Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 8/2019

25.05.2019 | Original Article

Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces

verfasst von: Paula G. Rodrigues, Carlos A. Stefano Filho, Romis Attux, Gabriela Castellano, Diogo C. Soriano

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a classification performance comparison between different frameworks for functional connectivity evaluation and complex network feature extraction aiming to distinguish motor imagery classes in electroencephalography (EEG)-based brain-computer interfaces (BCIs). The analysis was performed in two online datasets: (1) a classical benchmark—the BCI competition IV dataset 2a—allowing a comparison with a representative set of strategies previously employed in this BCI paradigm and (2) a statistically representative dataset for signal processing technique comparisons over 52 subjects. Besides exploring three classical similarity measures—Pearson correlation, Spearman correlation, and mean phase coherence—this work also proposes a recurrence-based alternative for estimating EEG brain functional connectivity, which takes into account the recurrence density between pairwise electrodes over a time window. These strategies were followed by graph feature evaluation considering clustering coefficient, degree, betweenness centrality, and eigenvector centrality. The features were selected by Fisher’s discriminating ratio and classification was performed by a least squares classifier in agreement with classical and online BCI processing strategies. The results revealed that the recurrence-based approach for functional connectivity evaluation was significantly better than the other frameworks, which is probably associated with the use of higher order statistics underlying the electrode joint probability estimation and a higher capability of capturing nonlinear inter-relations. There were no significant differences in performance among the evaluated graph features, but the eigenvector centrality was the best feature regarding processing time. Finally, the best ranked graph-based attributes were found in classical EEG motor cortex positions for the subjects with best performances, relating functional organization and motor activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wolpaw J, Wolpaw EW (2012) Brain computer interfaces: principles and practice. Oxford University Press Wolpaw J, Wolpaw EW (2012) Brain computer interfaces: principles and practice. Oxford University Press
2.
Zurück zum Zitat Iacoviello D, Petracca A, Spezialetti M, Placidi G (2015) A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Comput Methods Programs Biomed 122(3):293–303CrossRef Iacoviello D, Petracca A, Spezialetti M, Placidi G (2015) A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Comput Methods Programs Biomed 122(3):293–303CrossRef
3.
Zurück zum Zitat Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG (2012) Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2):596–614CrossRef Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG (2012) Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2):596–614CrossRef
4.
Zurück zum Zitat Donati ARC, Shokur S, Morya E, Campos DSF, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MAL (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383CrossRef Donati ARC, Shokur S, Morya E, Campos DSF, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MAL (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383CrossRef
5.
Zurück zum Zitat Rohani DA, Henning WS, Thomsen CE, Kjaer TW, Puthusserypady S, Sorensen HB (2013) BCI using imaginary movements: the simulator. Comput Methods Programs Biomed 111(2):300–307CrossRef Rohani DA, Henning WS, Thomsen CE, Kjaer TW, Puthusserypady S, Sorensen HB (2013) BCI using imaginary movements: the simulator. Comput Methods Programs Biomed 111(2):300–307CrossRef
6.
Zurück zum Zitat Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRef Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRef
7.
Zurück zum Zitat Sporns O (2011) Networks of the brain. The MIT Press Sporns O (2011) Networks of the brain. The MIT Press
8.
Zurück zum Zitat Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117CrossRef Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117CrossRef
9.
Zurück zum Zitat Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRef Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRef
10.
Zurück zum Zitat Jalili M (2016) Functional brain networks: does the choice of dependency estimator and binarization method matter? Sci Rep 6(1):29780CrossRef Jalili M (2016) Functional brain networks: does the choice of dependency estimator and binarization method matter? Sci Rep 6(1):29780CrossRef
11.
Zurück zum Zitat Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–40CrossRef Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–40CrossRef
12.
Zurück zum Zitat Me Lynall, Bassett DS, Kerwin R, Mckenna PJ, Müller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487CrossRef Me Lynall, Bassett DS, Kerwin R, Mckenna PJ, Müller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487CrossRef
13.
