Skip to main content

27.04.2024 | Original Paper

Sparse polynomial interpolation: faster strategies over finite fields

verfasst von: Joris van der Hoeven, Grégoire Lecerf

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Consider a multivariate polynomial \(f \in K [x_1, \ldots , x_n]\) over a field K, which is given through a black box capable of evaluating f at points in \(K^n\), or possibly at points in \(A^n\) for any K-algebra A. The problem of sparse interpolation is to express f in its usual form with respect to the monomial basis. We analyze the complexity of various old and new algorithms for this task in terms of bounds D and T for the total degree of f and its number of terms. We mainly focus on the case when K is a finite field and explore possible speed-ups.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Arnold, A., Giesbrecht, M., Roche, D.S.: Sparse interpolation over finite fields via low-order roots of unity. In ISSAC ’14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp 27–34. ACM Press, (2014) Arnold, A., Giesbrecht, M., Roche, D.S.: Sparse interpolation over finite fields via low-order roots of unity. In ISSAC ’14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp 27–34. ACM Press, (2014)
3.
Zurück zum Zitat Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse multivariate polynomial interpolation of straight-line programs. J. Symb. Comput. 75, 4–24 (2016)MathSciNetCrossRef Arnold, A., Giesbrecht, M., Roche, D.S.: Faster sparse multivariate polynomial interpolation of straight-line programs. J. Symb. Comput. 75, 4–24 (2016)MathSciNetCrossRef
4.
Zurück zum Zitat Arnold, A., Roche, D.S.: Multivariate sparse interpolation using randomized Kronecker substitutions. In ISSAC ’14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp 35–42. ACM Press, (2014) Arnold, A., Roche, D.S.: Multivariate sparse interpolation using randomized Kronecker substitutions. In ISSAC ’14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp 35–42. ACM Press, (2014)
5.
Zurück zum Zitat Arratia, R., Gordon, L.: Tutorial on large deviations for the binomial distribution. Bull. Math. Biol. 51(1), 125–131 (1989)MathSciNetCrossRef Arratia, R., Gordon, L.: Tutorial on large deviations for the binomial distribution. Bull. Math. Biol. 51(1), 125–131 (1989)MathSciNetCrossRef
6.
Zurück zum Zitat Baker, R.C., Harman, G., Pintz, J.: The difference between consecutive primes, II. Proc. London Math. Soc. 83(3), 532–562 (2001)MathSciNetCrossRef Baker, R.C., Harman, G., Pintz, J.: The difference between consecutive primes, II. Proc. London Math. Soc. 83(3), 532–562 (2001)MathSciNetCrossRef
7.
8.
Zurück zum Zitat Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In STOC ’88: Proceedings of the Twentieth AAnnual ACM Symposium on Theory of Computing, pp 301–309. ACM Press (1988) Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In STOC ’88: Proceedings of the Twentieth AAnnual ACM Symposium on Theory of Computing, pp 301–309. ACM Press (1988)
9.
Zurück zum Zitat Bennett, M.A., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic progressions. Illinois J. Math. 62(1–4), 427–532 (2018)MathSciNet Bennett, M.A., Martin, G., O’Bryant, K., Rechnitzer, A.: Explicit bounds for primes in arithmetic progressions. Illinois J. Math. 62(1–4), 427–532 (2018)MathSciNet
10.
Zurück zum Zitat Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp 37–44. ACM Press, (2003) Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In: ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp 37–44. ACM Press, (2003)
11.
Zurück zum Zitat Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of Padé approximants. J. Algor. 1(3), 259–295 (1980)CrossRef Brent, R.P., Gustavson, F.G., Yun, D.Y.Y.: Fast solution of Toeplitz systems of equations and computation of Padé approximants. J. Algor. 1(3), 259–295 (1980)CrossRef
12.
Zurück zum Zitat Canny, J., Kaltofen, E., Lakshman, Y.: Solving systems of non-linear polynomial equations faster. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, pp 121–128. ACM Press, (1989) Canny, J., Kaltofen, E., Lakshman, Y.: Solving systems of non-linear polynomial equations faster. In Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, pp 121–128. ACM Press, (1989)
13.
