRef Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222. doi:10.1021/es9015553CrossRef
7.
Zurück zum Zitat Greffie C, Bailly L, Milesi J (2002) Supergene alteration of primary ore assemblages from low-sulfidation Au-Ag epithermal deposits at Pongkor, Indonesia, and Nazareno, Peru. Econ Geol Bull Soc 97(3):561–571. doi:10.2113/gsecongeo.97.3.561 Greffie C, Bailly L, Milesi J (2002) Supergene alteration of primary ore assemblages from low-sulfidation Au-Ag epithermal deposits at Pongkor, Indonesia, and Nazareno, Peru. Econ Geol Bull Soc 97(3):561–571. doi:10.2113/gsecongeo.97.3.561
8.
Zurück zum Zitat Warmada IW, Lehmann B, Simandjuntak M (2003) Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia. Can Mineral 41:185–200. doi:10.2113/gscanmin.41.1.185CrossRef Warmada IW, Lehmann B, Simandjuntak M (2003) Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia. Can Mineral 41:185–200. doi:10.2113/gscanmin.41.1.185CrossRef
9.
Zurück zum Zitat Leblanc M, Lbouabi M (1988) Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou-Azzer, Morocco). Econ Geol 83(7):1379–1391. doi:10.2113/gsecongeo.83.7.1379CrossRef Leblanc M, Lbouabi M (1988) Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou-Azzer, Morocco). Econ Geol 83(7):1379–1391. doi:10.2113/gsecongeo.83.7.1379CrossRef
10.
Zurück zum Zitat Lu R, Mao JW, Gao JJ, Su HM, Zheng JH (2012) Geological characteristics and occurrence of silver in Xiabao Ag-Pb-Zn deposit, Lengshuikeng ore field, Jiangxi Province, East China. Acta Petrol Sin 28 (1):105–121. Lu R, Mao JW, Gao JJ, Su HM, Zheng JH (2012) Geological characteristics and occurrence of silver in Xiabao Ag-Pb-Zn deposit, Lengshuikeng ore field, Jiangxi Province, East China. Acta Petrol Sin 28 (1):105–121.
11.
Zurück zum Zitat Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of middle miocene yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Miner Deposita 43(7):715–734. doi:10.1007/s00126-008-0201-7CrossRef Saunders JA, Unger DL, Kamenov GD, Fayek M, Hames WE, Utterback WC (2008) Genesis of middle miocene yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Miner Deposita 43(7):715–734. doi:10.1007/s00126-008-0201-7CrossRef
12.
Zurück zum Zitat Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46. doi:10.1016/j.oregeorev.2011.03.003CrossRef Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42(1):32–46. doi:10.1016/j.oregeorev.2011.03.003CrossRef
13.
Zurück zum Zitat Reich M, Palacios C, Barra F, Chryssoulis S (2013) "Invisible" silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile. Eur J Mineral 25(3):453–460. doi:10.1127/0935-1221/2013/0025-2287 Reich M, Palacios C, Barra F, Chryssoulis S (2013) "Invisible" silver in chalcopyrite and bornite from the Mantos Blancos Cu deposit, northern Chile. Eur J Mineral 25(3):453–460. doi:10.1127/0935-1221/2013/0025-2287
14.
Zurück zum Zitat Reich M, Chryssoulis SL, Deditius A, Palacios C, Zuniga A, Weldt M, Alvear M (2010) “Invisible” silver and gold in supergene digenite (Cu1.8S). Geochim Cosmochim Acta 74(21):6157–6173. doi:10.1016/j.gca.2010.07.026CrossRef Reich M, Chryssoulis SL, Deditius A, Palacios C, Zuniga A, Weldt M, Alvear M (2010) “Invisible” silver and gold in supergene digenite (Cu1.8S). Geochim Cosmochim Acta 74(21):6157–6173. doi:10.1016/j.gca.2010.07.026CrossRef
15.
Zurück zum Zitat Gomez-Caballero JA, Villasenor-Cabral MG, Santiago-Jacinto P, Ponce-Abad F (2010) Hypogene ba-rich todorokite and associated nanometric native silver in the san miguel tenango mining area, Zacatlan, Puebla, Mexico. Can Mineral 48(5):1237–1253. doi:10.3749/canmin.48.5.1237CrossRef Gomez-Caballero JA, Villasenor-Cabral MG, Santiago-Jacinto P, Ponce-Abad F (2010) Hypogene ba-rich todorokite and associated nanometric native silver in the san miguel tenango mining area, Zacatlan, Puebla, Mexico. Can Mineral 48(5):1237–1253. doi:10.3749/canmin.48.5.1237CrossRef
16.
Zurück zum Zitat Qi HW, Hu RZ, Zhang Q (2007) Concentration and distribution of trace elements in lignite from the Shengli coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit. Int J Coal Geol 71(2–3):129–152. doi:10.1016/j.coal.2006.08.005.CrossRef Qi HW, Hu RZ, Zhang Q (2007) Concentration and distribution of trace elements in lignite from the Shengli coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit. Int J Coal Geol 71(2–3):129–152. doi:10.1016/j.coal.2006.08.005.CrossRef
17.