Zurück zum Zitat Jalili M, Knyazeva MG (2011) EEG-based functional networks in schizophrenia. Comput Biol Med 41 (12):1178–1186CrossRef Jalili M, Knyazeva MG (2011) EEG-based functional networks in schizophrenia. Comput Biol Med 41 (12):1178–1186CrossRef
14.
Zurück zum Zitat Ray KL, Lesh TA, Howell AM, Salo TP, Ragland JD, MacDonald AW, Gold JM, Silverstein SM, Barch DM, Carter CS (2017) Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical 15:161–170CrossRef Ray KL, Lesh TA, Howell AM, Salo TP, Ragland JD, MacDonald AW, Gold JM, Silverstein SM, Barch DM, Carter CS (2017) Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical 15:161–170CrossRef
15.
Zurück zum Zitat Sheffield JM, Repovs G, Harms MP, Carter CS, Gold JM, Macdonald AW, Ragland JD, Silverstein SM, Godwin D, Barch DM (2016) Evidence for accelerated decline of functional brain network efficiency in schizophrenia. Schizophr Bull 42(3):753–761CrossRef Sheffield JM, Repovs G, Harms MP, Carter CS, Gold JM, Macdonald AW, Ragland JD, Silverstein SM, Godwin D, Barch DM (2016) Evidence for accelerated decline of functional brain network efficiency in schizophrenia. Schizophr Bull 42(3):753–761CrossRef
16.
Zurück zum Zitat Chhatwal JP, Schultz AP, Johnson KA, Hedden T, Jaimes S, Benzinger TLS, Jack C, Ances BM, Ringman JM, Marcus DS, Ghetti B, Farlow MR, Danek A, Levin J, Yakushev I, Laske C, Koeppe RA, Galasko DR, Xiong C, Masters CL, Schofield PR, Kinnunen KM, Salloway S, Martins RN, McDade E, Cairns NJ, Buckles VD, Morris JC, Bateman R, Sperling RA (2018) Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain Chhatwal JP, Schultz AP, Johnson KA, Hedden T, Jaimes S, Benzinger TLS, Jack C, Ances BM, Ringman JM, Marcus DS, Ghetti B, Farlow MR, Danek A, Levin J, Yakushev I, Laske C, Koeppe RA, Galasko DR, Xiong C, Masters CL, Schofield PR, Kinnunen KM, Salloway S, Martins RN, McDade E, Cairns NJ, Buckles VD, Morris JC, Bateman R, Sperling RA (2018) Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain
17.
Zurück zum Zitat Franzmeier N, Hartmann J, Taylor ANW, Araque-Caballero M, Simon-Vermot L, Kambeitz-Ilankovic L, Bürger K, Catak C, Janowitz D, Müller C, Ertl-Wagner B, Stahl R, Dichgans M, Duering M, Ewers M (2018) The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Res Therapy 10(1):28CrossRef Franzmeier N, Hartmann J, Taylor ANW, Araque-Caballero M, Simon-Vermot L, Kambeitz-Ilankovic L, Bürger K, Catak C, Janowitz D, Müller C, Ertl-Wagner B, Stahl R, Dichgans M, Duering M, Ewers M (2018) The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Res Therapy 10(1):28CrossRef
18.
Zurück zum Zitat Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D’Antonio F, De Lena C, Güntekin B, Hanoǧlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, Vacca L, De Pandis MF, Bonanni L (2018) Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer’s and Lewy body diseases: an EEG study. Neurobiol Aging 65:18–40CrossRef Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D’Antonio F, De Lena C, Güntekin B, Hanoǧlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, Vacca L, De Pandis MF, Bonanni L (2018) Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer’s and Lewy body diseases: an EEG study. Neurobiol Aging 65:18–40CrossRef
19.
Zurück zum Zitat Owens-Walton C, Jakabek D, Li X, Wilkes FA, Walterfang M, Velakoulis D, van Westen D, Looi JC, Hansson O (2018) Striatal changes in Parkinson disease: an investigation of morphology functional connectivity and their relationship to clinical symptoms. Psychiatry Research, Neuroimaging Owens-Walton C, Jakabek D, Li X, Wilkes FA, Walterfang M, Velakoulis D, van Westen D, Looi JC, Hansson O (2018) Striatal changes in Parkinson disease: an investigation of morphology functional connectivity and their relationship to clinical symptoms. Psychiatry Research, Neuroimaging
20.