Zurück zum Zitat Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587–592 (1981)MathSciNetCrossRef Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587–592 (1981)MathSciNetCrossRef
14.
Zurück zum Zitat Díaz, A., Kaltofen, E.: FOXFOX: a system for manipulating symbolic objects in black box representation. In ISSAC ’98: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pp 30–37. ACM Press, (1998) Díaz, A., Kaltofen, E.: FOXFOX: a system for manipulating symbolic objects in black box representation. In ISSAC ’98: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pp 30–37. ACM Press, (1998)
15.
Zurück zum Zitat Ernvall-Hytönen, A.-M., Palojärvi, N.: Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis. Math. Comput. 91, 1317–1365 (2022)MathSciNet Ernvall-Hytönen, A.-M., Palojärvi, N.: Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis. Math. Comput. 91, 1317–1365 (2022)MathSciNet
16.
Zurück zum Zitat Freeman, T.S., Imirzian, G.M., Kaltofen, E., Lakshman, Y.: DAGWOOD: a system for manipulating polynomials given by straight-line programs. ACM Trans. Math. Softw. 14, 218–240 (1988)CrossRef Freeman, T.S., Imirzian, G.M., Kaltofen, E., Lakshman, Y.: DAGWOOD: a system for manipulating polynomials given by straight-line programs. ACM Trans. Math. Softw. 14, 218–240 (1988)CrossRef
17.
Zurück zum Zitat Garg, S., Schost, É.: Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410(27–29), 2659–2662 (2009)MathSciNetCrossRef Garg, S., Schost, É.: Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410(27–29), 2659–2662 (2009)MathSciNetCrossRef
18.
Zurück zum Zitat Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In ISSAC ’11: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pp 123–130. ACM Press, (2011) Giesbrecht, M., Roche, D.S.: Diversification improves interpolation. In ISSAC ’11: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pp 123–130. ACM Press, (2011)
19.
Zurück zum Zitat Giorgi, P., Grenet, B., Perret du Cray, A.: Essentially optimal sparse polynomial multiplication. In Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC ’20, pp 202–209. New York, NY, USA, 2020. ACM Press Giorgi, P., Grenet, B., Perret du Cray, A.: Essentially optimal sparse polynomial multiplication. In Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, ISSAC ’20, pp 202–209. New York, NY, USA, 2020. ACM Press
20.
Zurück zum Zitat Giorgi, P., Grenet, B., Perret du Cray, A., Roche, D.S.: Random primes in arithmetic progressions. Techn. Rep. (2022) arXiv:2202.05955 Giorgi, P., Grenet, B., Perret du Cray, A., Roche, D.S.: Random primes in arithmetic progressions. Techn. Rep. (2022) arXiv:​2202.​05955
21.
Zurück zum Zitat Giorgi, P., Grenet, B. Perret du Cray, A., Roche, D.S.: Sparse polynomial interpolation and division in soft-linear time. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pp 459–468. New York, NY, USA, 2022. ACM Press Giorgi, P., Grenet, B. Perret du Cray, A., Roche, D.S.: Sparse polynomial interpolation and division in soft-linear time. In Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ISSAC ’22, pp 459–468. New York, NY, USA, 2022. ACM Press
22.
Zurück zum Zitat Grenet, B., van der Hoeven, J., Lecerf, G.: Randomized root finding over finite fields using tangent Graeffe transforms. In ISSAC ’15: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp 197–204. New York, NY, USA, 2015. ACM Press Grenet, B., van der Hoeven, J., Lecerf, G.: Randomized root finding over finite fields using tangent Graeffe transforms. In ISSAC ’15: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp 197–204. New York, NY, USA, 2015. ACM Press
23.