Zurück zum Zitat Wen LS, Santschi PH, Gill GA, Paternostro CL, Lehman RD (1997) Colloidal and particulate silver in river and estuarine waters of Texas. Environ Sci Technol 31(3):723–731. doi:10.1021/es9603057CrossRef Wen LS, Santschi PH, Gill GA, Paternostro CL, Lehman RD (1997) Colloidal and particulate silver in river and estuarine waters of Texas. Environ Sci Technol 31(3):723–731. doi:10.1021/es9603057CrossRef
18.
Zurück zum Zitat Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901. doi:10.1021/es103946 gCrossRef Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901. doi:10.1021/es103946 gCrossRef
19.
Zurück zum Zitat Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. doi:10.1021/es9026248CrossRef Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. doi:10.1021/es9026248CrossRef
20.
Zurück zum Zitat Sal’nikov DS, Pogorelova AS, Makarov SV, Vashurina IY (2009) Silver ion reduction with peat fulvic acids. Russ J Appl Chem 82(4):545–548. doi:10.1134/S107042720904003XCrossRef Sal’nikov DS, Pogorelova AS, Makarov SV, Vashurina IY (2009) Silver ion reduction with peat fulvic acids. Russ J Appl Chem 82(4):545–548. doi:10.1134/S107042720904003XCrossRef
21.
Zurück zum Zitat Adegboyega NF, Sharma VK, Siskova K, Zboril R, Sohn M, Schultz BJ, Banerjee S (2013) Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation andinvestigation of stability. Environ Sci Technol 47(2):757–764. doi:10.1021/es302305fCrossRef Adegboyega NF, Sharma VK, Siskova K, Zboril R, Sohn M, Schultz BJ, Banerjee S (2013) Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation andinvestigation of stability. Environ Sci Technol 47(2):757–764. doi:10.1021/es302305fCrossRef
22.
Zurück zum Zitat Mahony JD, Di DM, Shadi TS, Thomas E (1999) A unique sink for silver in sediment. In: the 6th international conference proceedings of transport, fate and effects of silver, Madison, Wisconsin Mahony JD, Di DM, Shadi TS, Thomas E (1999) A unique sink for silver in sediment. In: the 6th international conference proceedings of transport, fate and effects of silver, Madison, Wisconsin
23.
Zurück zum Zitat Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Gardea-Torresdey JL (2014) Enhanced formation of silver nanoparticles in Ag+ -NOM-iron(II, III) systems and antibacterial activity studies. Environ Sci Technol 48(6):3228–3235. doi:10.1021/es405641rCrossRef Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zboril R, Gardea-Torresdey JL (2014) Enhanced formation of silver nanoparticles in Ag+ -NOM-iron(II, III) systems and antibacterial activity studies. Environ Sci Technol 48(6):3228–3235. doi:10.1021/es405641rCrossRef
24.
Zurück zum Zitat Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42(10):3563–3569. doi:10.1021/es7023803CrossRef Jiang J, Kappler A (2008) Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ Sci Technol 42(10):3563–3569. doi:10.1021/es7023803CrossRef
25.
Zurück zum Zitat Yin YG, Liu JF, Jiang GB (2012) Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6(9):7910–7919. doi:10.1021/nn302293rCrossRef Yin YG, Liu JF, Jiang GB (2012) Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6(9):7910–7919. doi:10.1021/nn302293rCrossRef
26.
Zurück zum Zitat Hou WC, Stuart B, Howes R, Zepp RG (2013) Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47(14):7713–7721. doi:10.1021/es400802wCrossRef Hou WC, Stuart B, Howes R, Zepp RG (2013) Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47(14):7713–7721. doi:10.1021/es400802wCrossRef
27.
Zurück zum Zitat Maurer F, Christl I, Hoffmann M, Kretzschmar R (2012) Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ Sci Technol 46(16):8808–8816. doi:10.1021/es301520sCrossRef Maurer F, Christl I, Hoffmann M, Kretzschmar R (2012) Reduction and reoxidation of humic acid: influence on speciation of cadmium and silver. Environ Sci Technol 46(16):8808–8816. doi:10.1021/es301520sCrossRef
28.
Zurück zum Zitat Yin Y, Shen M, Zhou X, Yu S, Chao J, Liu J, Jiang G (2014) Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environ Sci Technol 48(16):9366–9373. doi:10.1021/es502025e.CrossRef Yin Y, Shen M, Zhou X, Yu S, Chao J, Liu J, Jiang G (2014) Photoreduction and stabilization capability of molecular weight fractionated natural organic matter in transformation of silver ion to metallic nanoparticle. Environ Sci Technol 48(16):9366–9373. doi:10.1021/es502025e.CrossRef
30.
Zurück zum Zitat Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139(7):1963–1970. doi:10.1149/1.2221162.CrossRef Graedel TE (1992) Corrosion mechanisms for silver exposed to the atmosphere. J Electrochem Soc 139(7):1963–1970. doi:10.1149/1.2221162.CrossRef
31.
Zurück zum Zitat Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11):8950–8957. doi:10.1021/nn2031319.CrossRef Glover RD, Miller JM, Hutchison JE (2011) Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11):8950–8957. doi:10.1021/nn2031319.CrossRef
33.