Zurück zum Zitat Dıez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2018) Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage: Clinical 17:847–855CrossRef Dıez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2018) Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage: Clinical 17:847–855CrossRef
21.
Zurück zum Zitat Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M (2013) Functional connectivity network based on graph analysis of scalp EEG for epileptic classification. In: In 2013 IEEE Signal processing in medicine and biology symposium (SPMB). IEEE, pp 1–4 Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M (2013) Functional connectivity network based on graph analysis of scalp EEG for epileptic classification. In: In 2013 IEEE Signal processing in medicine and biology symposium (SPMB). IEEE, pp 1–4
22.
Zurück zum Zitat Pedersen M, Omidvarnia AH, Walz JM, Jackson GD (2015) Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. NeuroImage: Clinical 8:536–542CrossRef Pedersen M, Omidvarnia AH, Walz JM, Jackson GD (2015) Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. NeuroImage: Clinical 8:536–542CrossRef
23.
Zurück zum Zitat Yang H, Zhang C, Liu C, Yu T, Zhang G, Chen N, Li K (2018) Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment. Epilepsy Behav 81:41–48CrossRef Yang H, Zhang C, Liu C, Yu T, Zhang G, Chen N, Li K (2018) Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment. Epilepsy Behav 81:41–48CrossRef
24.
Zurück zum Zitat Roberts JA, Friston KJ, Breakspear M (2017) Clinical applications of stochastic dynamic models of the brain, part i: a primer. Biolog Psych: Cogn Neurosci Neuroimag 2(3):216–224 Roberts JA, Friston KJ, Breakspear M (2017) Clinical applications of stochastic dynamic models of the brain, part i: a primer. Biolog Psych: Cogn Neurosci Neuroimag 2(3):216–224
25.
Zurück zum Zitat Yang J, Lee J (2018) Different aberrant mentalizing networks in males and females with autism spectrum disorders: evidence from resting-state functional magnetic resonance imaging. Autism 22(2):134–148CrossRef Yang J, Lee J (2018) Different aberrant mentalizing networks in males and females with autism spectrum disorders: evidence from resting-state functional magnetic resonance imaging. Autism 22(2):134–148CrossRef
26.
Zurück zum Zitat Bernas A, Barendse EM, Aldenkamp AP, Backes WH, Hofman PAM, Hendriks MPH, Kessels RPC, Willems FMJ, de With PHN, Zinger S, Jansen JFA (2018) Brain resting-state networks in adolescents with high-functioning autism: analysis of spatial connectivity and temporal neurodynamics. Brain Behav 8(2): e00878CrossRef Bernas A, Barendse EM, Aldenkamp AP, Backes WH, Hofman PAM, Hendriks MPH, Kessels RPC, Willems FMJ, de With PHN, Zinger S, Jansen JFA (2018) Brain resting-state networks in adolescents with high-functioning autism: analysis of spatial connectivity and temporal neurodynamics. Brain Behav 8(2): e00878CrossRef
27.
Zurück zum Zitat Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S (2012) Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS ONE, 7(2) Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S (2012) Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS ONE, 7(2)
28.
Zurück zum Zitat dos Santos Siqueira A, Biazoli Junior CE, Comfort WE, Rohde LA, Sato JR (2014) Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. BioMed Research International, pp 1–10 dos Santos Siqueira A, Biazoli Junior CE, Comfort WE, Rohde LA, Sato JR (2014) Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. BioMed Research International, pp 1–10
29.
Zurück zum Zitat Barnett A, Audrain S, McAndrews MP (2017) Applications of resting-state functional MR imaging to epilepsy. Neuroimaging Clin N Am 27(4):697–708CrossRef Barnett A, Audrain S, McAndrews MP (2017) Applications of resting-state functional MR imaging to epilepsy. Neuroimaging Clin N Am 27(4):697–708CrossRef
30.