Zurück zum Zitat Grenet, B., van der Hoeven, J., Lecerf, G.: Deterministic root finding over finite fields using Graeffe transforms. Appl. Algebra Engrg. Comm. Comput. 27(3), 237–257 (2016)MathSciNetCrossRef Grenet, B., van der Hoeven, J., Lecerf, G.: Deterministic root finding over finite fields using Graeffe transforms. Appl. Algebra Engrg. Comm. Comput. 27(3), 237–257 (2016)MathSciNetCrossRef
24.
Zurück zum Zitat Grigoriev, D.Y., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanents is in NC. In Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science, pp 166–172. IEEE Computer Society, (1987) Grigoriev, D.Y., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanents is in NC. In Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science, pp 166–172. IEEE Computer Society, (1987)
25.
Zurück zum Zitat Harvey, D., van der Hoeven, J.: Polynomial multiplication over finite fields in time \(O (n \log n)\). J. ACM 69(2), 1–40 (2022)CrossRef Harvey, D., van der Hoeven, J.: Polynomial multiplication over finite fields in time \(O (n \log n)\). J. ACM 69(2), 1–40 (2022)CrossRef
26.
Zurück zum Zitat Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields. J. ACM 63(6), 52 (2017)MathSciNetCrossRef Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields. J. ACM 63(6), 52 (2017)MathSciNetCrossRef
27.
Zurück zum Zitat Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute. In Logic and algorithmic (Zurich, 1980), volume 30 of Monograph. Enseign. Math., pages 237–254. Geneva, 1982. Univ. Genève Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute. In Logic and algorithmic (Zurich, 1980), volume 30 of Monograph. Enseign. Math., pages 237–254. Geneva, 1982. Univ. Genève
28.
Zurück zum Zitat van der Hoeven, J., Larrieu, R.: The Frobenius FFT. In ISSAC ’17: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 437–444. New York, NY, USA, 2017. ACM Press van der Hoeven, J., Larrieu, R.: The Frobenius FFT. In ISSAC ’17: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pages 437–444. New York, NY, USA, 2017. ACM Press
29.
Zurück zum Zitat J. van der Hoeven, R. Lebreton, and É. Schost. Structured FFT and TFT: symmetric and lattice polynomials. In ISSAC ’13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pages 355–362. New York, NY, USA, 2013. ACM Press J. van der Hoeven, R. Lebreton, and É. Schost. Structured FFT and TFT: symmetric and lattice polynomials. In ISSAC ’13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pages 355–362. New York, NY, USA, 2013. ACM Press
30.
Zurück zum Zitat van der Hoeven, J., Lecerf, G.: On the bit-complexity of sparse polynomial and series multiplication. J. Symb. Comput. 50, 227–254 (2013)MathSciNetCrossRef van der Hoeven, J., Lecerf, G.: On the bit-complexity of sparse polynomial and series multiplication. J. Symb. Comput. 50, 227–254 (2013)MathSciNetCrossRef
31.
Zurück zum Zitat van der Hoeven, J., Lecerf, G.: Sparse polynomial interpolation in practice. ACM Commun. Comput. Algebra 48(3/4), 187–191 (2015)CrossRef van der Hoeven, J., Lecerf, G.: Sparse polynomial interpolation in practice. ACM Commun. Comput. Algebra 48(3/4), 187–191 (2015)CrossRef
33.
Zurück zum Zitat J. Hu and M. B. Monagan. A fast parallel sparse polynomial GCD algorithm. In S. A. Abramov, E. V. Zima, and X.-S. Gao, editors, ISSAC ’16: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp 271–278. New York, NY, USA, 2016. ACM Press J. Hu and M. B. Monagan. A fast parallel sparse polynomial GCD algorithm. In S. A. Abramov, E. V. Zima, and X.-S. Gao, editors, ISSAC ’16: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pp 271–278. New York, NY, USA, 2016. ACM Press
34.
Zurück zum Zitat Huang, M.A., Rao, A.J.: Interpolation of sparse multivariate polynomials over large finite fields with applications. In SODA ’96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 508–517. Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics Huang, M.A., Rao, A.J.: Interpolation of sparse multivariate polynomials over large finite fields with applications. In SODA ’96: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 508–517. Philadelphia, PA, USA, 1996. Society for Industrial and Applied Mathematics
35.