Zurück zum Zitat Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano. 8(7):7208–7219. doi:10.1021/nn502228w Mitrano DM, Rimmele E, Wichser A, Erni R, Height M, Nowack B (2014) Presence of nanoparticles in wash water from conventional silver and nano-silver textiles. ACS Nano. 8(7):7208–7219. doi:10.1021/nn502228w
34.
Zurück zum Zitat O'Loughlin EJ, Kelly SD, Kemner KM, Csencsits R, Cook RE (2003) Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust. Chemosphere 53(5):437–446. doi:10.1016/S0045-6535(03)00545-9CrossRef O'Loughlin EJ, Kelly SD, Kemner KM, Csencsits R, Cook RE (2003) Reduction of Ag(I), Au(III), Cu(II), and Hg(II) by Fe(II)/Fe(III) hydroxysulfate green rust. Chemosphere 53(5):437–446. doi:10.1016/S0045-6535(03)00545-9CrossRef
35.
Zurück zum Zitat Ayadi S, Perca C, Legrand L (2013) New one-pot synthesis of Au and Ag nanoparticles using green rust reactive particle as a micro-reactor. Nanoscale Res Lett 8:95. doi:10.1186/1556-276X-8-95 Ayadi S, Perca C, Legrand L (2013) New one-pot synthesis of Au and Ag nanoparticles using green rust reactive particle as a micro-reactor. Nanoscale Res Lett 8:95. doi:10.1186/1556-276X-8-95
36.
Zurück zum Zitat Wang TC, Reddy KP, O’Connor C, Fan HJ, Anderson P (1993) Adsorption characteristics of Fe oxide-coated granular activated carbon: implications for silver. Paper presented at the the 1st international conference proceedings of transport, fate and effects of silver, The University of Wisconsin-Madison Wang TC, Reddy KP, O’Connor C, Fan HJ, Anderson P (1993) Adsorption characteristics of Fe oxide-coated granular activated carbon: implications for silver. Paper presented at the the 1st international conference proceedings of transport, fate and effects of silver, The University of Wisconsin-Madison
37.
Zurück zum Zitat DL Sedlak AA (1994) Photo-enhanced sorption of silver to bentonite. Paper presented at the 2nd International Conference on the Transport, Fate, and Effects of Silver in the Environment, Madison, WI DL Sedlak AA (1994) Photo-enhanced sorption of silver to bentonite. Paper presented at the 2nd International Conference on the Transport, Fate, and Effects of Silver in the Environment, Madison, WI
38.
Zurück zum Zitat Konya J, Nagy NM, Foldvari M (2005) The formation and production of nano and micro particles on clays under environmental-like conditions. J Therm Anal Calorim 79(3):537–543. doi:10.1007/s10973-005-0576-yCrossRef Konya J, Nagy NM, Foldvari M (2005) The formation and production of nano and micro particles on clays under environmental-like conditions. J Therm Anal Calorim 79(3):537–543. doi:10.1007/s10973-005-0576-yCrossRef
39.
Zurück zum Zitat Lawless D, Kapoor S, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions at the surface of colloidal silica. J Phys Chem-Us 98(38):9619–9625. doi:10.1021/J100089a042CrossRef Lawless D, Kapoor S, Kennepohl P, Meisel D, Serpone N (1994) Reduction and aggregation of silver ions at the surface of colloidal silica. J Phys Chem-Us 98(38):9619–9625. doi:10.1021/J100089a042CrossRef
40.
Zurück zum Zitat Vinci JC, Bilski P, Kotek R, Chignell C (2010) Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means dagger. Photochem Photobiol 86(4):806–812. doi:10.1111/j.1751-1097.2010.00717.xCrossRef Vinci JC, Bilski P, Kotek R, Chignell C (2010) Controlling the formation of silver nanoparticles on silica by photochemical deposition and other means dagger. Photochem Photobiol 86(4):806–812. doi:10.1111/j.1751-1097.2010.00717.xCrossRef
41.
Zurück zum Zitat Weier E (1938) Factors affecting the reduction of silver nitrate by chloroplasts. Am J Bot 25(7):501–507. doi: 10.1149/1.2221162CrossRef Weier E (1938) Factors affecting the reduction of silver nitrate by chloroplasts. Am J Bot 25(7):501–507. doi: 10.1149/1.2221162CrossRef
42.
Zurück zum Zitat Brown WV, Mollenhauer H, Johnson C (1962) An electron microscope study of silver nitrate reduction in leaf cells. Am J Bot 49(1):57–63. doi:10.2307/2439389CrossRef Brown WV, Mollenhauer H, Johnson C (1962) An electron microscope study of silver nitrate reduction in leaf cells. Am J Bot 49(1):57–63. doi:10.2307/2439389CrossRef
43.
Zurück zum Zitat Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835iCrossRef Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835iCrossRef
44.
Zurück zum Zitat Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463. doi:10.1007/s11051-008-9533-6CrossRef Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463. doi:10.1007/s11051-008-9533-6CrossRef
45.
Zurück zum Zitat Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 3(6):628–632. doi:10.1039/C1MT00044FCrossRef Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 3(6):628–632. doi:10.1039/C1MT00044FCrossRef
46.
Zurück zum Zitat Marchiol L, Mattiello A, Poscic F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101. doi:10.1186/1556–276X-9-101 Marchiol L, Mattiello A, Poscic F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101. doi:10.1186/1556–276X-9-101
47.
