Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2018 | OriginalPaper | Buchkapitel

Sparse-View CT Reconstruction Using Wasserstein GANs

verfasst von : Franz Thaler, Kerstin Hammernik, Christian Payer, Martin Urschler, Darko Štern

Erschienen in: Machine Learning for Medical Image Reconstruction

Verlag: Springer International Publishing

Abstract

We propose a 2D computed tomography (CT) slice image reconstruction method from a limited number of projection images using Wasserstein generative adversarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an \(L_1\) content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two loss functions and compare to a convolutional neural network (CNN) optimized on \(L_1\) and the Filtered Backprojection (FBP) method. The evaluation shows that the results generated by the machine learning based approaches are substantially better than those from the FBP method. In contrast to the blurrier looking images generated by the CNNs trained on \(L_1\), the wGANs results appear sharper and seem to contain more structural information. We show that a certain amount of projection data is needed to get a correct representation of the anatomical correspondences.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literatur
1.
Zurück zum Zitat Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
2.
Zurück zum Zitat Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5769–5779 (2017)
3.
Zurück zum Zitat Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef
4.
Zurück zum Zitat Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017) CrossRef Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10), e360–e375 (2017) CrossRef
5.
Zurück zum Zitat Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017) Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
8.
Zurück zum Zitat Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. Accepted at International Conference on Medical Image Computing and Computer-Assisted Intervention (2018) Seitzer, M., et al.: Adversarial and perceptual refinement for compressed sensing MRI reconstruction. Accepted at International Conference on Medical Image Computing and Computer-Assisted Intervention (2018)
9.
Zurück zum Zitat Thaler, F., Payer, C., Štern, D.: Volumetric reconstruction from a limited number of digitally reconstructed radiographs using CNNs. In: Proceedings of the OAGM Workshop 2018, pp. 13–19. Verlag der TU Graz (2018) Thaler, F., Payer, C., Štern, D.: Volumetric reconstruction from a limited number of digitally reconstructed radiographs using CNNs. In: Proceedings of the OAGM Workshop 2018, pp. 13–19. Verlag der TU Graz (2018)
10.
Zurück zum Zitat Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 8(1), 6700 (2018) CrossRef Xie, S., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci. Rep. 8(1), 6700 (2018) CrossRef
11.
Zurück zum Zitat Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018) CrossRef
12.
Zurück zum Zitat Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018) CrossRef Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018) CrossRef
13.
Zurück zum Zitat Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8(1), 2575 (2018) CrossRef Yang, X., et al.: Low-dose X-ray tomography through a deep convolutional neural network. Sci. Rep. 8(1), 2575 (2018) CrossRef
Metadaten
Titel
Sparse-View CT Reconstruction Using Wasserstein GANs
verfasst von
Franz Thaler
Kerstin Hammernik
Christian Payer
Martin Urschler
Darko Štern
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_9

Premium Partner