Zurück zum Zitat Huang, M.-D.A., Rao, A.J.: Interpolation of sparse multivariate polynomials over large finite fields with applications. J. Algor. 33(2), 204–228 (1999)MathSciNetCrossRef Huang, M.-D.A., Rao, A.J.: Interpolation of sparse multivariate polynomials over large finite fields with applications. J. Algor. 33(2), 204–228 (1999)MathSciNetCrossRef
36.
Zurück zum Zitat Huang, Q.L., Gao, X.S.: Sparse Polynomial Interpolation with Finitely Many Values for the Coefficients. In V. Gerdt, V. Koepf, W. Seiler, and E. Vorozhtsov, editors, Computer Algebra in Scientific Computing. 19th International Workshop, CASC 2017, Beijing, China, September 18-22, 2017, Proceedings., volume 10490 of Lect. Notes Comput. Sci. Springer, Cham, (2017) Huang, Q.L., Gao, X.S.: Sparse Polynomial Interpolation with Finitely Many Values for the Coefficients. In V. Gerdt, V. Koepf, W. Seiler, and E. Vorozhtsov, editors, Computer Algebra in Scientific Computing. 19th International Workshop, CASC 2017, Beijing, China, September 18-22, 2017, Proceedings., volume 10490 of Lect. Notes Comput. Sci. Springer, Cham, (2017)
37.
Zurück zum Zitat Q.-L. Huang. Sparse polynomial interpolation over fields with large or zero characteristic. In ISSAC ’19: Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, pp 219–226. New York, NY, USA, 2019. ACM Press Q.-L. Huang. Sparse polynomial interpolation over fields with large or zero characteristic. In ISSAC ’19: Proceedings of the 2019 on International Symposium on Symbolic and Algebraic Computation, pp 219–226. New York, NY, USA, 2019. ACM Press
38.
Zurück zum Zitat Huang, Q.L., Gao, X.S.: Faster interpolation algorithms for sparse multivariate polynomials given by straight-line programs. J. Symb. Comput. 101, 367–386 (2020)MathSciNetCrossRef Huang, Q.L., Gao, X.S.: Faster interpolation algorithms for sparse multivariate polynomials given by straight-line programs. J. Symb. Comput. 101, 367–386 (2020)MathSciNetCrossRef
39.
Zurück zum Zitat Javadi, M., Monagan, M.: Parallel sparse polynomial interpolation over finite fields. In M. Moreno Maza and J.-L. Roch, editors, PASCO ’10: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pp 160–168. New York, NY, USA, 2010. ACM Press Javadi, M., Monagan, M.: Parallel sparse polynomial interpolation over finite fields. In M. Moreno Maza and J.-L. Roch, editors, PASCO ’10: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pp 160–168. New York, NY, USA, 2010. ACM Press
40.
Zurück zum Zitat Kaltofen, E.: Computing with polynomials given by straight-line programs I: greatest common divisors. In STOC ’85: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp 131–142. ACM Press, (1985) Kaltofen, E.: Computing with polynomials given by straight-line programs I: greatest common divisors. In STOC ’85: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp 131–142. ACM Press, (1985)
41.
Zurück zum Zitat E. L. Kaltofen. Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lecture at PASCO 2010. In PASCO ’10: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pp 10–17. ACM Press, 2010 E. L. Kaltofen. Fifteen years after DSC and WLSS2 what parallel computations I do today: invited lecture at PASCO 2010. In PASCO ’10: Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pp 10–17. ACM Press, 2010
42.
Zurück zum Zitat E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate polynomial interpolation. In ISSAC ’90: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp 135–139. New York, NY, USA, 1990. ACM Press E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational sparse multivariate polynomial interpolation. In ISSAC ’90: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp 135–139. New York, NY, USA, 1990. ACM Press
43.