Zurück zum Zitat Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56. doi:10.1186/1477–3155-9–56 Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56. doi:10.1186/1477–3155-9–56
48.
Zurück zum Zitat Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695. doi:10.1007/s11051-007-9288-5CrossRef Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695. doi:10.1007/s11051-007-9288-5CrossRef
49.
Zurück zum Zitat Leclerc S, Wilkinson KJ (2014) Bioaccumulation of nanosilver by chlamydomonas reinhardtii-nanoparticle or the free Ion? Environ Sci Technol 48 (1):358–364. doi:10.1021/es404037zCrossRef Leclerc S, Wilkinson KJ (2014) Bioaccumulation of nanosilver by chlamydomonas reinhardtii-nanoparticle or the free Ion? Environ Sci Technol 48 (1):358–364. doi:10.1021/es404037zCrossRef
50.
Zurück zum Zitat Merin DD, Prakash S, Bhimba BV (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 3(10):797–799. doi:10.1016/S1995-7645(10)60191-5CrossRef Merin DD, Prakash S, Bhimba BV (2010) Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac J Trop Med 3(10):797–799. doi:10.1016/S1995-7645(10)60191-5CrossRef
51.
Zurück zum Zitat Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell-walls of Bacillus subtilis. J Bacteriol 127(3):1502–1518. Beveridge TJ, Murray RGE (1976) Uptake and retention of metals by cell-walls of Bacillus subtilis. J Bacteriol 127(3):1502–1518.
52.
Zurück zum Zitat Beveridge TJ, Murray RGE (1980) Sites of metal-deposition in the cell-wall of Bacillus subtilis. J Bacteriol 141(2):876–887. Beveridge TJ, Murray RGE (1980) Sites of metal-deposition in the cell-wall of Bacillus subtilis. J Bacteriol 141(2):876–887.
53.
Zurück zum Zitat Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614. doi:10.1073/pnas.96.24.13611CrossRef Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96(24):13611–13614. doi:10.1073/pnas.96.24.13611CrossRef
54.
Zurück zum Zitat Weisener CG, Babechuk MG, Fryer BJ, Maunder C (2008) Microbial dissolution of silver jarosite: examining its trace metal behaviour in reduced environments. Geomicrobiol J 25(7–8):415–424. doi:10.1080/01490450802403073CrossRef Weisener CG, Babechuk MG, Fryer BJ, Maunder C (2008) Microbial dissolution of silver jarosite: examining its trace metal behaviour in reduced environments. Geomicrobiol J 25(7–8):415–424. doi:10.1080/01490450802403073CrossRef
55.
Zurück zum Zitat Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103. doi:10.1088/0957-4484/19/7/075103 Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19(7):075103. doi:10.1088/0957-4484/19/7/075103
56.
Zurück zum Zitat Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749. doi:10.1007/s00253-009-2032-6CrossRef Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749. doi:10.1007/s00253-009-2032-6CrossRef
57.
Zurück zum Zitat Lin ZY, Zhou CH, Wu JM, Zhou JZ, Wang L (2005) A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1195–1200. doi:10.1016/j.saa.2004.06.041CrossRef Lin ZY, Zhou CH, Wu JM, Zhou JZ, Wang L (2005) A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1195–1200. doi:10.1016/j.saa.2004.06.041CrossRef
58.
Zurück zum Zitat Kang FX, Alvarez PJ, Zhu DQ (2014) Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol 48(1):316–322. doi:10.1021/Es403796xCrossRef Kang FX, Alvarez PJ, Zhu DQ (2014) Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol 48(1):316–322. doi:10.1021/Es403796xCrossRef
59.
Zurück zum Zitat Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519. doi:10.1021/Nl0155274CrossRef Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519. doi:10.1021/Nl0155274CrossRef
60.
Zurück zum Zitat Nelson Durán PDM Oswaldo L Alves Gabriel IH De Souza Elisa Esposito (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8 Nelson Durán PDM Oswaldo L Alves Gabriel IH De Souza Elisa Esposito (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi:10.1186/1477-3155-3-8
61.
Zurück zum Zitat Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. doi:10.1016/j.procbio.2007.02.005CrossRef Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. doi:10.1016/j.procbio.2007.02.005CrossRef
62.
Zurück zum Zitat Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. doi:10.1007/s10529-006-9256-7CrossRef Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445. doi:10.1007/s10529-006-9256-7CrossRef
63.
Zurück zum Zitat Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloid Surf B Biointerfaces 75(1):335–341. doi:10.1016/j.colsurfb.2009.09.006CrossRef Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SRK, Gurunathan S (2010) Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloid Surf B Biointerfaces 75(1):335–341. doi:10.1016/j.colsurfb.2009.09.006CrossRef
64.
Zurück zum Zitat Diaz JM, Hansel CM, Voelker BM, Mendes CM, Andeer PF, Zhang T (2013) Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340(6137):1223–1226. doi:10.1126/science.1237331CrossRef Diaz JM, Hansel CM, Voelker BM, Mendes CM, Andeer PF, Zhang T (2013) Widespread production of extracellular superoxide by heterotrophic bacteria. Science 340(6137):1223–1226. doi:10.1126/science.1237331CrossRef
65.