Zurück zum Zitat Dierker D, Roland JL, Kamran M, Rutlin J, Hacker CD, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Snyder AZ, Leuthardt EC, Shimony JS (2017) Resting-state functional magnetic resonance imaging in presurgical functional mapping. Neuroimaging Clin N Am 27(4):621–633CrossRef Dierker D, Roland JL, Kamran M, Rutlin J, Hacker CD, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Snyder AZ, Leuthardt EC, Shimony JS (2017) Resting-state functional magnetic resonance imaging in presurgical functional mapping. Neuroimaging Clin N Am 27(4):621–633CrossRef
31.
Zurück zum Zitat Sair HI, Agarwal S, Pillai JJ (2017) Application of resting state functional MR imaging to presurgical mapping. Neuroimaging Clin N Am 27(4):635–644CrossRef Sair HI, Agarwal S, Pillai JJ (2017) Application of resting state functional MR imaging to presurgical mapping. Neuroimaging Clin N Am 27(4):635–644CrossRef
32.
Zurück zum Zitat Saiote C, Tacchino A, Brichetto G, Roccatagliata L, Bommarito G, Cordano C, Battaglia M, Mancardi GL, Inglese M (2016) Resting-state functional connectivity and motor imagery brain activation. Hum Brain Mapp 37(11):3847–3857CrossRef Saiote C, Tacchino A, Brichetto G, Roccatagliata L, Bommarito G, Cordano C, Battaglia M, Mancardi GL, Inglese M (2016) Resting-state functional connectivity and motor imagery brain activation. Hum Brain Mapp 37(11):3847–3857CrossRef
33.
Zurück zum Zitat Athanasiou A, Klados MA, Styliadis C, Foroglou N, Polyzoidis K, Bamidis PD (2016) Investigating the role of alpha and beta rhythms in functional motor networks. Neuroscience Athanasiou A, Klados MA, Styliadis C, Foroglou N, Polyzoidis K, Bamidis PD (2016) Investigating the role of alpha and beta rhythms in functional motor networks. Neuroscience
34.
Zurück zum Zitat Hamedi M, Salleh SH, Noor AM (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput 28(6):999–1041CrossRef Hamedi M, Salleh SH, Noor AM (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput 28(6):999–1041CrossRef
35.
Zurück zum Zitat Daly I, Nasuto SJ, Warwick K (2012) Brain computer interface control via functional connectivity dynamics. Pattern Recogn 45(6):2123–2136CrossRef Daly I, Nasuto SJ, Warwick K (2012) Brain computer interface control via functional connectivity dynamics. Pattern Recogn 45(6):2123–2136CrossRef
36.
Zurück zum Zitat Grosse-Wentrup M (2009) Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, vol 21. Curran Associates, Inc., pp 561–568 Grosse-Wentrup M (2009) Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, vol 21. Curran Associates, Inc., pp 561–568
37.
Zurück zum Zitat Chung YG, Kang JH, Kim SP (2011) Analysis of correlated EEG activity during motor imagery for brain-computer interfaces. In: 2011 11th International conference on control, automation and Systems (ICCAS). IEEE, Gyeonggi-do Chung YG, Kang JH, Kim SP (2011) Analysis of correlated EEG activity during motor imagery for brain-computer interfaces. In: 2011 11th International conference on control, automation and Systems (ICCAS). IEEE, Gyeonggi-do
38.
Zurück zum Zitat Zhang H, Chavarriaga R, Millán JdR (2014) Towards implementation of motor imagery using brain connectivity features. In: 6th International brain-computer interface conference. Graz Zhang H, Chavarriaga R, Millán JdR (2014) Towards implementation of motor imagery using brain connectivity features. In: 6th International brain-computer interface conference. Graz
39.
Zurück zum Zitat Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, Ma T, Li Y, Xu P (2015) Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 12(6):066024CrossRef Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, Ma T, Li Y, Xu P (2015) Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 12(6):066024CrossRef
40.