Zurück zum Zitat Kaltofen, E., Lee, W.: Early termination in sparse interpolation algorithms. J. Symb. Comput. 36(3), 365–400 (2003)MathSciNetCrossRef Kaltofen, E., Lee, W.: Early termination in sparse interpolation algorithms. J. Symb. Comput. 36(3), 365–400 (2003)MathSciNetCrossRef
44.
Zurück zum Zitat Kaltofen, E., Trager, B.M.: Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators. J. Symb. Comput. 9(3), 301–320 (1990)MathSciNetCrossRef Kaltofen, E., Trager, B.M.: Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators. J. Symb. Comput. 9(3), 301–320 (1990)MathSciNetCrossRef
45.
Zurück zum Zitat Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation algorithms. In ISSAC ’88: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp 467–474. Springer Verlag, (1988) Kaltofen, E., Yagati, L.: Improved sparse multivariate polynomial interpolation algorithms. In ISSAC ’88: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp 467–474. Springer Verlag, (1988)
46.
Zurück zum Zitat R. Moenck. Fast computation of gcds. In Proc. of the 5th ACM Annual Symposium on Theory of Computing, pp 142–171. New York, 1973. ACM Press R. Moenck. Fast computation of gcds. In Proc. of the 5th ACM Annual Symposium on Theory of Computing, pp 142–171. New York, 1973. ACM Press
47.
Zurück zum Zitat Murao, H., Fujise, T.: Modular algorithm for sparse multivariate polynomial interpolation and its parallel implementation. J. Symb. Comput. 21, 377–396 (1996)MathSciNetCrossRef Murao, H., Fujise, T.: Modular algorithm for sparse multivariate polynomial interpolation and its parallel implementation. J. Symb. Comput. 21, 377–396 (1996)MathSciNetCrossRef
48.
Zurück zum Zitat Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)MathSciNetCrossRef Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)MathSciNetCrossRef
49.
Zurück zum Zitat A. Perret du Cray. Algorithmes pour les polynômes creux : interpolation, arithmétique, test d’identité. PhD thesis, Université de Montpellier (France), 2023 A. Perret du Cray. Algorithmes pour les polynômes creux : interpolation, arithmétique, test d’identité. PhD thesis, Université de Montpellier (France), 2023
50.
Zurück zum Zitat R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique Floréal et Plairial, an III, 1(cahier 22):24–76, 1795 R. Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, à différentes températures. J. de l’École Polytechnique Floréal et Plairial, an III, 1(cahier 22):24–76, 1795
52.
Zurück zum Zitat D. S. Roche. What can (and can’t) we do with sparse polynomials? In C. Arreche, editor, Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pages 25–30. New York, NY, USA, 2018. ACM Press D. S. Roche. What can (and can’t) we do with sparse polynomials? In C. Arreche, editor, Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC ’18, pages 25–30. New York, NY, USA, 2018. ACM Press
53.
Zurück zum Zitat Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inform. 7, 395–398 (1977)MathSciNetCrossRef Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Inform. 7, 395–398 (1977)MathSciNetCrossRef
54.
Zurück zum Zitat A. Sedunova. A partial Bombieri–Vinogradov theorem with explicit constants. Publications mathématiques de Besançon. Algèbre et théorie des nombres, pp 101–110, 2018 A. Sedunova. A partial Bombieri–Vinogradov theorem with explicit constants. Publications mathématiques de Besançon. Algèbre et théorie des nombres, pp 101–110, 2018
55.
Zurück zum Zitat R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor, Symbolic and Algebraic Computation. Eurosam ’79, An International Symposium on Symbolic and Algebraic Manipulation, Marseille, France, June 1979, vol 72 of Lect. Notes Comput. Sci., pp 216–226. Springer-Verlag, (1979) R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor, Symbolic and Algebraic Computation. Eurosam ’79, An International Symposium on Symbolic and Algebraic Manipulation, Marseille, France, June 1979, vol 72 of Lect. Notes Comput. Sci., pp 216–226. Springer-Verlag, (1979)
Metadaten
Titel
Sparse polynomial interpolation: faster strategies over finite fields
verfasst von
Joris van der Hoeven
Grégoire Lecerf
Publikationsdatum
27.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00655-5