Zurück zum Zitat Rose AL (2012) The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front Microbiol 3:124. doi:10.3389/fmicb.2012.00124 Rose AL (2012) The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front Microbiol 3:124. doi:10.3389/fmicb.2012.00124
66.
Zurück zum Zitat Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4(2):95–98. doi:10.1038/NGEO1055CrossRef Learman DR, Voelker BM, Vazquez-Rodriguez AI, Hansel CM (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4(2):95–98. doi:10.1038/NGEO1055CrossRef
67.
Zurück zum Zitat Hansel CM, Zeiner CA, Santelli CM, Webb SM (2012) Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci U S A 109(31):12621–12625. doi:10.1073/pnas.1203885109CrossRef Hansel CM, Zeiner CA, Santelli CM, Webb SM (2012) Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc Natl Acad Sci U S A 109(31):12621–12625. doi:10.1073/pnas.1203885109CrossRef
68.
Zurück zum Zitat Li HP, Daniel B, Creeley D, Grandbois R, Zhang SJ, Xu C, Ho YF, Schwehr KA, Kaplan DI, Santschi PH, Hansel CM, Yeager CM (2014) Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. Appl Environ Microbiol 80(9):2693–2699. doi:10.1128/AEM.00400-14CrossRef Li HP, Daniel B, Creeley D, Grandbois R, Zhang SJ, Xu C, Ho YF, Schwehr KA, Kaplan DI, Santschi PH, Hansel CM, Yeager CM (2014) Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation. Appl Environ Microbiol 80(9):2693–2699. doi:10.1128/AEM.00400-14CrossRef
69.
Zurück zum Zitat Jones AM, Garg S, He D, Pham AN, Waite TD (2011) Superoxide-mediated formation and charging of silver nanoparticles. Environ Sci Technol 45(4):1428–1434. doi:10.1021/es103757cCrossRef Jones AM, Garg S, He D, Pham AN, Waite TD (2011) Superoxide-mediated formation and charging of silver nanoparticles. Environ Sci Technol 45(4):1428–1434. doi:10.1021/es103757cCrossRef
70.
Zurück zum Zitat Gautam S, Dubey P, Gupta MN (2013) A facile and green ultrasonic-assisted synthesis of BSA conjugated silver nanoparticles. Colloid Surf B Biointerfaces 102:879–883. doi:10.1016/j.colsurfb.2012.10.007CrossRef Gautam S, Dubey P, Gupta MN (2013) A facile and green ultrasonic-assisted synthesis of BSA conjugated silver nanoparticles. Colloid Surf B Biointerfaces 102:879–883. doi:10.1016/j.colsurfb.2012.10.007CrossRef
71.
Zurück zum Zitat Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131. doi:10.1016/j.matlet.2013.04.076CrossRef Lee KJ, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131. doi:10.1016/j.matlet.2013.04.076CrossRef
72.
Zurück zum Zitat Juganson K, Mortimer M, Kasemets K, Kahru A (2012) Tetrahymena thermophila converts toxic silver ions to less toxic silver nanoparticles. Toxicol Lett 211:S206–S206. doi:10.1016/j.toxlet.2012.03.737CrossRef Juganson K, Mortimer M, Kasemets K, Kahru A (2012) Tetrahymena thermophila converts toxic silver ions to less toxic silver nanoparticles. Toxicol Lett 211:S206–S206. doi:10.1016/j.toxlet.2012.03.737CrossRef
73.
Zurück zum Zitat El-Said WA, Cho HY, Yea CH, Choi JW (2014) Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv Mater 26(6):910–918. doi:10.1002/adma.201303699CrossRef El-Said WA, Cho HY, Yea CH, Choi JW (2014) Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv Mater 26(6):910–918. doi:10.1002/adma.201303699CrossRef
74.
Zurück zum Zitat Kannan N, Mukunthan KS, Balaji S (2011) A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloid Surf B Biointerfaces 86(2):378–383. doi:10.1016/j.colsurfb.2011.04.024 Kannan N, Mukunthan KS, Balaji S (2011) A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloid Surf B Biointerfaces 86(2):378–383. doi:10.1016/j.colsurfb.2011.04.024
75.
Zurück zum Zitat Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8(3):e59140. doi:10.1371/journal.pone.0059140 Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8(3):e59140. doi:10.1371/journal.pone.0059140
76.
Zurück zum Zitat Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46(10):1571–1576. doi:10.1016/j.materresbull.2011.06.025CrossRef Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46(10):1571–1576. doi:10.1016/j.materresbull.2011.06.025CrossRef
77.
Zurück zum Zitat Malhotra A, Dolma K, Kaur N, Rathore YS, Ashish, Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731. doi:10.1016/j.biortech.2013.05.109CrossRef Malhotra A, Dolma K, Kaur N, Rathore YS, Ashish, Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731. doi:10.1016/j.biortech.2013.05.109CrossRef
78.
Zurück zum Zitat Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf B Biointerfaces 77(2):257–262. doi:10.1016/j.colsurfb.2010.02.007CrossRef Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloid Surf B Biointerfaces 77(2):257–262. doi:10.1016/j.colsurfb.2010.02.007CrossRef
79.