Zurück zum Zitat Stefano Filho CA, Attux R, Castellano G (2016) Graph centrality measures for assessing motor imagery tasks: an offline analysis for EEG-BCIs. In: XXV Brazilian congress on biomedical engineering (CBEB). Foz do Iguaċu, pp 1386–1389 Stefano Filho CA, Attux R, Castellano G (2016) Graph centrality measures for assessing motor imagery tasks: an offline analysis for EEG-BCIs. In: XXV Brazilian congress on biomedical engineering (CBEB). Foz do Iguaċu, pp 1386–1389
41.
Zurück zum Zitat Santamaria L, James C (2016) Use of graph metrics to classify motor imagery based BCI. In: 2016 international conference for students on applied engineering (ISCAE). IEEE, pp 469–474 Santamaria L, James C (2016) Use of graph metrics to classify motor imagery based BCI. In: 2016 international conference for students on applied engineering (ISCAE). IEEE, pp 469–474
42.
Zurück zum Zitat Gonuguntla V, Wang Y, Veluvolu KC (2016) Event-related functional network identification: application to EEG classification. IEEE J Selected Topics Signal Process 10(7):1284–1294CrossRef Gonuguntla V, Wang Y, Veluvolu KC (2016) Event-related functional network identification: application to EEG classification. IEEE J Selected Topics Signal Process 10(7):1284–1294CrossRef
43.
Zurück zum Zitat Hamedi M, Salleh SH, Samdin SB, Noor AM (2015) Motor imagery brain functional connectivity analysis via coherence. In: 2015 IEEE International conference on signal and image processing applications (ICSIPA), pp 269–273 Hamedi M, Salleh SH, Samdin SB, Noor AM (2015) Motor imagery brain functional connectivity analysis via coherence. In: 2015 IEEE International conference on signal and image processing applications (ICSIPA), pp 269–273
44.
Zurück zum Zitat Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329CrossRef Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329CrossRef
45.
Zurück zum Zitat Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett Section A: General Atomic Solid State Phys 302(5–6):299–307CrossRef Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett Section A: General Atomic Solid State Phys 302(5–6):299–307CrossRef
46.
Zurück zum Zitat Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience
47.
Zurück zum Zitat Carvalho SN, Costa TB, Uribe LF, Soriano DC, Yared GF, Coradine LC, Attux R (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42CrossRef Carvalho SN, Costa TB, Uribe LF, Soriano DC, Yared GF, Coradine LC, Attux R (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42CrossRef
48.
Zurück zum Zitat Carvalho SN, Costa TBS, Uribe LFS, Soriano DC, Almeida SRM, Min LL, Castellano G, Attux R (2015) Effect of the combination of different numbers of flickering frequencies in an SSVEP-BCI for healthy volunteers and stroke patients. In: 2015 7th International IEEE/EMBS conference on neural engineering (NER). IEEE, pp 78–81 Carvalho SN, Costa TBS, Uribe LFS, Soriano DC, Almeida SRM, Min LL, Castellano G, Attux R (2015) Effect of the combination of different numbers of flickering frequencies in an SSVEP-BCI for healthy volunteers and stroke patients. In: 2015 7th International IEEE/EMBS conference on neural engineering (NER). IEEE, pp 78–81
50.
Zurück zum Zitat Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:1–31CrossRef Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:1–31CrossRef
51.
Zurück zum Zitat Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain-computer interface. GigaScience 6(7):1–8CrossRef Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain-computer interface. GigaScience 6(7):1–8CrossRef
52.
Zurück zum Zitat McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394CrossRef McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394CrossRef
53.
Zurück zum Zitat Myers J, Well A (2003) Research design and statistical analysis, 2nd edn. Lawrence Erlbaum Associates, LondonCrossRef Myers J, Well A (2003) Research design and statistical analysis, 2nd edn. Lawrence Erlbaum Associates, LondonCrossRef
54.
Zurück zum Zitat Mormann F, Lehnertz K, David P, E Elger C (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena 144(3):358–369CrossRef Mormann F, Lehnertz K, David P, E Elger C (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena 144(3):358–369CrossRef
55.
