Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

28.03.2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems | Ausgabe 9/2019

Neural Computing and Applications 9/2019

Spark-based intelligent parameter inversion method for prestack seismic data

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2019
Autoren:
Xuesong Yan, Zhixin Zhu, Chengyu Hu, Wenyin Gong, Qinghua Wu

Abstract

Seismic exploration is an oil exploration method by utilizing seismic information. Useful reservoir parameter information can be gained through inversion of seismic information to effectively carry out exploration work. Prestack data are characterized by large data size and rich information. Rich reservoir parameter information can be obtained through inversion of prestack data. Due to mass prestack seismic data, existing single computer environment cannot satisfy computation requirement of huge data size. Thus, an efficient and fast method is urgently needed to solve the inversion problem of prestack seismic big data. Since local optimum may be easily caught when genetic algorithm is used to optimize elastic parameters, the inversion effect is not obvious. In particular, the optimization effect for the density parameters is not good. An intelligent optimization algorithm is proposed in this paper for elastic parameter inversion of prestack seismic data. The algorithm improves genetic manipulation. The improved algorithm has been used for model trial for log data, and good inversion effect has been achieved. The inverted elastic parameters well fit with the log curve of the theoretical model. The improved algorithm effectively improves the inversion accuracy of density parameters. In this paper, the algorithm has been implemented on Spark model, and the results show that the parallel model can effectively reduce operation time of the algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Intelligent learning system based on personalized recommendation technology

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Civil engineering supervision video retrieval method optimization based on spectral clustering and R-tree

Premium Partner

    Bildnachweise