Zurück zum Zitat Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B Biointerfaces 65(1):150–153. doi:10.1016/j.colsurfb.2008.02.018CrossRef Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloid Surf B Biointerfaces 65(1):150–153. doi:10.1016/j.colsurfb.2008.02.018CrossRef
80.
Zurück zum Zitat Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed-Nanotechnol 5(4):452–456. doi:10.1016/j.nano.2009.01.012CrossRef Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed-Nanotechnol 5(4):452–456. doi:10.1016/j.nano.2009.01.012CrossRef
81.
Zurück zum Zitat Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(1):311–316. doi:10.1007/s00436-013-3656-0CrossRef Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(1):311–316. doi:10.1007/s00436-013-3656-0CrossRef
82.
Zurück zum Zitat Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Effect of biosynthesized silver nanoparticles on staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett 4(1):34–39. doi:10.3786/nml.v4i1.p34–39CrossRef Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Effect of biosynthesized silver nanoparticles on staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett 4(1):34–39. doi:10.3786/nml.v4i1.p34–39CrossRef
83.
Zurück zum Zitat Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807. doi:10.1016/j.procbio.2011.06.008CrossRef Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807. doi:10.1016/j.procbio.2011.06.008CrossRef
84.
Zurück zum Zitat Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp casei. J Chem Technol Biotechnol 87(7):932–937. doi:10.1002/Jctb.3702CrossRef Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp casei. J Chem Technol Biotechnol 87(7):932–937. doi:10.1002/Jctb.3702CrossRef
85.
Zurück zum Zitat Babu MMG, Gunasekaran R (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloid Surf B Biointerfaces 74 (1):191–195. doi:10.1016/j.colsurfb.2009.07.016CrossRef Babu MMG, Gunasekaran R (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloid Surf B Biointerfaces 74 (1):191–195. doi:10.1016/j.colsurfb.2009.07.016CrossRef
86.
Zurück zum Zitat Saravanan M, Vemu AK, Bank SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B 88(1):325–331. doi:10.1016/j.colsurfb.2011.07.009CrossRef Saravanan M, Vemu AK, Bank SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloid Surf B 88(1):325–331. doi:10.1016/j.colsurfb.2011.07.009CrossRef
87.
Zurück zum Zitat Suresh AK, Pelletier DA, Wang W, Moon JW, Gu BH, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215. doi:10.1021/es903684rCrossRef Suresh AK, Pelletier DA, Wang W, Moon JW, Gu BH, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: Biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215. doi:10.1021/es903684rCrossRef
88.
Zurück zum Zitat Kalpana D, Lee YS (2013) Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb Technol 52(3):151–156. doi:10.1016/j.enzmictec.2012.12.006CrossRef Kalpana D, Lee YS (2013) Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb Technol 52(3):151–156. doi:10.1016/j.enzmictec.2012.12.006CrossRef
89.
Zurück zum Zitat Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17(5):821–831. doi:10.1007/s00792-013-0563-3CrossRef Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17(5):821–831. doi:10.1007/s00792-013-0563-3CrossRef
90.
Zurück zum Zitat Zaki S, Etarahony M, Elkady M, Abd-El-Haleem D (2014) The use of bioflocculant and bioflocculant-producing bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater:431089. doi:10.1155/2014/431089 Zaki S, Etarahony M, Elkady M, Abd-El-Haleem D (2014) The use of bioflocculant and bioflocculant-producing bacillus mojavensis strain 32A to synthesize silver nanoparticles. J Nanomater:431089. doi:10.1155/2014/431089
91.
Zurück zum Zitat Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996. doi:10.1016/j.cej.2010.07.006CrossRef Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996. doi:10.1016/j.cej.2010.07.006CrossRef
92.
Zurück zum Zitat Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380. doi:10.2174/157341310791658919CrossRef Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380. doi:10.2174/157341310791658919CrossRef
93.
Zurück zum Zitat Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 6(1):103–109. doi:10.1016/j.nano.2009.04.006CrossRef Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 6(1):103–109. doi:10.1016/j.nano.2009.04.006CrossRef
94.
Zurück zum Zitat Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418. doi:10.1016/j.matlet.2006.07.042CrossRef Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418. doi:10.1016/j.matlet.2006.07.042CrossRef
95.
Zurück zum Zitat Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147. doi:10.1016/j.saa.2013.05.030CrossRef Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147. doi:10.1016/j.saa.2013.05.030CrossRef
96.
Zurück zum Zitat Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine-UK 5(1):33–40. doi:10.2217/Nnm.09.77CrossRef Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine-UK 5(1):33–40. doi:10.2217/Nnm.09.77CrossRef
97.
Zurück zum Zitat Huang WD, Yan JJ, Wang Y, Hou CL, Dai TC, Wang ZM (2013) Biosynthesis of Silver Nanoparticles by Septoria apii and Trichoderma koningii. Chin J Chem 31(4):529–533. doi:10.1002/cjoc.201201138CrossRef Huang WD, Yan JJ, Wang Y, Hou CL, Dai TC, Wang ZM (2013) Biosynthesis of Silver Nanoparticles by Septoria apii and Trichoderma koningii. Chin J Chem 31(4):529–533. doi:10.1002/cjoc.201201138CrossRef
98.