Zurück zum Zitat Park SA, Hwang HJ, Lim JH, Choi JH, Jung HK, Im CH (2013) Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51(5):571–9CrossRef Park SA, Hwang HJ, Lim JH, Choi JH, Jung HK, Im CH (2013) Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51(5):571–9CrossRef
56.
Zurück zum Zitat Zhang J, Small M (2006) Complex network from pesudoperiodic time series: topology versus dynamics. Phys Rev Lett 96:238701CrossRef Zhang J, Small M (2006) Complex network from pesudoperiodic time series: topology versus dynamics. Phys Rev Lett 96:238701CrossRef
57.
Zurück zum Zitat Marwan N, Donges JF, Zou Y, Donner RV (2009) Complex network approach for recurrence analysis of time series. Phys Lett A 373(46):4246–4254CrossRef Marwan N, Donges JF, Zou Y, Donner RV (2009) Complex network approach for recurrence analysis of time series. Phys Lett A 373(46):4246–4254CrossRef
58.
Zurück zum Zitat Donner RV, Small M, Donges JF, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifur Chaos 21(04):1019–1046CrossRef Donner RV, Small M, Donges JF, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifur Chaos 21(04):1019–1046CrossRef
59.
Zurück zum Zitat Yang H, Gang L (2013) Self-organized topology of recurrence-based complex networks. Chaos 23:043116CrossRef Yang H, Gang L (2013) Self-organized topology of recurrence-based complex networks. Chaos 23:043116CrossRef
60.
Zurück zum Zitat Hu Y (2005) Efficient and high quality force-directed graph drawing. Math J 10(1):37–71 Hu Y (2005) Efficient and high quality force-directed graph drawing. Math J 10(1):37–71
61.
Zurück zum Zitat Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232CrossRef Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232CrossRef
62.
Zurück zum Zitat Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic Press Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic Press
63.
Zurück zum Zitat Stefano Filho CA, Campos BM, Costa TBS, Uribe LFS, Barreto CSF, Attux R, Castellano G (2016) Graphs metrics as features for an LDA based classifier for motor imagery data. J Epilepsy Clinical Neurophysioly 22:3 Stefano Filho CA, Campos BM, Costa TBS, Uribe LFS, Barreto CSF, Attux R, Castellano G (2016) Graphs metrics as features for an LDA based classifier for motor imagery data. J Epilepsy Clinical Neurophysioly 22:3
64.
Zurück zum Zitat Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRef Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRef
65.
Zurück zum Zitat Stefano Filho CA, Attux R, Castellano G (2018) Can graph metrics be used for EEG-BCIs based on hand motor imagery? Biomedl Signal Process Control 40:359–365CrossRef Stefano Filho CA, Attux R, Castellano G (2018) Can graph metrics be used for EEG-BCIs based on hand motor imagery? Biomedl Signal Process Control 40:359–365CrossRef
66.
Zurück zum Zitat Demuru M, Fara F, Fraschini M (2013) Brain network analysis of EEG functional connectivity during imagery hand movements. J Integr Neurosci 12(04):441–447CrossRef Demuru M, Fara F, Fraschini M (2013) Brain network analysis of EEG functional connectivity during imagery hand movements. J Integr Neurosci 12(04):441–447CrossRef
67.
Zurück zum Zitat Asensio-Cubero J, Gan JQ, Palaniappan R (2016) Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput Biol Med 68:21–26CrossRef Asensio-Cubero J, Gan JQ, Palaniappan R (2016) Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput Biol Med 68:21–26CrossRef
68.
Zurück zum Zitat Bianciardi M, Sirabella P, Hagberg GE, Giuliani A, Zbilut JP, Colosimo A (2007) Model-free analysis of brain fMRI data by recurrence quantification. Neuroimage 37(2):489–503CrossRef Bianciardi M, Sirabella P, Hagberg GE, Giuliani A, Zbilut JP, Colosimo A (2007) Model-free analysis of brain fMRI data by recurrence quantification. Neuroimage 37(2):489–503CrossRef
69.