Zurück zum Zitat Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surf B Biointerfaces 53(1):55–59. doi:10.1016/j.colsurfb.2006.07.014CrossRef Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloid Surf B Biointerfaces 53(1):55–59. doi:10.1016/j.colsurfb.2006.07.014CrossRef
99.
Zurück zum Zitat Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011:546074 doi:10.1155/2011/546074 Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl. 2011:546074 doi:10.1155/2011/546074
100.
Zurück zum Zitat Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Clust Sci 22(2):225–232. doi:10.1007/s10876-011-0375-5CrossRef Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotricum sp. J Clust Sci 22(2):225–232. doi:10.1007/s10876-011-0375-5CrossRef
101.
Zurück zum Zitat Qian YQ, Yu HM, He D, Yang H, Wang WT, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619. doi:10.1007/s00449-013-0937-zCrossRef Qian YQ, Yu HM, He D, Yang H, Wang WT, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619. doi:10.1007/s00449-013-0937-zCrossRef
102.
Zurück zum Zitat Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloid Surface B Biointerfaces 83(1):42–48. doi:10.1016/j.colsurfb.2010.10.035CrossRef Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloid Surface B Biointerfaces 83(1):42–48. doi:10.1016/j.colsurfb.2010.10.035CrossRef
103.
Zurück zum Zitat Prakasham RS, Kumar BS, Kumar YS, Shankar GG (2012) Characterization of silver nanoparticles dynthesized by using marine isolate streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621. doi:10.4014/jmb.1107.07013CrossRef Prakasham RS, Kumar BS, Kumar YS, Shankar GG (2012) Characterization of silver nanoparticles dynthesized by using marine isolate streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621. doi:10.4014/jmb.1107.07013CrossRef
104.
Zurück zum Zitat Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloid Surf B Biointerfaces 68(1):88–92. doi:10.1016/j.colsurfb.2008.09.022CrossRef Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloid Surf B Biointerfaces 68(1):88–92. doi:10.1016/j.colsurfb.2008.09.022CrossRef
105.
Zurück zum Zitat Hamedi S, Shojaosadati S, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704. doi:10.1007/s11274-013-1417-yCrossRef Hamedi S, Shojaosadati S, Shokrollahzadeh S, Hashemi-Najafabadi S (2014) Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30(2):693–704. doi:10.1007/s11274-013-1417-yCrossRef
106.
Zurück zum Zitat Bfilainsa KC, D'Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B Biointerfaces 47(2):160–164. doi:10.1016/j.colsurfb.2005.11.026CrossRef Bfilainsa KC, D'Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloid Surf B Biointerfaces 47(2):160–164. doi:10.1016/j.colsurfb.2005.11.026CrossRef
107.
Zurück zum Zitat Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B Biointerfaces 28(4):313–318. doi:10.1016/S0927-7765(02)00174-1CrossRef Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B Biointerfaces 28(4):313–318. doi:10.1016/S0927-7765(02)00174-1CrossRef
108.
Zurück zum Zitat Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170. doi:10.1016/j.materresbull.2007.06.020CrossRef Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170. doi:10.1016/j.materresbull.2007.06.020CrossRef
109.
Zurück zum Zitat Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490. doi:10.1016/j.saa.2013.07.066CrossRef Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490. doi:10.1016/j.saa.2013.07.066CrossRef
110.
Zurück zum Zitat Saravanana M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B Biointerfaces 77(2):214–218. doi:10.1016/j.colsurfb.2010.01.026CrossRef Saravanana M, Nanda A (2010) Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloid Surf B Biointerfaces 77(2):214–218. doi:10.1016/j.colsurfb.2010.01.026CrossRef
111.
Zurück zum Zitat Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-An effect of temperature on the size of particles. Colloid Surf B Biointerfaces 74(1):123–126. doi:10.1016/j.colsurfb.2009.07.002CrossRef Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles-An effect of temperature on the size of particles. Colloid Surf B Biointerfaces 74(1):123–126. doi:10.1016/j.colsurfb.2009.07.002CrossRef
112.
Zurück zum Zitat Li GQ, He D, Qian YQ, Guan BY, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476. doi:10.3390/Ijms13010466 Li GQ, He D, Qian YQ, Guan BY, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13(1):466–476. doi:10.3390/Ijms13010466
113.
Zurück zum Zitat Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-Nanotechnol 5(4):382–386. doi:10.1016/j.nano.2009.06.005CrossRef Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine-Nanotechnol 5(4):382–386. doi:10.1016/j.nano.2009.06.005CrossRef
114.
Zurück zum Zitat Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res 13(8):3129–3137. doi:10.1007/s11051-010-0208-08CrossRef Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res 13(8):3129–3137. doi:10.1007/s11051-010-0208-08CrossRef
115.
Zurück zum Zitat Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831. doi:10.1007/s00436-011-2328-1CrossRef Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831. doi:10.1007/s00436-011-2328-1CrossRef
116.
Zurück zum Zitat Binupriya AR, Sathishkumar M, Yun SI (2010) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49(2):852–858. doi:10.1021/Ie9014183CrossRef Binupriya AR, Sathishkumar M, Yun SI (2010) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49(2):852–858. doi:10.1021/Ie9014183CrossRef
117.
Zurück zum Zitat Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanoparticle Res 14(5):860. doi:10.1007/S11051-012-0860-2 Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanoparticle Res 14(5):860. doi:10.1007/S11051-012-0860-2
118.