Zurück zum Zitat Webber CL, Giuliani A, Zbilut JP, Colosimo A (2001) Elucidating protein secondary structures using alpha-carbon recurrence quantifications. Proteins 44(3):292–303CrossRef Webber CL, Giuliani A, Zbilut JP, Colosimo A (2001) Elucidating protein secondary structures using alpha-carbon recurrence quantifications. Proteins 44(3):292–303CrossRef
70.
Zurück zum Zitat Webber CL, Zbilut JP (2007) Recurrence quantifications: feature extractions from recurrence plots. Int J Bifur Chaos 17(10):3467–3475CrossRef Webber CL, Zbilut JP (2007) Recurrence quantifications: feature extractions from recurrence plots. Int J Bifur Chaos 17(10):3467–3475CrossRef
71.
Zurück zum Zitat Uribe LFS, Fazanaro FI, Castellano G, Suyama R, Attux R, Cardozo E, Soriano DC (2014) A recurrence-based approach for feature extraction in brain-computer interface systems. In: Marwan N, Riley M, Giuliani A, Webber JrC L (eds). Springer, Translational recurrences, pp 95–107 Uribe LFS, Fazanaro FI, Castellano G, Suyama R, Attux R, Cardozo E, Soriano DC (2014) A recurrence-based approach for feature extraction in brain-computer interface systems. In: Marwan N, Riley M, Giuliani A, Webber JrC L (eds). Springer, Translational recurrences, pp 95–107
72.
Zurück zum Zitat Roberts SJ, Penny W, Rezek I (1999) Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing. Med Biol Eng Comput 37(1):93–8CrossRef Roberts SJ, Penny W, Rezek I (1999) Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing. Med Biol Eng Comput 37(1):93–8CrossRef
73.
Zurück zum Zitat Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9(1–2):189–208CrossRef Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9(1–2):189–208CrossRef
74.
Zurück zum Zitat Prichard D, Theiler J (1995) Generalized redundancies for time series analysis. Physica D: Nonlinear Phenomena 84(3–4):476–493CrossRef Prichard D, Theiler J (1995) Generalized redundancies for time series analysis. Physica D: Nonlinear Phenomena 84(3–4):476–493CrossRef
75.
Zurück zum Zitat Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear Phenomena 99(2–3):134–161CrossRef Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear Phenomena 99(2–3):134–161CrossRef
76.
Zurück zum Zitat Weifeng L, Pokharel P, Principe J (2006) Correntropy: a localized similarity measure. In: The 2006 IEEE international joint conference on neural network proceedings. IEEE, pp 4919–4924 Weifeng L, Pokharel P, Principe J (2006) Correntropy: a localized similarity measure. In: The 2006 IEEE international joint conference on neural network proceedings. IEEE, pp 4919–4924
77.
Zurück zum Zitat Liu W, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298CrossRef Liu W, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298CrossRef
78.
Zurück zum Zitat Mahmoudi B, Erfanian A (2006) Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Med Biol Eng Comput 44(11):959–69CrossRef Mahmoudi B, Erfanian A (2006) Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Med Biol Eng Comput 44(11):959–69CrossRef
79.
Zurück zum Zitat Aliakbaryhosseinabadi S, Kamavuako EN, Jiang N, Farina D, Mrachacz-Kersting N (2017) Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 284:27–34CrossRef Aliakbaryhosseinabadi S, Kamavuako EN, Jiang N, Farina D, Mrachacz-Kersting N (2017) Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 284:27–34CrossRef
80.
Zurück zum Zitat Fall S, De Marco G (2008) Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biol Cybern 98(2):101–114CrossRef Fall S, De Marco G (2008) Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biol Cybern 98(2):101–114CrossRef
Metadaten
Titel
Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces
verfasst von
Paula G. Rodrigues
Carlos A. Stefano Filho
Romis Attux
Gabriela Castellano
Diogo C. Soriano
Publikationsdatum
25.05.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 8/2019
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-019-01989-w

Weitere Artikel der Ausgabe 8/2019

Medical & Biological Engineering & Computing 8/2019 Zur Ausgabe