Zurück zum Zitat Kirthi AV, Rahuman AA, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T, Venkatesan J, Kim SK, Kumar G, Kumar SRS, Rao KVB (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis. Mater Lett 81:69–72. doi:10.1016/j.matlet.2012.04.103CrossRef Kirthi AV, Rahuman AA, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T, Venkatesan J, Kim SK, Kumar G, Kumar SRS, Rao KVB (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis. Mater Lett 81:69–72. doi:10.1016/j.matlet.2012.04.103CrossRef
119.
Zurück zum Zitat Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. doi:10.1155/2013/796018 Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. doi:10.1155/2013/796018
120.
Zurück zum Zitat Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Brazil Chem Soc 24(12):1974–1982. doi:10.5935/0103-5053.20130247 Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Brazil Chem Soc 24(12):1974–1982. doi:10.5935/0103-5053.20130247
121.
Zurück zum Zitat Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267. doi:10.1007/s00449-013-0994-3CrossRef Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267. doi:10.1007/s00449-013-0994-3CrossRef
122.
Zurück zum Zitat Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165(1):221–234. doi:10.1007/s12010-011-9245-8CrossRef Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl Biochem Biotechnol 165(1):221–234. doi:10.1007/s12010-011-9245-8CrossRef
123.
Zurück zum Zitat Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surf B Biointerfaces 71(1):133–137. doi:10.1016/j.colsurfb.2009.01.016CrossRef Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid Surf B Biointerfaces 71(1):133–137. doi:10.1016/j.colsurfb.2009.01.016CrossRef
124.
Zurück zum Zitat Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int. 2013:287638 doi:10.1155/2013/287638 Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim SK (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int. 2013:287638 doi:10.1155/2013/287638
125.
Zurück zum Zitat El-Naggar NE, Abdelwahed NAM, Darwesh OMM (2014) Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. J Microbiol Biotechnol 24(4):453–464. doi:10.4014/jmb.1310.10095CrossRef El-Naggar NE, Abdelwahed NAM, Darwesh OMM (2014) Fabrication of biogenic antimicrobial silver nanoparticles by Streptomyces aegyptia NEAE 102 as eco-friendly nanofactory. J Microbiol Biotechnol 24(4):453–464. doi:10.4014/jmb.1310.10095CrossRef
126.
Zurück zum Zitat Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol 54(3):329–336. doi:10.1007/s12088-014-0452-1CrossRef Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Production and characterization of protein encapsulated silver nanoparticles by marine isolate Streptomyces parvulus SSNP11. Indian J Microbiol 54(3):329–336. doi:10.1007/s12088-014-0452-1CrossRef
127.
Zurück zum Zitat Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRef Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637CrossRef
128.
Zurück zum Zitat Agency USEP (2012) U. S. Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). Washington, DC Agency USEP (2012) U. S. Nanomaterial case study: nanoscale silver in disinfectant spray (Final report). Washington, DC
129.
Zurück zum Zitat Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci-Process Impacts 15(1):78–92. doi:10.1039/C2EM30595JCrossRef Yu SJ, Yin YG, Liu JF (2013) Silver nanoparticles in the environment. Environ Sci-Process Impacts 15(1):78–92. doi:10.1039/C2EM30595JCrossRef
130.
Zurück zum Zitat Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905. doi:10.1016/j.envpol.2010.06.009CrossRef Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905. doi:10.1016/j.envpol.2010.06.009CrossRef
131.
Zurück zum Zitat Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409. doi:10.1016/j.scitotenv.2007.10.010CrossRef Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci Total Environ 390(2–3):396–409. doi:10.1016/j.scitotenv.2007.10.010CrossRef
132.
Zurück zum Zitat Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi:10.1021/es7032718CrossRef Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi:10.1021/es7032718CrossRef
133.
Zurück zum Zitat Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118. doi: 10.1021/es9018332CrossRef Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43(21):8113–8118. doi: 10.1021/es9018332CrossRef
134.
Zurück zum Zitat Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063CrossRef Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano)textiles. Chemosphere 89(7):817–824. doi:10.1016/j.chemosphere.2012.04.063CrossRef
135.
Zurück zum Zitat Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8. doi:10.1186/1743-8977-7-8 Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8. doi:10.1186/1743-8977-7-8
136.
Zurück zum Zitat Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062. doi:10.1016/j.envint.2011.03.006CrossRef Farkas J, Peter H, Christian P, Urrea JAG, Hassellov M, Tuoriniemi J, Gustafsson S, Olsson E, Hylland K, Thomas KV (2011) Characterization of the effluent from a nanosilver producing washing machine. Environ Int 37(6):1057–1062. doi:10.1016/j.envint.2011.03.006CrossRef
137.
Zurück zum Zitat Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272. doi:10.1016/j.scitotenv.2012.01.025CrossRef Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI, Brewer T, Davis J, Petersen EJ, Wood L (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Total Environ 421:267–272. doi:10.1016/j.scitotenv.2012.01.025CrossRef
Metadaten
Titel
Source and Pathway of Silver Nanoparticles to the Environment
verfasst von
Yongguang Yin
Sujuan Yu
Xiaoya Yang
Jingfu Liu
Guibin Jiang
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46070-2_3